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ABSTRACT

Rare-event probabilities and risk measures that quantify the likelihood of catastrophic or failure events
can be sensitive to the accuracy of the underlying input models, especially regarding their tail behaviors.
We investigate how the lack of tail information of the input can affect the output extremal measures, in
relation to the level of data that are needed to inform the input tail. Using the basic setting of estimating the
probability of the overshoot of an aggregation of i.i.d. input variables, we argue that heavy-tailed problems
are much more vulnerable to input uncertainty than light-tailed problems. We explain this phenomenon
via their large deviations behaviors, and substantiate with some numerical experiments.

1 INTRODUCTION

Assessing rare-event probabilities and extremal measures for the likelihood of catastrophic events is
ubiquitous in risk analysis and management. In many cases, these extremal quantities are outputs that
rely on underlying, granular stochastic components. Estimating these extremal quantities hinges on the
provision of accurate probabilistic descriptions of these input components, with any deviations away from
the reality leading to potential errors or even meaningless estimates. This issue has been studied and has
gathered growing literature in recent years, generally known as the problem of model uncertainty or input
uncertainty. See, e.g., Barton et al. (2002), Henderson (2003), Song et al. (2014) and Lam (2016). Its
main focus is to develop methodologies that can quantify the impact of model misspecifications or errors
that propagate to output estimation or decision-making.

In our paper, we address several validity questions that arise when, given input data, a modeler chooses
to use standard approaches to obtain estimates and quantify uncertainty, namely:

1. By simply using the empirical distribution as my input model fit, would the rare-event estimate be
reasonably close to the truth? (assuming computational or Monte Carlo noise is negligible)

2. Following the point estimate in Question 1, would it work if one runs a bootstrap to obtain a
confidence interval that accounts for the input data noise?

3. If the bootstrap does not work, would incorporating extreme value theory in fitting the input tail
helps with more reliable uncertainty quantification?

Our viewpoint is that the main source of uncertainty in determining the accuracy of rare-event estimation
comes from the lack of knowledge of the tail of the input models. The main body (i.e., non-tail) part of the
input distribution can be fit by both parametric and nonparametric techniques, where there are typically
adequate data to perform such fit (and in Question 1 above, we simply use the empirical distribution as
the fit). However, it is the portion beyond the scope of data that determines the distributional tail and in
turn the rare-event behaviors. Thus, before we go to the above questions, we first focus on: “How does
truncating the tail of the input model affect the rare-event estimate?”

In our paper, we discuss these questions with a basic setup on the overshoot of an aggregation of i.i.d.
variables. We provide analysis to explain the impacts of tail truncation in light- versus heavy-tailed cases.
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In numerical experiments, we discuss the comparisons between performance of the light and the heavy-tail
cases in three tasks, i.e. estimation with tail-truncated distribution, estimation with empirical distribution
and estimation of input uncertainty with bootstrapping.

2 THE IMPACT OF TAIL TRUNCATION

Our main contention is that heavy-tailed problems could be much more challenging than light-tailed
counterparts regarding estimation and uncertainty quantification using the standard approaches in Questions
1-3. This challenge roots from Question 0 in that truncating the input tail in a heavy-tailed system exerts a
huge effect on the rare-event estimate, when the truncation level represents the typical level of knowledge that
the data informs (e.g., the top 1% or 0.1% of the data). To illustrate, we consider estimating p = P(Sn > γ)
where Sn = X1+ · · ·+Xn and Xi ∈R are i.i.d. variables drawn from the distribution F . We let µ = E[Xi]< ∞.

Our investigation pertaining to Question 0 is the following. Suppose we truncate the distribution F(x)
at the point u so that the density becomes 0 for x > u, i.e., consider the truncated distribution function
given by

F̃u(x) =
{

F(x)/F(u) for x≤ u
1 for x > u.

For convenience, denote p(G) as the probability PG(Sn > γ) where Xi’s are governed by an arbitrary
distribution G, and we simply denote P(Sn > γ) if Xi’s are governed by F . We consider the approximation
error p(F̃u)− p(F).

Our analysis shows how the approximation error varies with n asymptotically in heavy- and light-tail
cases under reasonable conditions on γ and u. In heavy-tail cases, the challenge in approximating p(F)
with truncated distribution is revealed. For Xi’s with Pareto tail, as n→ ∞ the approximation error is
given by p(F̃u)− p(F) = −p(F)(1+o(1)). This indicates that due to the small magnitude of p(F̃u), the
approximation error is too large relative to p(F). On the other hand, in light-tail cases, the approximation
error is asymptotically negligible, which is given by p(F̃u)− p(F) =−o(p(F)) as n→ ∞.

As a consequence of the approximation challenge revealed in heavy-tail cases, estimation tasks are
less robust to a lack of tail information. More specifically, using empirical distribution, or bootstrap on the
empirical distribution in heavy-tail cases, which significantly ignores the tail content, would fail to estimate
the rare-event quantity and vastly under-estimate the uncertainty. Using extreme value theory in Question
3 to extrapolate tail (such as the peak-over-threshold method) helps to an extent, but could introduce extra
bias, at least using our fitting methods (though we should point out that better techniques are available).
On the other hand, the effect of missing tails on light-tailed estimation is relatively milder.
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