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ABSTRACT

Software defined networking (SDN) is a technology for management of computer networks. We are
interested in SDNs where the switches are mounted on vehicles, the controller is airborne, and connectivity
changes dynamically as a result of vehicular movement. The challenge of interest is that when a controller
fails the switches are left with whatever configuration they had at the point of failure. Without a controller,
as the switches move and links become unuseable, flows configured to use those links are broken unless
the configuration has anticipated such events and provided alternative routes. We describe a high fidelity
SDN network simulator which uses snapshots of actual switch configurations and analyzes their resilience
to impacts of controller failure. We propose an algorithm for backup paths which is guaranteed to not
cause loops, and conduct a simulation study to understand the types of domains where have the greatest
impact on network performance.

1 INTRODUCTION

Software Defined Networking (SDN) increases flexibility and control over establishment and maintenance
of connectivity. Under SDN the logically centralized control-plane implemented in one or more controllers
decides which packet forwarding and header transformations occur at switches, while the data-plane (i.e.
individual switches) performs these actions on the packets. The control-plane dynamically sets up and
tears down particular routes in response to connectivity needs, and network conditions. SDNs appear most
frequently in data centers, where if a switch is programmed to use a particular egress link for forwarding
some traffic and it discovers that that link has failed, it reports the failure to the SDN controller. In turn the
controller computes alternative routes for traffic which use that link, and issues modified rules to switches
to implement the new path.

In the operational context studied here is of military interest, and was suggested to us by our sponsor,
Boeing. Switches are mounted on vehicles, and use directed high powered wireless communication between
themselves, and with one or more airborne controllers. Mobile hosts communicate with a switch through
low power wireless means, and the switches provide longer-range host-to-host connectivity. Hardware and
protocols independent of a switch keep it apprised of its connectivity with other switches; from the SDN
protocol point of view, the fact the source of the link state is immaterial. The topology and connectivity
needs are dynamic, but nevertheless may change slowly. Vehicles may move, and links may become
disconnected because of distance, and/or because a vehicle loses line-of-sight with another. Changes which
disconnect some links can enable the connection of others. Therefore if the changes do not happen too
rapidly the airborne controller can respond with new routes when its switches report link failure. Links
that become disconnected can become connected again when the causes of the disconnect subside.

With OpenFlow protocols since OpenFlow 1.3 it has been possible to place logic in switches for dealing
with link failure. This is accomplished using a so-called “fast failover” table. After a packet has advanced
to the egress step in its pipeline, it looks up an ordered list of links to be used when directing the packet
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towards the destination declared elsewhere in the packet. The packet is pushed through the first link in the
table which is live. The important point is that the controller can perform analysis which creates the table,
and introduces backup paths to respond to failed links. It is important though to understand the properties
of the backup paths so created, e.g., that they do not create loops.

The challenge posed to us by Boeing was to develop methodologies and tools capable of evaluating the
compliance of the configurations their controller creates with user defined expectations (a.k.a. “policy”.)
This paper describes the initial result of our response to that challenge.

This paper describes three contributions. First, we created an SDN network simulator specifically for
this task, the High Fidelity Flow Analyzer, or HF?A. This tool accepts descriptions of experiments from
the user, and executes those experiments using real SDN rules read up from real SDN switches. The user’s
experimental description includes a description of the physical connectivity of the SDN, specifies a set F
of host-to-host flows to be carried by the network, enumerates flow policies and describes how link failures
and link recoveries are to be simulated. The HF?A loads the rules into switch simulators which faithfully
emulate all the actions that an OpenFlow 1.3 switch can take. The HF?A exercises the network model,
following the user directives for the experiments. The kinds of questions the experiments may be designed
to answer include

e If 5% of the links fail, on average what fraction of flows in F are routed to their destination without
interruption?
If 5% of the links fail, on average what fraction of the flows in F' meet all policy objectives?
Given any 3 link failures, is every flow in F delivered to its destination?
Given (random) link failure, what is the probability that the performance of a given flow in F' may
be impacted either by an increase in the number of switches traversed exceeding its policy, or by
overloading the bandwidth capacity of a link?

e If a controller fails at time s with the switches in a given configuration, what is the probability that
by time ¢ > s link failures will cause some flow f to fail to be delivered?

Clearly at the heart of this problem is an ability to assess what impact link failures have on flows. With
the high fidelity emulation of traffic passing through switches we are able to determine precisely what will
happen after starting with a snapshot of rules, we cause (simulated) links to fail and assess the impact on
the set F of user flows.

Our second contribution is an algorithm for creating backup paths which provably contain no loopbacks,
regardless of the set of links which fail. This algorithm is built on top of the results of shortest path
computations and yields routes that are loop-free and require no additional state information in packet
headers, in the presence of arbitrary link failures. The technique is simple, and can in principle be easily
added to any rule synthesis algorithm not in conflict its shortest path assumptions.

Our final contribution is a empirical study where we consider the extent to which the back-up paths
created by the proposed techniques improve the connectivity of the network over configurations which
have no backup paths. For this study we consider models of switch mobility and assumptions under which
links fail as a result of that mobility.

2 RELATED WORK

Prior efforts to model a software-defined network for the policy validation purpose use a model for the
entire network and a model for representing all possible flows in the network. Kang et. al (Kang et al.
2013) modeled the entire network as a single switch and provided a way to specify flows of interest.
Kazemian et. al. (Kazemian et al. 2013) modeled the network as a graph of flow rules and specification
of policy using a specialized language called flowexp. Khurshid et. al. (Khurshid et al. 2012) proposed a
network model that represents the network using a specialized trie. However, none of these models allow
specification of behavior of the network when the topology of the network changes. These approaches
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also did not model switches that are capable of the fast failover mechanism. This mechanism was added
to the switch specification in the OpenFlow version 1.3 (Open Networking Foundation ONF ) and allows
choosing alternative ports for traffic without the intervention of the controller. To these ends, we proposed
the port graph model that allows modeling of the network as a graph of ports and a policy specification
that specifies changes in the network topology (Kumar and Nicol 2016).

Furthermore, instead of validating the control-plane state of an SDN against a stated policy, there is
prior work that synthesizes the data-plane state so that it provides certain resiliency guarantees network
by using the fast-failover mechanism. Elhourani et. al. (Elhourani et al. 2014) proposed an approach that
assumes k-connected topological graphs and uses arborescence to minimize the length of the failover path
in case of link failures. However, Hannon et. al. (Hannon et al. 2017) proposed an approach that can be
used to synthesized resilient paths on topologies that are not k-connected at the cost of longer path lengths.

Finally, there is prior work that models the traditional distributed control-plane networks for policy
validation. The errant behavior of a network device in such networks is typically rooted in user mis-
configuration. Fireman (Yuan et al. 2000) is a firewall-specific static analysis tool that allows checking
for inconsistencies in configuration of the access control. Anteater (Mai 2011) and Libra (Zeng et al.
2014) illustrate policy validation by using only the data-plane state from campus and data-center networks
respectively. These tools parse the individual device configuration and the data-plane state of heterogeneous
devices; thus individual device models become bottlenecks to predicting overall network behavior.

3 THE HIGH FIDELITY FLOW ANALYZER
3.1 The HF?A Architecture

In order to acquire rules that have been issued by a controller, our approach requires access to the logically
centralized state of the SDN: the network topology and the forwarding rules installed on switches. In the
SDN architecture, the controller is the purveyor of this state and makes it available via a northbound API
to be used by the applications. As illustrated in Figure 1a, our tool uses the northbound API to access a
current snapshot of the SDN state. It should be noted that this requirement is for rules acquisition only.
HF?A can be run in isolation from the real SDN network, provided that it is given access to rules that
were extracted from an actual network.
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Figure 1: Architecture of the High Fidelity Flow Analyzer.
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As illustrated in Figure 1b, the HF?A is further compartmentalized. For the sake of computational
efficiency, it has acomponent written in C++ called SDNSim. It contains high fidelity SDN Switch Simulators
(SwitchSim) modules. These modules closely mimic the forwarding actions and transformations made on
a packet passing through it. To understand the importance of this element of the design it is important to
know that the OpenFlow specification supports more than just simple routing. The switch might block a
packet entirely. It might change IP and port numbers in a packet’s header to implement Network Address
Translation. It might alter other bits in the packet header. The point is that HF?A is designed to be used in
an operational environment with potentially complex switch configurations, and so switches in SDNSim
are executable implementations of the OpenFlow specification. An SDN emulator such as mininet provides
the same functionality, but in our experience does not scale with a large number of switches.

The SDNSim exposes an API (SDNSim Interface) which can be used to perform its initialization with
a snapshot of SDN State, to query whether an active flow path between two nodes would exist when a set
of links in the topology have failed, and to perform Monte Carlo experiments in parallel. These actions
are all performed under the direction of Python scripts resident in the Programmable Experiment Engine.
Indeed all of the experiments described earlier would be developed and executed as Python scripts. As we
develop classes of experiments we save them in an Experiment Library, and include these as modules in
the Programmable Experiment Engine’s scripts.

HF?A brings together the fidelity of a compiled interpreter of OpenFlow rules with the flexibility of a
scripting language to set up experiments, change conditions, and make calls upon the SDNSim to compute
how the network will respond to those changes. This is a powerful mix. It allows us to design and execute
experiments that

e introduce mobility to the SDN switches and assess the impact that mobility may have on network
connectivity,

e use Monte Carlo estimation of network metrics, potentially including advanced variance reduction
techniques,

e introduce models of external forces that may alter connectivity, e.g., a jamming attack.

3.2 The Switch

An SDN switch contains a table processing pipeline and multiple physical ports. Packets arrive at one of
the ports, and are processed by the pipeline comprised of one or more flow tables. Each flow table contains
rules ordered by their priority. Each flow rule defines a matching criteria, and an action taken if the packet
header satisfies the rule criteria. During the processing of a single packet, these actions can modify the
packet, forward it out of the switch, or drop it.

Rules are tested in decreasing order of priority until a matching rule is found. A packet arriving at a
switch is first matched against the rules in the first table and assigned a set of actions to be applied at the
end of table processing pipeline. The instructions in a matching rule in any table can choose to manipulate
this set and can also apply some actions to the packet before it is processed by the next table in the pipeline.
For our purposes the important point is that SDNSim implements OpenFlow 1.3 in the switches, and the
rules created for the switches are our starting point, our ground truth. We are primarily concerned with
the fast failover tables, but it is certainly possible for a switch to modify the header of a passing packet
so that the destination changes and so potentially also the fast failover table used at egress. This means
that for fidelity we have to be able to interpret SDN configurations, not just analyze abstractions of the
switches. Unlike other analysis which compute all possible actions for all possible flows, in HF?A we are
focused on specifically identified flows, and ask questions about how the network handles these flows in
the presence of link failures.
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4 FAILOVER PATHS

OpenFlow’s mechanism for supporting fast failover is to include so called “fast failover” tables. Inside of
a switch packets pass through a pipeline of stages, and selection of an egress port is the last step. The
switch can be programmed at this stage to choose a prioritized table of potential egress ports, chosen as a
function of all the bits in the packet’s header, in particular (but not necessarily exclusively) bits describing
the packet’s destination, say, d. The first “live” port appearing in the table is selected for egress. If there is
no such port the packet is dropped, and the controller is notified of the particulars of the switch and packet.

Our technique for creating loop-free fast failover tables is built around Dijkstra’s algorithm (Cormen,
Leiserson, Rivest, and Stein 2009) for unidirected weighted graphs. This algorithm takes a particular graph
node d and finds the shortest path from every other node to d. The algorithm uses a min-priority heap. An
element (c,n) on the heap represents a graph node n, and the cost ¢ of a minimum path from » to d. For
the purposes of stability, given elements (c,n;) and (c,nz) with the same cost but different nodes, we will
break the tie in favor of the element whose node has smaller identity index, i.e., take (c,n1) < (c¢,nz).

While Dijkstra’s algorithm is well-known, it does not typically save certain intermediate values that
our algorithm uses and which are needed in a proof of loopback freedom. At the risk of seeming pedantic,
we write out the algorithm in Figure 2. This is Python (2.7) code. It presumes a node class object, with
the graph nodes stored in an array Nodes. The node object has Boolean attribute visited, an integer id, and
a variable sized array of edges. Each edge is described as a tuple (c,m) where c is the cost of the edge,
and m is the integer identity of the connected neighbor, switch s,,. The algorithm is focused around a min
priority heap (here we use a standard Python module heapq). The key idea is that the priority heap contain
descriptions of an as-yet-unvisited graph node, and the minimum cost of traversing the graph from that
node to the named destination, d. Pulling the node(c,m) from the heap we mark s, as visited and examine
all of its unvisited neighbors (if any). If there is an unvisited neighbor s, then the least cost path from
sk to sg which passes first through s,, follows the least cost path from s, to s;. That is recorded, and an
entry is pushed onto the heap which identifies k and the least cost path from s to s, to d. Once all the
nodes have been visited the min priority heap will be empty and the algorithm terminates.

The return from a call shortestPath(d) is a Python dictionary. The presence of element sp[i][j] implies
that switches s; and s; share an edge, and that the least cost path from s; to s, which first traverses that
edge has cost spl[i][j]-

We can use the results of a procedure like shortestPath to create fast failover tables. Imagine a topology
graph whose nodes are hosts and switches; an edge may exist between a pair of switches or a host and a
switch, but not between a pair of hosts. If a host connects to only one switch we can simplify the model
and think of switches as destinations rather than hosts, assuming that the underlying addressing scheme
and packet header allows a switch to compute a target switch identity. Nominally the cost of an edge could
be 1, so the min-cost is the minimum number of hops. Alternatively one could define some other cost
function that makes sense in the domain, so long as it is strictly positive.

Whatever the method and however the costs are defined, we can use the results of calling shortestPath
with target d as an argument to create fast failover tables supporting d at all switches. The first link in
each such table is the primary link created during rule synthesis. We engage fast failover only when that
link fails. Now imagine switch s; and suppose the primary link used to route to d is p,. Every neighbor
node of s; with an entry in sp[i] (excluding the one led to by following p,) is a potential next hop in a
fast failover route to d. Observe that it is not necessary that every neighbor s; have an entry in sp[i]. By
the time node s; and a cost came off the priority heap, switch s; may have already been visited, and so be
skipped (see lines 20 and 21). In this case s; is a way to d from s, but not vice-versa. Note also it might
be that sp[i] has no members other than p,, which implies an inability to use this method to create a fast
failover table at i. However, assuming there are neighbors through which s; can reach d, the links to those
neighbors are candidates for entries in a fast failover table.

There is a trade-off to be managed. Fast failover tables take up memory in a switch. One option is
to include just a single fast failover option. It is intuitive to choose the neighbor s; for which sp[i][j] is

2835



Nicol and Kumar

1 import heapq

2 def shortestPath(d):

3

4 sp = {}

5 # spli]l[j] = least cost of path i—>n through j

6 for i in xrange(0,len(Nodes)):

7 Nodes[i]. visited = False # list of graph nodes
8 splil = {}

9

10 heapq.heappush(q,(0,d)) # note tuple comparison.

11 while q:

12 # next shortest path from n

13 (c,m) = heapq.heappop(q)

14

15 Nodes[m]. visited = True # don’t come around here no more
16 m_node = Nodes|[m] # get to data structure
17

18 for nbrldx in xrange (0, len(m_node.edges)):

19 (nc,nbr) = m_node.edges[nbrldx]

20 if Nodes[ nbr ].visited:

21 continue

22

23 sp[nbr][m] = nc+c # least cost of nbr to m to d
24

25 # expand from also

26 heapq.heappush(q,(nc+c,nbr))

27 return sp

Figure 2: Python routine computing shortest paths from d to every other node.

minimized among all s; not reached through the primary link. In the experimental section we’ll call this
the sp-1 option. An option at the other extreme is to make the fast failover table as large as possible, so
the table includes all links to neighbors s; appearing in sp[i] which are not the primary link. We might as
well order them by increasing cost, although for the no-loop properties we establish this does not matter.
In the experimental section we’ll call this the sp-* option. Obviously sp-* offers a longer network life, but
at the cost of more storage.

The current literature on back-up routing focuses on properties such as guaranteed tolerance up to k
arbitrary link failures. However, the larger the value of k, the stronger the assumptions have to be made
about connectivity of the network. The operational assumptions of the mobile switches scenario preclude
our ability to assert strong connectivity properties. Given that, it seems a desirable property to retain is
that in the presence of an arbitrary set of link failures, the fast failover routes used have no loops. Happily,
we can prove this property for fast failover links defined as we have above. With the previously stated
understanding that a source or destination may be either switch or host and that all intermediary steps in
a path be through switches, we avoid the cumbersomeness of maintaining the distinction and simply talk
about paths through “objects”.
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Theorem 1 Let so and d be source and destination objects, and imagine that some number of edges has
failed. Fori=1,...iletsy,ss,...,s; be objects such that s; is a object reached by following the highest priority
live link of the fast failover table of s; 1 for destination d, and either s; =d, or s; £d fori=1,... s¢_1.
Then the elements of this sequence are unique, i.e., there are no cycles.

Proof. ~ Suppose not. Then there exists s; and i < j such that s;,; =s;. Suppose that j is the largest
index with this property. We will say that a link from object a to b is primal if among all neighbors of
a, Algorithm 2 reached a first (at line 23) through object b (at line 13). Observe that the link from s; to
s; cannot be primal. According to Algorithm 2, the edge between s; and s; would have been established
when s; was pulled off the priority heap and extensions of the shortest path from s; to d to its neighbors
were considered. However, since the link from s; to s; is not primal, there exists an object b such that
the link from s; to b;, is primal. s; is a different neighbor of s;, and the fact that the shortest path from
s; to d is through b, | # s; means that b;, is pulled off the priority queue before object s; is pulled off.
This means that s; is marked as visited before s; is taken off the priority queue, which means that when s;
is taken off the queue, it will not touch already-visited neighbor s;, and thus will not establish a link from
s; to s;. This provides the contradiction.

It is clear from this argument that any path which follows only primal links and links built into fast
failover tables can have no cycles, so it follows that cycle-freedom holds under arbitrary link failures. It
is also clear that the packets need not carry any additional information in their headers to take advantage
of this capability. 0

5 EVALUATION
5.1 Simulation Model

We describe now the simulation model which resides in the Programmable Experiment Engine in the Flow
Analyzer of Figure 1.

We expect that network behaviour depends considerably on context, and we have the question then
of what constitutes a reasonable context? Modeling SDN use in a data center we would describe a link
failure with some stochastic hazard rate function, and randomly sample links and times of failure. But the
mobile SDN scenario is different. Our intuition is that the link failures are more likely to be caused by
external factors that interfere with communication, possibly only temporarily. Two things come to mind as
potential contributors to such failures, increased distance, and/or obstacles obscuring line-of-sight between
the mobile switches. Another difference is that the causes of the link failures may disappear, making it
possible to restore a failed link and use it again. Just as we assume that the radio supporting the switch can
detect loss of connection and so cause a link to be marked as failed, we assume that that same radio can
detect when new edges are possible, in particular when a lost link known to the configuration reappears.

We correspondingly build a model with the following elements.

Random placement of n switches within the unit square [0, 1] x [0, 1].

Uniformly random selection of vehicle bearing, sampled over [0,27].

Random speed (governed by user input).

Maximum distance threshold for communication (governed by user input).

Uniformly random placement of circular obstacles in [0, 1] x [0,1], with number and radius of
obstacles governed by user input.

e Random selection of flow endpoints (the number of flows is specified by the user.)

Following the initial placement, an edge is considered to exist between two switches if they are “close
enough” (according to a user defined threshold,) and a straight line between them does not intersect any
obstacle. Figure 3 illustrates a sample initial starting point for the same set of switches, in one case when
there are no obstacles and in the other case when there are. Switches have little directional arrows indicating
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Figure 3: Moving Switch Model for SDN Resiliency Evaluation.

their bearing. In these examples, remembering that the spatial coordinates are the unit square, switches
must be within distance 0.3 to be connected, and in the presence of obstacles, have a clear line of sight.
Sample flows are overlaid on the primal links that carry them.

5.2 Routing

Switch rules are synthesized to route flows along the shortest number of hops, and to provide fast failover
in one of four modes. The base mode provides no failover. Recalling our earlier definition of a link on the
fail-free route as being primal, the failure of any primal link will disconnect any flow configured to use that
link. A second option, we call the sp-0 mode, provides one failover alternative for primal links (if possible
from the shortest path algorithm of §4,) but only for primal links. It is a way of providing some protection,
but keeps the memory cost of that protection low, e.g., not having a failover link for destination d on any
switch which does not carry flows to d. It is possible for a flow to survive the failure of multiple links, but
only if the failover paths bring the route back to the primal path, and the links which fail along its path are
all primal. A third option we called the sp-1 mode in §4, provides up to one failover alternative to every
link, primal or not. The memory requirements for a switch’s fast failover tables is bounded by two times
the number of flow destinations. The fourth mode, called sp-* in §4, may provide multiple failover links
for every link as a result of running the shortest-path algorithm for every flow’s destination. Under sp-*
the memory requirements for a switch’s fast failover tables is bounded by the number of flow destinations
times the number of ports in the switch.

5.3 Executing an Experiment

Prior to any runs we randomly sample the initial position of switches, and the position of any obstacles.
While random, the construction is done in a way which ensures that the initial network is connected.
The links are discovered, and the flow endpoints are randomly sampled. At the beginning of every run
the switches are returned to their initial positions, and the links are returned to their initial state. At the
beginning of each run the bearing and speed of the switches are randomly sampled; these per-run samples
are what makes the network behavior in one run different from that of another run.

With every time-step (of magnitude given by the user) the position of each switch is updated in
accordance with its speed and bearing. If a prospective update would take the switch out of the unit square,
we randomly re-sample the bearing until we find one that takes the switch back into the domain. As a
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result of a position change an edge may disappear, either because the switches become too far apart, or
because their movement brings an obstacle between them. By the same token an edge may appear, in
particular, an edge that once carried a flow but was lost may reappear. We cause that link to be recognized
within the switch as being live. After having identified which links change state following an update, the
SDNSim is notified of those changes. The SDNSim is then queried as to the state (and path) of every flow.
Within SDNSim if a link a flow previously followed from a switch has failed, the fast failover mechanism
may reroute the flow. The particulars of the flow—whether it reaches its destination, the path the flow
follows—are returned for analysis against policy requirements. For the simple case under discussion the
only datum of interest is whether the flow succeeded in reaching the destination.

5.4 Metrics

With every time-step we can count the number of user flows which are supported as being active, as a
function of the failover mode. We illustrate a sample behavior in Figure 4a, plotting the fraction of live
flows (out of 100 initial flows), as the simulation goes through 1000 time-steps. The immediate drop in
flow connectivity happens because the network starts in a fully connected state, supporting all flows, but
then movement causes link state to change. We can clearly see the impact of being able to re-incorporate
links that had failed but became operational again. This graph also plots any topological connectivity, i.e.,
assumes that if there is a topological path between endpoints then a flow between those endpoints can be
routed. Thus the "topo’ curve illustrates the best that is possible at any given point, given the state of the
topology.

We can summarize the aggregate connectivity of a run like this by the area under a life-time curve,
also known as the space-time product. This is easily computed by accumulating over all time-steps the
product of the time-step size times the fraction of flows that can be routed at that time. For the example in
Figure 4a the space-time for each mode is given in within the figure as spt(base), and so on. Note that these
metrics have been normalized by dividing the computed space-time product by the length of the simulated
interval.

If we were to use SDNSim exclusively for these experiments we would run the simulation over the
differing configurations, but would do so having synchronized the random number streams so that switches
start in exactly the same place and move in exactly the same way for every set of synchronized runs. While
we have used our link failure models to drive SDNSIM evaluation of network behavior using fast failover
links, the data we later present is taken from a simpler, faster network simulator which is focused entirely
on routing, and can within a single run assess which flows would fail and when as a function of failover
mode. As all of the stochastic behavior is external to SDNSim and as we have validated SDNSim, the data
we would obtain using SDNSim would be exactly the same as that presented here.

Thus every Monte Carlo repetition produces random space-time metrics sptp, spto, Spt1, sp. and spt;
(with the subscripts coding the now repetitious failover modes. These values may vary significantly from
context to context. With the intention of better understanding when using failover links improves aggregate
network connectivity we compute relative gain measures

__splo—splp _Spty —sphy _ Spti—sphy _ Sply — sply

T, YT s T spy, T oy,
We then use standard output analysis techniques of Monte Carlo simulation to estimate their means, and
construct confidence intervals around those means.

5.5 Experiments

The network model we describe and study here is of the same genus as the physicist’s spherical chicken,
useful for understanding principles, but not particularly reflective of reality. With this understanding what
we can hope to observe by simulation is how factors we believe might impact behavior, do. The factors
we explore in our experiments are these:
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Figure 4: Relative Improvement of Space-Time Connectivity Due To Failover Modes.

Network Density.  Given the fixed size of the domain, we increase network density by increasing the
number of switches. Our experiments use either 10 switches with 10 uniformly sampled flows
(meaning that their endpoints are uniformly sampled, and no flow’s source and destination switches
are the same,) or 100 switches with 100 uniformly sampled flows.

Presence of Obstacles.  We introduced the possibility of obstacles interfering with communication as
a potential explanation of how and when an edge might fail. The question is whether this model
feature appears to impact the relative performance gain of failover links.

Link Connection Distance. = We vary the maximum distance between switches which will support a
link, between 0.3 and 0.6. We found that with the smaller network sizes any threshold smaller than
0.3 fragments the network so greatly that hardly any flows at all are supported.

Figures 4b, 4c, and 4d illustrate the means of the relative gain metrics. With 25 replications for each
configuration the 95% confidence intervals were within 5% of the mean and so are omitted here. For
reference we plot in Figure 4b the best possible relative improvement, under the assumption that if a
topological path between a flow’s endpoints exists then the flow is routed. With one notable exception, in
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the experiments we ran the best we can hope to do using failover routing is about 50% better than if we
didn’t try at all.

5.6 Implications

What did we learn from these experiments? Failover edges never hurt, but whether they add significant
connectivity relative over using no failover edges depends on the topological context. In these experiments
there are three ways to increase topological connectivity: by increasing network density, by increasing the
communication radius, and by removing obstacles from the domain. Here are broad-brush characterizations
of this data, obtained by comparing the relative performance of parameters that differ in only one attribute.

Increasing the communication radius decreases relative performance.

Removing obstacles tends to decrease relative performance (with notable exceptions).

Increasing density tends to improve relative performance when there are no obstacles, but has
impact when there are obstacles only for the sp-* mode.

By increasing the communication radius or by removing obstacles, for a fixed set of switches we induce
more edges. This certainly gives more opportunity to find and exploit failover paths, so a decrease in
relative performance is at first blush counter-intuitive. On reflection though we realize this is explained
by the change inducing a larger benefit to the base case. Flows that were not connected owing to failed
links are revitalized by the presence of links that can now carry them. Now the prominent exception to this
rule is the sp-* mode, whose relative gain improves by removing obstacles. We understand this as a result
of sp-* being the most comprehensive of the failover modes for building failover paths. For this mode
the increased number of edges gives it an increased number of failover paths and makes it more resilient
to failures. sp-0 and sp-1 do not significantly increase the number of failover paths as more edges are
available. This same observation explains why the case of sp-* with highest density, no obstacles and low
communication radius stands out comparatively. The depth of failover penetration it provides matters most
when the communication radius is low. That advantage is clearly lost though with higher communication
radius. Increasing the radius restores flows for the base case at a greater rate than the added edges provide
better failover backup paths.

So while the specific context is not especially realistic, we see that reasoning about the root causes of
the behavior we see gives us better understanding into what domain factors impact the relative utility of
providing failover paths.

6 CONCLUSION

The use of software defining networking in mobile contexts is novel, and brings with it new problems.
Mobile SDN networks are ideally managed by a controller, but controllers may fail, leaving us with the
question of how well and how long the network can continue to operate using the configurations frozen into
the switches at the time of the failure. The problem as posed to us was to devise means of assessing how
well configurations we did not ourselves synthesize would support connectivity after a controller failure. To
address this challenge we constructed a high fidelity SDN network simulator whose core engine interprets
SDN configurations generated by real SDN controllers. We couple this with an external environment
simulator that allows us to model mobility and the causes of link failure, then observe the impact on the
real SDN network of the simulated link failures.

This paper (a) describes the tool, (b) proves that an intuitive means of providing so-called failover
paths in anticipation of failed links needs no modification to packet headers and does not create loops, and
(c) performs a simulation study to help understand the characteristics of a domain in which provisioning
of SDN backup links has the greatest positive benefit to connectivity.
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