
Proceedings of the 2019 Winter Simulation Conference
N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds.

A PARALLEL SIMULATION PLATFORM FOR TRAIN COMMUNICATION NETWORKS

Xin Liu and Dong Jin

Department of Computer Science
Illinois Institute of Technology

10 West 31st Street
Chicago, IL, USA

Tairan Zhang

CRRC Zhuzhou Institute Co., Ltd.
No. 169 Shidai Road

Zhuzhou, Hunan, CHINA

ABSTRACT

The next-generation of railway systems are increasingly adopting new and advanced communication
technology to boost control efficiency. The challenges of this transition arising from the mission-critical
and time-critical nature of railway control systems are to meet specific requirements, such as continuous
availability, real-time operations, function correctness despite operational errors and growing cyber-attacks.
In this work, we develop S3FTCN, a simulation platform to evaluate the on-board train communication
network (TCN). S3FTCN is composed of a parallel discrete event simulation kernel and a detailed packet-
level TCN simulator. S3FTCN demonstrates good scalability to support large-scale network experiments
using parallel simulation. We also conduct a case study of a double-tagging VLAN attack to illustrate the
usability of S3FTCN.

1 INTRODUCTION

Railway systems are national critical infrastructures. The next-generation high-speed railway system aims
to integrate advanced computer and communication technologies to boost control efficiency. As the brain
of the railway system, the communication and control system is responsible for monitoring, control and
management with demanding requirements on automaticity, security, robustness, resilience, and real-time
control. The basic operations, such as propulsion, braking, and door-control, as well as the advanced
operations, such as routing, interlocking switching, and collision avoidance, are increasingly automated
and optimized by various control applications. To support the applications with growing complexity, the
underlying communication system is also evolving from a simple, proprietary, and closed network to an
interconnected network to handle more complicated and heavier communication traffic. For example, Figure
1 depicts three types of communication networks: on-board network (Ethernet-based train communication
network), train-to-train network (optical sensing), and train-to-ground network (Balise and GSM network).

However, the communication technology transition also raises new challenges. First, transmission data
grow significantly in volume and diversity due to the new functionalities introduced by control applications.
As shown in the train communication network standard published by International Electrotechnical Commis-
sion, IEC-61375 (Kirrmann and Zuber 2001), the messages between the on-board control devices include but
not limited to control messages, monitoring data, diagnosis information, driver-assistant information, and
passenger information. Some of which are frequently generated with cycle time in milliseconds. Therefore,
we need to investigate the means to achieve the required quality-of-service by managing the delay, jitter,
bandwidth, and packet loss. Secondly, as pointed out in (Lopez and Aguado 2015), the transition from
closed to open systems brings cyber-security issues as the attackers are able to apply existing sophisticated
methods to compromise the system. Given the mission-critical nature of the railway system, it is extremely
important to ensure their protection against cyber-attacks and operational errors, which could result in loss
of life or in massive financial losses in a worst-case scenario.

2819978-1-7281-3283-9/19/$31.00 ©2019 IEEE

Liu, Jin, and Zhang

Balise

Radio Block Center

GSM
Optical
Sensing

On-board TCN

Figure 1: Railway communication networks.

The demanding requirements call for a testing platform to assist the research community to study the
railway system regarding its cyber-security, resilience, and real-time control. Simulation is an important
approach because of its flexibility, controllability, and lack of interference with real systems (e.g., avoid
experimenting cyber-attacks on a train system). In addition, the scope of the next-generation railway system
may make it infeasible to create a physical test system anywhere near its full scale.

In this work, we develop a parallel simulation platform, S3FTCN, for the on-board train communication
networks (TCN). The on-board control network follows a two-layer architecture. Each train consist (i.e., a
group of rail vehicles that make up a train unit) contains an Ethernet Consist Network (ECN) for transmitting
message among devices within the network; and an upper-layer backbone network, called Ethernet Train
Backbone (ETB), interconnects all the ECNs to enable a train-wide communication. There are two specific
protocols for the TCN, one for topology discovery and IP configuration and the other for real-time data
transmission. The scale of the network could be as large as 64 ECNs and 150-200 end-devices in each ECN,
which contains thousands of traffic flows in the network. S3FTCN is composed of three layers to support the
simulation of large-scale networks. The bottom layer contains a parallel discrete event simulation engine,
S3F (Nicol, Jin, and Zheng 2011); the middle layer is a TCN simulator we developed according to the
IEC-61375 standard (Kirrmann and Zuber 2001), including network topology, end-hosts, routing devices,
and the specific network protocol stack; the top layer allows users to interact with the simulator by specifying
the network and traffic configuration through a JSON file and reading/visualizing the statistical simulation
outputs. To the best of our knowledge, S3FTCN is the first packet-level simulator for the Ethernet-based
TCN with detailed models of the specific protocols. To evaluate the performance of S3FTCN, we conduct
large-scale simulation experiments with different data transmission times and the number of flows while
varying the number of timelines from 1 to 64 for exploring parallelism. The execution time and event rate
are reported to demonstrate the scalability of S3FTCN for large-scale simulation experiments. To further
illustrate the usage of S3FTCN, we present a case study to quantitatively analyze the impact of a VLAN
attack in a TCN. Due to the misconfiguration of the VLAN in an ECN, an attacker is able to compromise
a passenger device, from which launch a DoS attack with the double-tagging technique to intrude packets
into the control network. The resulting packet delays in different network scenarios are displayed and
analyzed using S3FTCN.

The rest of the paper is organized as follows. Section 2 presents the simulation framework, where
Section 2.1 briefly describes the communication network that we modeled, and Section 2.2 describes the
design and implementation of the simulation framework. Section 3 evaluate S3FTCN in terms of the
parallel simulation performance. Sections 4 illustrates the VLAN attack case study. Section 5 presents the
related work and Section 6 concludes the paper with future work.

2 S3FTCN SIMULATION FRAMEWORK

In this section, we first overview the on-board Train-Communication-Network including topology, protocols,
and traffic profiles, and then present the design details of our simulation platform S3FTCN.

2820

Liu, Jin, and Zhang

2.1 On-Board Train-Communication-Network

Train Communication Network (TCN) offers communication and control services for the Train Control
and Monitoring System (TCMS) including control functions such as propulsion, brakes, door-control, air
conditioning, etc. To enable those functions, TCN needs to transmit control and monitoring messages
between the controller/operator and the electronic devices deployed across the entire train. In addition, it
communicates with the ground system and reports the train status to the remote control center and other
wayside systems.

The safety-critical nature of TCMS imposes strict requirements of the communication network. TCN is
designed with the following features and our simulation platform realized all of them, including (1) delay-
guaranteed and ack-based reliable communication of its control and monitoring messages; (2) several fault-
tolerant mechanisms, such as link/node redundancies, to handle unpredictable physical/cyber disruptions
during train operations; and (3) automatic network (re-)configuration during initialization stage, i.e., when
train consists are coupled/decoupled. The configurations include assigning global IPs to end-devices and
establishing mappings between application URIs and their IP addresses. For clarification, two types of
TCN exists in practice, the traditional bus-based MVB/WTB network and the Ethernet-based ECN/ETB
network recently proposed in the IEC-61375 standard. We refer TCN technology to be the latter in this
work. We develop the TCN standard in our simulator S3FTCN including its topologies, protocols, and
traffic profiles with details are presented as follows.

Topology. A TCN network has a two-layer structure as depicted in Figure 2. The design supports
the communication of dynamically joined/removed consist devices, as train consists are allowed to be
coupled/decoupled during the train operation. Each consist contains one or more Ethernet consist networks
(ECNs), which are connected to an Ethernet train backbone (ETB) network. The ECNs, like other local
area networks, interconnect the end-devices including local controllers, sensors, and monitors, and use L2
switches to forward the traffic within the network. The possible topologies include linear bus, ring, or
ladder. On the other hand, Ethernet train backbone nodes (ETBNs) are in charge of the communication
between end-devices that are located at different consists. The ETBNs provide multiple functions performed
by routers, DNS servers, and gateways, including (1) communicating with other ETBNs to construct the
backbone network topology; (2) assigning global IP addresses to devices within its ECNs, and maintaining
the mapping between the IP addresses and the URIs of the applications; and (3) routing all packets along
the backbone and transmitting packets between local devices and external devices. ETBNs connect to each
other to form a linear topology, and often there exists at least two communication links between peers for
communication redundancy.

Protocols. To enable the backbone topology establishment, the TCN standard includes a layer 2
protocol named Train-Topology-Discovery-Protocol (TTDP) that resides on ETBNs’ network interfaces.
The basic procedure is that each ETBN sends messages to its neighbors in both directions, and notify the
neighbors the number of peers on one’s east side and west side; the receiver then constructs an ordered list
of ETBNs based on the received information, and propagates the messages along with a cyclic redundancy
check (CRC) value (calculated from the ETBN list) to its own neighbors; when all the received CRC values
are equal, the topology information is converged among all ETBNs.

To guarantee the real-time delivery of the application messages, another protocol, Train Real-time Data
Protocol (TRDP), is designed in the standard. TRDP is a layer 5 protocol on each end-device between
the transport layer (i.e., UDP/TCP) and the application layer (i.e., train control and monitoring system).
It abstracts the traffic among applications into two types: Process Data (PD) represents short periodical
messages, such as train state information and sensor messages; while Message Data (MD) represents lengthy
sporadic messages, such as diagnostic information and control information. For PD, the protocol takes the
application data and the cycle time as inputs, and the sender transmits the packet to the receiver(s) with the
cycle time to be a constant interval. The receiver(s) in turns starts a timeout session with the timeout value
to be 1.3 times of the cycle time, beyond which data loss will be reported to the application. For MD, each
transmission requires an acknowledgment message from the recipient to achieve reliable transmission.

2821

Liu, Jin, and Zhang

| <----------------------------------- Consist ---------------------------------->| | <---------------- Consist -------------------->|

ETBN ETBN
Ethernet Train Backbone

Ethernet Consist Network Ethernet Consist Network
Consist Switch

Consist
Switch

End Device End
Device

Figure 2: TCN topology.

Table 1: Scale and traffic profile of TCN.

Maximum Average
Number of EDs per ECN 500 150 - 200

Number of switches per ECN 20 6 - 8
Number of ECNs 64 2 - 6

PD packet size 1424 Bytes
MD packet size 65459 Bytes

Network Scale. The scale of the TCN network and the user traffic profile are illustrated in Table
1. The number of end-device in each ECN cannot exceed 500, and on average there are about 150 to
200 devices; the devices are connected by at most 20 consist switches and 6-8 switches on average. The
supported number of ECNs is bounded by the global IP definition. An 8-bit field is defined to indicate
which ECN the device is located, thus resulting in 28 = 64 available ECNs within one TCN. The packet
size of Process Data is limited to 1424 bytes in order to keep the data frame within 1500 bytes (because
the TRDP header is 48 bytes, the UDP header is 8 bytes, and the IP header is 20 bytes). A Message Data
has a maximum 65459-byte application layer payload because the size of an IP packet is limited to 65535
bytes.

2.2 S3FTCN Design and Implementation

The design architecture of S3FTCN is illustrated in Figure 3. S3FTCN is composed of three layers. The
bottom layer is the S3F parallel simulation engine to support large-scale simulation; the middle layer
contains the TCN simulation models; and the top layer provides an interface to allow users to configure
experiments, visualize statistical results, and perform output analysis.

S3F is a parallel simulation engine that supports modular construction of simulation models in a way
that potential parallelism can be easily identified and exploited (Nicol, Jin, and Zheng 2011). In S3F, a
simulation is essentially the interactions among a number of entity objects. Each entity is aligned to a
timeline, and each timeline contains an event list. We execute the event lists to advance the simulation.
Within one timeline, no synchronization is required to simulate the interactions of co-aligned entities. S3F
supports parallel simulation by allowing multiple timelines running simultaneously, and the timelines have
to be carefully synchronized to guarantee global causality.

2822

Liu, Jin, and Zhang

User Interface

TCN
Network Models

S3F
Simulation Engine

...
...

Timeline 1

Timeline 2

Timeline n

Sync window Sync window

...

Figure 3: S3FTCN architecture.

We synchronize timelines using barrier synchronization. The main simulation thread spawns a number
of timelines at the beginning. During the simulation experiment, we continuously compute synchronization
windows, within which all timelines are safe to execute concurrently without being affected by other
timelines. The synchronization mechanism is built around explicitly expressed delays across entities
aligned to different timelines. In each synchronization window, the timelines coordinately determine the
next synchronization window (e.g., the minimum value of the first event’s timestamp plus the lookahead
value among all the timelines). At the end of a synchronization window, cross-timeline events are processed
and pushed to the event queue in other timelines and S3F then proceeds to the next synchronization window.

The middle layer provides sophisticated TCN models with protocols, topologies and traffic profiles
described in the previous section. We model EDs, ETBNs, and consist switches as entities and communication
links as channels among entities. We develop the TCN models with detailed TCN protocols (i.e., TTDP
and TRDP) to support high fidelity analysis.

We allow users to easily specify parameters for simulation experimentation. Users can define the
number of consists, ECNs, and EDs in a JSON configuration file. Users also can specify the details of
traffic including the volume and distribution of global/local traffic flows, and PD/MD traffic flows. S3FTCN
is capable to output user-defined statistics, such as per-packet or per-flow throughput/latency/drop rate data,
to support output analysis.

Both of the simulation kernel and the TCN models are implemented in C++ using only the standard
STL library. The use interface such as configuration file processing, stats collection, and visualization, are
implemented in Python.

3 PERFORMANCE EVALUATION

S3FTCN is designed to support parallel simulation for large-scale networks. In this section, we conduct
performance evaluation by reporting the execution time and event rate for simulation experiments.

3.1 Experimental Setup

With reference to the configuration parameters presented in Section 2.1, we constructed a backbone network
with 64 ETBNs and each connects to an ECN. The parameters are are derived based on the IEC-61875

2823

Liu, Jin, and Zhang

standard and the consultation with railway industry experts. We set up 100 EDs for each ECN and connect
each ED to an L2 switch, which formed a linear topology. We randomly generated traffic flows across all
EDs. We set the local/global traffic flow ratio to be 1:1 and varied the number flows as 500, 1000, and
1500. The user traffic transmission started at the 10th second in simulation time and ended at the 20th,
30th, and 40th second. We intentionally waited for 10 seconds before starting the traffic transmission so
that the ETBNs could complete the global IP assignment using the TTDP protocol to enable cross-ECN
communication. Although we configure the simulation to end at the 50th second, the simulation may
terminate earlier since the event list could be empty after the last PD/MD packet was transmitted. On each
end-device, the PD traffic was generated with a period of 5 milliseconds and the PD packet size was set to
be 1424 bytes, and the transmission interval of the MD traffic follows an exponential distribution with a
mean value of 10 milliseconds, and the MD packet size was 65459 bytes. The bandwidth of each network
interface was set to be 1 Gb/s. We summarize the experimental parameters in Table 2. The experiments
were conducted on a Dell KOI server with 40 CPU cores (2.60 GHz each). Each experiment was repeated
10 times.

Table 2: Summary of Experimental Parameters.

Number of ECNs Number of EDs Simulation Traffic Number of Flows
per ECN Time Transmission Time

64 100 50 sec 10/20/30 sec 500/1000/1500
PD Cycle Time PD Packet Size MD Interval MD Packet Size Bandwidth

5 ms 1424 bytes 10 ms 65459 bytes 1 Gb/s

3.2 Experimental Results

We first plot the total packets sent/received/dropped in each experiment in Figure 4 to present the simulation
workload of our experiments. While the number of flows is fixed to 500, with the increasing traffic
transmission time, the total number of generated packets increases from around 570K to 1.15M and then
1.73M, while the drop rates are around 1.5%, as shown in Figure 4(a). Similar results are shown with the
increasing number of flows (traffic time fixed at 20 seconds) in Figure 4(b), with the number of generated
packets being 570K, 1.15M, and 1.71M and drop rates increase to 1.5%, 5%, to 7%, respectively. Also,
we notice that the standard deviations of the 10 repeated trials are very small.

10 sec 20 sec 30 sec
Packet Transmission Time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Nu
m

be
r o

f P
ac

ke
ts

1e6
Received pkts
Dropped pkts

(a)

500 flows 1000 flows 1500 flows
Number of Flows

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Nu
m

be
r o

f P
ac

ke
ts

1e6
Received pkts
Dropped pkts

(b)

Figure 4: Number of packets generated with varying transmission time and traffic flows.

2824

Liu, Jin, and Zhang

We now evaluate the simulation performance. We repeat the two sets of experiments mentioned above
by varying the number of timelines ranging from 1 to 64. The parallel simulation experiments produce the
same simulation results as the sequential simulation experiments (i.e., with one timeline) regardless of the
number of timelines as the conservative synchronization correctly preserve the global causality.

To study the performance of parallel simulation, we plot the simulation execution time and the event
rate under the network scenarios with various traffic transmission time in Figure 5. We observe that for
all experiments, the execution time keeps decreasing as the number of timelines grows from 1 to 16. For
example, in the 30-second transmission time case, the execution time is over 120 seconds with one timeline
and falls below 30 seconds with 16 timelines, which is about 4x speedup introduced by parallel simulation.
The results further justify the motivation of using parallel simulation to speed up simulation without losing
fidelity, and ideally achieving real-time simulation. When the number of timelines further grows to 32
and 64, the execution time however increases. It is because the increasing number of timelines reduces
the length of the synchronization window and thus more frequent synchronization is required during the
simulation experiments. As a result, the increasing synchronization overhead reduces the benefit of parallel
simulation. Figure 5(b) plots the event rates. The results match well with the corresponding execution
time results in all three cases. As the number of timelines increases, the event rate keeps increasing and
saturates at the peak value being 3.79M events/s with 16 timelines, and then drops with the further increase
of the timelines.

1 2 4 8 16 32 64
Number of Timelines

0

20

40

60

80

100

120

Ex
ec

ut
io

n
Ti

m
e

(s
)

10 sec
20 sec
30 sec

(a) Execution Time

1 2 4 8 16 32 64
Number of Timelines

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ev
en

t R
at

e
(1

06 e
ve

nt
s/

s)

10 sec
20 sec
30 sec

(b) Event Rate

Figure 5: Simulation performance with the increasing packet transmission time.

In the next set of experiments, we set the packet transmission time to be 10 seconds and varied the
number of flows as 500, 1000 and 1500. The average execution time and event rates over ten runs and
their standard deviations are plotted in Figure 6. For the single timeline case, the execution time increases
proportionally to the number of flows as shown in Figure 6(a). As the number of timelines increases, the
execute time keeps reducing whose behavior is similar to ones in the first set of experiments. Another
observation in Figure 6(a) is that we saved more execution time in the 1500-flow case than the 500-flow
case as the number of timelines grows up to 16. It is because the 1500-flow case generates more simulation
load per timeline and most events are processed within one timeline. In other words, each simulation thread
has more independent work to process during a synchronization window and render the synchronization
overhead less significant, and thus enhance the parallel simulation performance. The results of event rates
are shown in Figure 6(b). When the number of timelines is small (≤ 4), the results are very close among
500-, 1000- and 1500-flow cases. As the number of timeline increases, the 1500-flow case achieves a
higher event rate up to 5.1 million events/sec with 32 timelines, while the other two cases reach the peak

2825

Liu, Jin, and Zhang

performance with 16 timelines. It further indicates that the synchronization overhead may increase as the
number of timelines grows, and the performance is highly related to the simulation load on each timeline.

1 2 4 8 16 32 64
Number of Timelines

0

20

40

60

80

100

120

Ex
ec

ut
io

n
Ti

m
e

(s
)

500 flows
1000 flows
1500 flows

(a) Execution Time

1 2 4 8 16 32 64
Number of Timelines

0

1

2

3

4

5

Ev
en

t R
at

e
(1

06 e
ve

nt
s/

s)

500 flows
1000 flows
1500 flows

(b) Event Rate

Figure 6: Simulation performance with the increasing number of traffic flows.

4 CASE STUDY: ANALYSIS OF A VLAN ATTACK IN TCN

4.1 Double-tagging Attack

Besides the control systems, there exist other communication networks in the railway system during the
train operation, such as the passenger entertainment system and Internet connection service. According
to the IEC-61375 standard, the control network and passenger network may share the same underlying
ECN infrastructure and be logically separated using the VLAN technology. Figure 7 illustrates such an
architecture with two VLANs in one consist network. VLAN1 is used for the control network (i.e., TCN)
and VLAN0 for the passenger network to stream entertainment information. The two networks connect
to different backbones (i.e., ETB1 and ETB0) and they can only communicate to the end-devices within
their own VLANs. For example, host h1 is able to send packets to h2 through h2’s MAC address acquired
from the ARP protocol. But if h1 wants to communicate to h3, its packets are forwarded to the router in
ETB1. The packets will then be dropped since the control network is designed to be closed. Similarly, h3
cannot access h1 or h2 without going through the corresponding router as well.

However, the shared network devices introduce potential vulnerabilities, which may render the control
devices to be accessed by malicious devices on the other VLAN. For example, a well-known exploit
named “double-tagging attack” can be applied to this scenario if the networks are not carefully configured.
Normally, when the sender and receiver are connected to different switches, say h1 and h2 in this case, the
ports connecting two switches (s1 and s2) are trunk ports, which are in charge of adding VLAN tags to
packets and identifying the destination VLAN that the packets belong to based on the tags. However, there
is a special VLAN called ”native VLAN”, where the packets traveling through trunk ports have no tags.
Assume the native VLAN is VLAN0 in our example, then h3 is able to launch the double-tagging attack
with its packets forged to have two tags: the outer tag has VLAN0 and the inner tag has VLAN1, while
the destination MAC address is set to be the broadcast address. When s1 receives the packets, it checks
the outer tag and strips the tag before forwarding to s2 as it is the native VLAN. Then s2 gets the packet
with a VLAN tag being VLAN1, then forward it to the two hosts in VLAN1. In this way, the packets are
sent across VLANs without going through the router. A common way to avoid this attack in practice is to
avoid assigning any hosts to the native VLAN.

2826

Liu, Jin, and Zhang

Although the attack is well-known, it is still possible to launch the attack due to the fact that (1)
vendors often keep the default settings of the switch ports which are assigned to the native VLAN for the
easy configuration, and the native VLAN has well-known default values (e.g., Cisco switches has native
VLAN to be 1); and (2) the network operator may pay more attention to the control network to give it
a separate VLAN ID and leave the default native VLAN for the passenger network, whose end-devices
are easier to be compromised as the devices might be connected to other public networks. Therefore, the
double-tagging attack finds its way to inject packets into the closed control network, which enable a DoS
attack to harm the availability of the critical control system.

vlan1

vlan0

ETB 1

ETB 0

h1

h2

h3
s1

s2

Figure 7: VLAN configuration.

0 500 1000 1500 2000 2500 3000
Packet index

0

20

40

60

80

100

120

Pa
ck

et
 d

el
ay

 (m
s)

No attacks
DoS attack w/o tagging
DoS attack with tagging

Figure 8: Packet delay under VLAN attack.

4.2 Simulation Experimental Results

To study the potential impact of the double-tagging attack on a TCN, we implemented the attack in S3FTCN
and conducted simulation experiments. Assume the data traffic from h1 to h2 is constant and periodical
with cycle time being 10 ms and packet size being 1000 bytes. Meanwhile, h3 sends the double-tagged
packets with the same cycle time and packet size. VLAN1 is the control network and VLAN0 is the
passenger network. The packets within VLAN1 has a high priority, which will be put in a priority queue
during the transmission. The parameters are summarized in Table 3.

Table 3: Summary of Case Study Parameters.

Transmission Time Cycle Time Packet Size Bandwidth Buffer Size
30 sec 10 ms 1000 bytes 1 Mbits/s 400 KB

The experimental results are shown in Figure 8. We compared the end-to-end delay of each packet sent
from h1 to h2 with the following three cases: (1) no DoS attack packets, (2) h3 sending DoS packets without
double-tagging, and (3) h3 sending DoS packets with double tagging. In all three cases, h1 generates 3000
packets with no packet drops. This is because whenever the network interface starts transmitting a new
packet, the trunk port of s1 will first check the existence of the data packet and then transmit the DoS
packets only if the queue is empty. Therefore, without double-tagging, the impact on the data traffic is
limited as we see the average delay increases from 28 ms to 35 ms in the first two cases. The increasing
delay is introduced when a data packet arrives and the network interface sends a DoS packet. Since the
scheduler is non-preemptive, the user packet needs to wait for the previous transmission to complete.
However, when double tags are added to the DoS packet, the packet is enqueued in the output port from
s2 to h2 with the same priority. As a result, we observe the delay of data packets increases up to 92 ms.
The fluctuation of the delay is caused by the priority queueing mentioned above at s1. The double-tagging

2827

Liu, Jin, and Zhang

attack originated from the outside devices is able to significantly harm the real-time requirement of critical
control messages.

5 RELATED WORKS

5.1 Modeling and Simulation of Railway Communication Networks

Researchers have developed modeling and simulation tools for various railway communication networks.
(Cho, Lee, Lee, Kim, and Kim 2001) designed and implemented a network simulator for the bus-based
TCN, which is the previous generation of the Ethernet-based TCN that we modeled, and use it to investigate
the performance characteristics of the network. Similarly, (Liu, Hou, and Fu 2011) developed a CAN-based
on-board network simulator for the train diagnosis system, which was considered as an alternative bus
technology of TCN. The tool was used to study the relationship between Bit Error Rates (BERs) and
the throughput achieved in the network. (Pinedo, Aguado, Lopez, and Astorga 2015) built a modeling
and simulation tool for the European Railway Train Management System (ERTMS), which is a part
of the train-to-ground communication infrastructure as the counterpart of our on-board network. The
main components of the simulator are the models of the control applications and the underlying wireless
communication technologies (i.e., GSM and LTE). The tool was designed to study the cyber-impact on the
railway operations. (Aguado, Jacob, Berbineau, Astorga, and Toledo 2009) focuses on the simulation of
wireless communication. The authors built the control application (Automatic Control Service) on top of a
general-purpose network simulator, OPNET Modeler. Additionally, (Unterhuber, Sand, Fiebig, and Siebler
2018) focuses on the low-level statistical modeling of the wireless train-to-train communication including
a path loss model.

5.2 Cyber-security in Railway Networks

There are limited research works studying the cyber-security aspect of the railway communication networks,
as the traditional railway communication networks are often considered as an isolated infrastructure. (Chen,
Schmittner, Ma, Temple, Dong, Jones, and Sanders 2014) proposed a security analysis framework that
combines the modeling tools for attack method analysis (e.g., attack graphs) and consequence analysis, e.g.,
failure mode and effects analysis (FMVEA). It aims to establish a unified framework for evaluating cyber-
security impact on urban railway systems. A similar framework was proposed in (Kohli 2016) to identify
the cyber-threats to specific railway assets. It employed a diamond model to identify the vulnerabilities
and a FMVEA model to assess the impact. A comprehensive description of the security analysis of rail
transit environment was written in (SS-CC 2015) as a white paper from the American Public Transportation
Association (APTA). In this work, detailed procedures for security zone identification, entry point analysis,
attack modeling and counter-measure analysis of the railway systems are illustrated.

Both (Lopez and Aguado 2015) and (Bloomfield, Bendele, Bishop, Stroud, and Tonks 2016) analyzed
the vulnerabilities of the ERTMS system. The former mainly focused on issues in the specifications.
For example, the choice of obsolete encryption schemes and the key distribution techniques may lead to
potential exploits. The latter conducted security analysis at three levels, i.e., vulnerability identification of
specifications, high-level risk assessment of a working system, and detailed risk assessment of the on-board
systems. (Teo, Tran, Lakshminarayana, Temple, Chen, Tan, and Yau 2016) studied the impact of a specific
DoS attack on the Shenzhen metro system using simulation. A train motion simulator and a traction power
flow simulator are integrated to produce the outputs in terms of train movements and passenger flows with
and without the attack. The authors directly changed the operational states as inputs without incorporating
detailed models of cyber-components in the simulation.

2828

Liu, Jin, and Zhang

6 CONCLUSION AND FUTURE WORK

In this work, we designed and implemented a simulation platform named S3FTCN to study the TCN network.
The specific network topology and communication protocol stack are accurately modeled based on the
IEC-61375 standard. The underlying parallel simulation engine supports large-scale network simulation.
Using S3FTCN, we investigate a potential security exploit to a TCN system’s vulnerability. We simulate
a VLAN attack to evaluate the impact on the end-to-end message delay. In the future, we will further
improve the parallelism of S3FTCN by studying lookahead for efficient cross-timeline synchronization.
Additionally, we will extend S3FTCN to support wireless communication models in the railway networks
and conduct a comprehensive cyber-security study.

ACKNOWLEDGMENTS

This work is partly sponsored by the Chinese-American Railway Transportation Joint Research Center at
University of Illinois at Urbana-Champaign and CRRC Zhuzhou Institute Co., Ltd.

REFERENCES
Aguado, M., E. Jacob, M. Berbineau, J. Astorga, and N. Toledo. 2009. “Simulation Framework for Performance Evaluation of

Broadband Communication Architectures for Next Generation Railway Communication Services”. In 2009 9th International
Conference on Intelligent Transport Systems Telecommunications,(ITST), 453–457. IEEE.

Bloomfield, R., M. Bendele, P. Bishop, R. Stroud, and S. Tonks. 2016. “The Risk Assessment of ERTMS-based Railway
Systems from a Cyber Security Perspective: Methodology and lessons learned”. In International Conference on Reliability,
Safety, and Security of Railway Systems, 3–19. Springer.

Chen, B., C. Schmittner, Z. Ma, W. G. Temple, X. Dong, D. L. Jones, and W. H. Sanders. 2014. “Security Analysis of Urban
Railway Systems: the Need for a Cyber-Physical Perspective”. In International Conference on Computer Safety, Reliability,
and Security, 277–290. Springer.

Cho, C.-H., J.-D. Lee, J.-H. Lee, K.-H. Kim, and Y.-J. Kim. 2001. “Design of the Train Network Simulator Based on Train
Communication Network”. In ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat.
No. 01TH8570), Volume 1, 343–347. IEEE.

Kirrmann, H., and P. A. Zuber. 2001, March. “The IEC/IEEE Train Communication Network”. IEEE Micro 21(2):81–92.
Kohli, S. 2016. “Developing Cyber Security Asset Management Framework for UK Rail”. In 2016 International Conference

On Cyber Situational Awareness, Data Analytics And Assessment (CyberSA), 1–6. IEEE.
Liu, Z., Y. Hou, and W. Fu. 2011. “Communication Simulation of On-board Diagnosis Network in High-speed Maglev Trains”.

Journal of Modern Transportation 19(4):240–246.
Lopez, I., and M. Aguado. 2015. “Cyber Security Analysis of the European Train Control System”. IEEE Communications

Magazine 53(10):110–116.
Nicol, D. M., D. Jin, and Y. Zheng. 2011. “S3F: The Scalable Simulation Framework Revisited”. In Proceedings of the

2011 Winter Simulation Conference (WSC), edited by S. Jain, R. Creasey, J. Himmelspach, K. P. White, and M. C. Fu,
3283–3294. Institute of Electrical and Electronics Engineers.

Pinedo, C., M. Aguado, I. Lopez, and J. Astorga. 2015. “Modelling and Simulation of ERTMS for Current and Future Mobile
Technologies”. International Journal of Vehicular Technology 2015.

SS-CC, A. 2015. “Securing Control and Communications Systems in Rail Transit Environments”. Washington DC: American
Public Transportation Association.

Teo, Z.-T., B. A. N. Tran, S. Lakshminarayana, W. G. Temple, B. Chen, R. Tan, and D. K. Yau. 2016. “SecureRails: Towards
an Open Simulation Platform for Analyzing Cyber-Physical Attacks in Railways”. In 2016 IEEE Region 10 Conference
(TENCON), 95–98. IEEE.

Unterhuber, P., S. Sand, U.-C. Fiebig, and B. Siebler. 2018. “Path Loss Models for Train-to-Train Communications in Typical
High Speed Railway Environments”. IET Microwaves, Antennas & Propagation 12(4):492–500.

AUTHOR BIOGRAPHIES
XIN LIU is a Ph.D. candidate in Computer Science major at Illinois Institute of Technology. His research interests include
discrete-event simulation, modeling and simulation of computer networks, and network security and resilience. His email
address is xliu125@hawk.iit.edu.

DONG (KEVIN) JIN is an Associate Professor in the Computer Science Department at the Illinois Institute of Technology.
He holds a Ph.D. degree in Electrical and Computer Engineering from the University of Illinois at Urbana-Champaign. His

2829

mailto://xliu125@hawk.iit.edu

Liu, Jin, and Zhang

research interests include simulation modeling and analysis, trustworthy cyber-physical critical infrastructures, software-defined
networking, and cyber-security. His email address is dong.jin@iit.edu.

TAIRAN ZHANG received his B.S degree from China University of Mining and Technology, Xuzhou, China in 2005, the
M.S. degree from East China Normal University, Shanghai, China in 2008, and the Ph.D. degree in optical communication
form Shanghai Jiaotong University, Shanghai, China in 2015. He is currently working for CRRC Zhuzhou Electric Locomotive
Research Institute Co. LTD, Zhuzhou, China. His research interests include the modeling and experimental study of wireless
optical communications and train network simulation platform research for rail transit. His email address is zhangtr@csrzic.com.

2830

mailto://dong.jin@iit.edu
mailto://zhangtr@csrzic.com

	INTRODUCTION
	S3FTCN SIMULATION FRAMEWORK
	On-Board Train-Communication-Network
	S3FTCN Design and Implementation

	PERFORMANCE EVALUATION
	Experimental Setup
	Experimental Results

	CASE STUDY: ANALYSIS OF A VLAN ATTACK IN TCN
	Double-tagging Attack
	Simulation Experimental Results

	RELATED WORKS
	Modeling and Simulation of Railway Communication Networks
	Cyber-security in Railway Networks

	CONCLUSION AND FUTURE WORK

