
Proceedings of the 2019 Winter Simulation Conference
N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds.

SIMULATION EXPERIMENT SCHEMAS –
BEYOND TOOLS AND SIMULATION APPROACHES

Pia Wilsdorf
Marcus Dombrowsky

Adelinde M. Uhrmacher

Institute for Visual and Analytic Computing
University of Rostock
Albert-Einstein-Str. 22

Rostock, 18059, GERMANY

Julius Zimmermann
Ursula van Rienen

Institute of General Electrical Engineering
University of Rostock
Albert-Einstein-Str. 2

Rostock, 18059, GERMANY

ABSTRACT

Simulation studies make use of various types of simulation experiments. For users, specifying these
experiments is a demanding task since the specification depends on the experiment type and the idiosyncrasies
of the used tools. Thus, we present an experiment generation procedure that guides users through the
specification process, and abstracts away from the concrete execution environment. This abstraction is
achieved by (1) developing schemas that define the properties of simulation experiments and dependencies
between them, (2) specifying a mapping between schema properties and template fragments in the specification
language of a target backend. We develop schema, template fragments, and mappings for stochastic
discrete-event simulation, and show how the concepts can be transported to a different domain of modeling
and simulation. Further, we expand the developed “simple” experiment schemas by a schema for experiment
designs, and generate executable sensitivity analysis experiments, thereby demonstrating versatility and
composability of our approach.

1 INTRODUCTION

The last decade has seen an increasing interest in capturing simulation experiments explicitly, to facilitate
their reuse and replication. The developed approaches include, e.g., model-based approaches such as
(Teran-Somohano et al. 2015), or experiment specification via domain-specific languages like SESSL
(Ewald and Uhrmacher 2014), or SED-ML (Waltemath et al. 2011). Despite these efforts for facilitating
reuse and documentation of simulation experiments, specifying simulation experiments is still a challenge
for modelers, since the specification relies on the idiosyncrasies of experiment types, used methods, and
tools. To support the specification of simulation experiments, approaches like template-based experiment
generation can be exploited, see (Ruscheinski et al. 2018). These templates encode knowledge about the
diverse experiments, their methods, and the information needed, and thus form an essential part of the body
of knowledge in modeling and simulation (Ören 2005). However, in the above case each template had to
be tailored, not only to the experiment type, but in addition to the target specification language, thereby
inhibiting versatility, and exchangeability of the approach.

Therefore, in this paper we extend the experiment generation process into a two-level process (see
Section 2). At the first level, an abstract experiment specification is generated based on a modularized
schema where each schema module defines the required and optional inputs for a common constituent of
simulation experiment specifications, such as model initialization, simulator initialization, or observation
and post-processing of results. At the second level, the abstract experiment specification is mapped to
template fragments which, composed together, yield a concrete experiment specification in the specification

2783978-1-7281-3283-9/19/$31.00 ©2019 IEEE

Wilsdorf, Zimmermann, Dombrowsky, van Rienen, and Uhrmacher

language of a selected modeling and simulation backend. In practice, this abstraction and modularization
of simulation experiments will have numerous advantages, for example the modularization will allow for
more flexible user support for specifying, extending, or composing simulation experiment specifications.
Moreover, the clear decoupling of schema and implementation will allow for versatile use and reuse of the
same (abstract) experiment specification for different tools without having to respecify the entire experiment.
In addition, the schema modules essentially present guidelines for a straight-forward integration of new
tools within the experiment generator, i.e., by simply implementing new schema-to-backend mappings.

To demonstrate our concepts we first develop schema, template fragments, and mappings for stochastic
discrete-event simulation (DES) (Section 3). Thereafter, we show how the concepts can be transported to
a different domain of modeling and simulation, i.e., the application of the finite element method (FEM)
to solve electromagnetic problems (Section 4). Further, we extend the developed “simple” experiment
schemas, which refer to the specification of single simulation runs, by a schema for sensitivity analysis.
Using these extended schemas we generate executable sensitivity analysis experiments for two different
modeling and simulation backends, i.e., SESSL/ML-Rules (Maus et al. 2011; Ewald and Uhrmacher 2014),
and EMStimTools/YAML (Zimmermann 2019) (Section 5) to illustrate versatility and composability of
our approach. Finally, we close the paper with a discussion of related work (Section 6), and conclusions
including future work (Section 7).

2 EXPERIMENT GENERATION PROCESS

The extended experiment generation process is schematically depicted in Figure 1. There, four main tasks
can be identified, i.e., input collection, schema validation, template rendering, and experiment execution.
In the following these tasks and their respective inputs and outputs will be described, as well as how the
tasks are intertwined in a rather iterative experiment generation process. The experiment generation process
generates two experiment specifications at different levels of abstraction. The first one is an intermediate
product called the experiment object which provides an abstract experiment specification in terms of the
used methods and parameters. The second one, the final experiment specification, is a concrete experiment
specification where the abstract methods and parameters have been mapped to implementations in a concrete
modeling and simulation backend. The implementation of the experiment generation process is available
under (Wilsdorf et al. 2019). This repository also contains full versions of the presented experiment schemas,
experiment objects, and the resulting executable simulation experiment specifications.

Template

Vocabulary/
Schema

Inputs

Validate Inputs

Experiment
Object

SESSL-
Experiment

SED-ML
Experiment

FEniCS
Experiment

SESSL-
Environment

SED-ML
Environment

FEniCS
Environment

YES

UserCollect Inputs

NO

CHECK CHECK CHECKEXECUTE EXECUTE EXECUTE

RESULTS

Render
Template

YES

NO

Experiment type specific and
experiment type agnostic parts,

Independent from backend,
defines basic requirements of an

experiment specification of a
selected type

Experiment type specific,
Backend specific, e.g., it may

contain Python code

Selects backend and experiment
type, provides input for the

different variables

Input for the variables may
be derived from other

sources

Inputs are collected in a
variable-value map, i.e., a

JSON file

Input data is checked
according to the (JSON)

schema, if invalid inputs send
feedback to the user

The experiment object is a filled
JSON specification, that is valid
according to the schema; from

the object now concrete
specifications may be generated,
e.g., in the formats SESSL, SED-

ML, or FEniCS
The rendering process uses the
Freemarker Template Engine to

generate the experiment
specification (usually a text

document)

However, the rendered experiment
specification may still contain

syntactical or semantical errors, for
example due to wrong input formatting.

These errors are detected using
backend specific checks that are

implemented within the particular
backend package. If all checks pass
successfully, the final experiment

specification is created. Otherwise the
user is informed of the precise error.

The finished experiment specification is
now ready and can be executed using
the selected backend. Depending on

the backend the specifications are used
differently.... However, a common

interface of the backends allows for an
automated retrieval of the simulation

experiment results.

Experiment
Object

Simulation Environment

Render

SED-ML
Environment

SESSL-
Environment

 Execute

SESSL-
Experiment

SED-ML
Experiment

Template

User

NO

YES YES

SESSL-
Environment

SESSL-
Experiment

Render

SESSL-
Quickstart

SED-ML
Quickstart

Template

Vocabulary/
Schema

Inputs

Validate Inputs

Experiment
Object

SESSL-
Experiment

SED-ML
Experiment

FEniCS
Experiment

SESSL-
Environment

SED-ML
Environment

FEniCS
Environment

YES

UserCollect Inputs

NO

Render
Template

YES

NO

Options:
1. select backend first

2. select backend later or let
backend be chosen

automatically

Here the main incentive is to
abstract from concrete
backends and to define

common characteristics of
simulation experiments

Für mehr mehr interaktivität:
Zwischenschritt kann auch

wegfallen, d.h., Schema
validation und rendering
werden zusammengelegt

... Backend NBackend 1

Backends

Input Collection
Schema

Validation

Template

Rendering

Experiment

Execution

GUI

Data

Extractor

Experiment

Schema

Backend

Mapping
Backends

Template Fragments

Experiment

Specifica-

tion

Experiment

Object

Figure 1: Flowchart illustrating the experiment generation process that handles simulation experiment
specifications at two levels of abstraction, i.e., the implementation-agnostic experiment object, and the
implementation-dependent experiment specification.

2.1 Input Collection

The first task in the experiment generation process is to collect all the necessary inputs to get an executable
experiment specification, e.g., one has to enter information about the simulation model, the desired simulator,
or what to observe. All inputs are collected in a name-value map, where the name corresponds to a specific

2784

Wilsdorf, Zimmermann, Dombrowsky, van Rienen, and Uhrmacher

part of a simulation experiment specification (in the following called property), and the value is the collected
input, which may be either a single value, or an array of values. In our realization we chose the multipurpose
data interchange format JSON (JSON 2019) to store the collected name-value pairs. This map of values is
passed to the schema validator (see Section 2.2). The schema validator checks the experiment structure,
and the type of input values against a defined experiment schema. Moreover, from the schema the structure
and behavior of a dynamic graphical user interface (GUI) can be derived (Teran-Somohano et al. 2015).
This allows for an interactive, step-by-step input collection that guides the user through the specification
process by requesting certain information, suggesting default values, and prompting error messages. The
specification typically starts with a set of minimally required inputs, and presents these input fields in the
GUI. Next, once an input for an input field is chosen, other conditionally required fields may be revealed.
For example, once a method has been selected for statistical model checking, e.g., the sequential probability
ratio test (Wald 1945), further inputs are required, i.e., the probability p, a (temporal) logic formula φ , and
optional error thresholds used to reject the null hypothesis. Thus, the experiment generation process is an
iterative process where inputs are iteratively checked and requested.

For additional user support, this may be combined with a data extractor that automatically determines
inputs for certain schema properties by deriving them from other sources (Ruscheinski et al. 2018), e.g., a
suitable model configuration may be found by extracting relevant parameter names from the simulation
model, and corresponding values from model documentations such as parameter tables.

2.2 Schema Validation

The schema validation task checks the collected input data against a defined experiment schema, e.g., using
JSON Schema (JSON Schema 2019). Experiment schemas represent the basic structure of a simulation
experiment, define (minimally) required properties, suggest default values, or provide a list of values from
which the user may select one. Experiment schemas are subdivided into modules that each concern a
specific part of a simulation experiment specification. There are typical modules that are required for every
simulation experiment, independently of the modeling and simulation domain. In particular, we identified as
common constituents of simulation experiment specifications: model initialization, simulator initialization,
and observation, which is in line with the studies of (Zeigler 1984; Waltemath et al. 2011; Ewald and
Uhrmacher 2014). However, how these modules are filled with properties may look fundamentally different
depending on the domain of modeling and simulation. For instance, in DES the model block typically
refers to the parameters of agent-based models specified in a specialized modeling language (Macal and
North 2005). On the other hand, FEM simulations typically require a geometric model, and a PDE model
of the dynamics (Logg et al. 2012). Further, each modeling and simulation domain makes use of different
simulation algorithms, and thus requires different inputs to parameterize the simulators. In addition, the
observations differ between the various modeling and simulation domains, e.g., in DES we typically look at
the dynamics of a system over time (Law and Kelton 2000), whereas in FEM simulations the focus lies due
to decreased computational cost often on the frequency domain (Cangellaris 1996). The three modules
model, simulation, and observation are mandatory for the specification of single simulations. However, if
more complex experiments shall be specified that go beyond single simulation runs, further modules are
required. In particular, the schema may be extended by a module for experiment design. It may be even
desirable to divide this module further into separate submodules for different types of analyses such as
sensitivity analysis, simulation-based optimization, or model checking, since experiment design and analysis
method are closely related (Kleijnen 1998). During our case study in the Sections 3, 4, and 5, we will define
basic schemas for two modeling and simulation domains, and extend them by a shared schema module for
experiment design to illustrate the benefit of the modular organization. In particular, the modularization
allows experiment schemas to be extended in a flexible way, e.g., by defining the basic modules for a new
modeling and simulation domain, or by adding new choices of simulation algorithms, reporting formats,
etc. to an existing schema, or by adding further modules for other simulation-based analysis methods and
experiment designs that may be applicable across multiple domains of modeling and simulation.

2785

Wilsdorf, Zimmermann, Dombrowsky, van Rienen, and Uhrmacher

A schema entry is a tuple (Property,Description,Type,Choices,De f aults,Required). Property is the
unique identifier of the experiment property. Description is a verbal description of the property and its
expected input, that for example may be displayed in the GUI. Type specifies which data type is expected,
e.g., String, Integer, or Real. More specific types can be defined by adding Boolean expressions, e.g., the
number of simulation replications should be an integer, greater than zero. Choices and De f aults have
similar purposes as both provide a list of values from which a dropdown menu for the user can be built.
However, De f aults is a list of (optional) default values, i.e., the user may select one but is not required
to. Whereas Choice presents the user (or an automatic input extractor) with a fixed set of values, from
which one has to be chosen. Finally, Required specifies whether for a certain property an input is always
required (thereby making it a minimum requirement), optional, or conditionally required. Conditional
requirements refer to the input values of other properties inside the same schema module, i.e., depending on
a selection at an upper level, some subproperties will be required, yielding a hierarchical schema structure.
For example, in the observation specification, the user may choose from different options of when to observe
the simulation. Choices for this property are either a single point of time, or a time range with observation
interval, or other conditions like steady state. If the user chooses the single observation point, another
subproperty will be required, expecting a real value >0.

If any invalid inputs are found during the schema validation, an error feedback is sent to the user through
the GUI, stating which inputs are either missing, or have an incorrect data type. If all type checks are passed,
and no more required fields are empty an experiment object is created which is a name-value map that is
valid according to the schema. It describes the experiment in terms of the used methods and algorithms,
instead of concrete implementations. Thus, these first-level checks are backend-agnostic, and only provide
a frame to capture common characteristics of certain classes of simulation experiments. As a result, the
schema does not ensure that the experiment will be executable in a specific backend. Such backend-specific
checks are forwarded to the second experiment generation level, i.e., the template rendering task.

2.3 Template Rendering

To transform the experiment object into an (executable) experiment specification in a target specification
language of a backend we use a template-based approach. However, instead of using fixed templates that
correspond to a particular experiment type - backend combination as in (Ruscheinski et al. 2018), we now
have to account for the different input choices available to the user, since each choice potentially changes
parts of the resulting experiment specification. Therefore, each schema property is mapped to a template
fragment in the specification language of a selected modeling and simulation backend. Moreover, the abstract
terms of the experiment schema (referring to methods or algorithms) have to be mapped to the concrete
implementations of the selected backend. The template rendering process takes this backend mapping as
input, as well as the experiment object. Using a template engine such as FreeMarker (FreeMarker 2019) it
then joins together the necessary template fragments, and fills the template variables with data.

In general, a template fragment consists of a fixed text skeleton in the target specification language, and
template variables${property} that have to be filled with data from the experiment object, and are identified
by the name of a schema property. For example, in the target language SESSL/ML-Rules the template
fragment for observation at a specific point of time is observeAt(${atTime}), whereas the template
fragment for observation of a time range is observeAt(range(${atRange[0]},${atRange[1]},
${atRange[2]})). A schema entry may be mapped to template fragments of multiple target languages,
but there may be at most one mapping per backend. Especially the common constituents of a simulation
experiment, i.e., the minimally required information, have to be mapped to all the backends that are
available for a modeling and simulation domain. In contrast, other more specific properties may only
apply for one backend. A backend is defined as a combination of experiment language and input/modeling
language, forming a modeling and simulation environment. Although some backends support similar
types of simulations, and thus share a common schema, their implementations, used terminology, and
available methods differ. For example, SESSL/ML-Rules and SESSL/ML3 (Warnke et al. 2015) both

2786

Wilsdorf, Zimmermann, Dombrowsky, van Rienen, and Uhrmacher

support stochastic DES for cell-biological systems, and demographic systems respectively. The schema
property simulator is translated to the template fragment simulator = ${simulator} for both backends.
However, the selected simulation algorithm class stochastic is translated into the concrete implementations
StandardSimulator() for SESSL/ML-Rules, and NextReactionMethod() for SESSL/ML3 to fill the template
variable ${simulator}. Apart from the information obtained directly from the user, some backends
require additional syntax blocks, that do not belong to a specific schema module or property. Thus, for
each backend a master template is provided that determines the order of the properties, and fills in the
constant syntax elements. Further, some of the properties are associated with header information, e.g., if a
verification method is requested, the template has to make sure, that all the necessary verification libraries
are loaded, e.g., at the top of a SESSL/ML3 final experiment template the following line has to be added:
import sessl.verification. (Reinhardt et al. 2018).

Finally, at the end of the template rendering task, the experiment specification may still contain syntactical
or semantical errors. Therefore, backend-specific checks have to be performed using the backend’s compiling
unit. If all checks pass successfully, the final (executable) experiment specification is created, or otherwise
the user is informed of the precise errors. The backend-specific checks may concern the concrete number
format, or the syntax of an embedded language, i.e., one backend may expect temporal logic formulas to be
expressed in metric interval temporal logic (MITL), while others expect linear temporal logic (LTL).

2.4 Experiment Execution

After input collection, validation, and schema mapping, the experiment specification is now complete and
can be used in the selected backend. Firstly, it may be executed directly via a quickstart project, i.e., the
experiment execution is started automatically as an additional step at the end of the generation process, and
the simulation results are delivered to a location specified in the observation module of the experiment
specification. A common interface of the backends allows for an automated retrieval of the simulation
experiment results. When using this quickstart option, the generated experiment specification is kept
internally, and is not presented to the user. Alternatively, the experiment specification may be presented to
the user via the GUI, or exported as a file. From there it may be loaded into an external text editor, e.g., if
the user wants to extend a generated NetLogo specification with custom R code (Thiele 2014). Or lastly,
the experiment specification may be stored for the purpose of model documentation, for example, as part of
an archive such as COMBINE (Bergmann et al. 2014), to enrich text-based documentations like ODD
(Grimm et al. 2010), or as provenance in a scientific workflow (Oinn et al. 2004; Ludäscher et al. 2006).

Often, at the time of specification the user already has a backend in mind, and thus the current realization
expects the user to specify a backend after the successful schema validation. However, sometimes the
concrete backend may not be important, as long as the selected methods are supported, e.g., some statistical
MITL model checker. Thus, future implementations may automatically choose a suitable backend based on
the given inputs. This could be taken even one step further by not only selecting the backend automatically
but also the experiment type, i.e., given some inputs from a model documentation, all possible analyses
shall be performed such as some sensitivity analysis, model checking, etc., to get a quick overview of the
model’s behavior. This may also be combined with approaches for automatic method selection, e.g., the
most efficient, or most accurate simulator (Leye et al. 2014).

3 A BASIC STOCHASTIC SIMULATION EXPERIMENT

To test our approach at work, we start with basic stochastic simulation experiments. Therefore, we first
define a schema for stochastic DES by bringing together the required and optional information as discussed
in the modeling and simulation literature (Law and Kelton 2000; Banks et al. 2010). As a result, the
defined schema (Table 1) is applicable for many application domains of agent-based or individuals-based
modeling and simulation, such as cell biology, demography, logistics, etc. In particular, the developed
schema comprises the three essential parts of a simulation experiment specification, i.e., model initialization,

2787

Wilsdorf, Zimmermann, Dombrowsky, van Rienen, and Uhrmacher

Table 1: Basic experiment schema for stochastic discrete-event simulation.
Property Description Type Choices Defaults Required

M
od

el modelPath Path to simulation model String - - always
configurationNames Parameter names Array<String> - - optional
configurationValues Parameter values Array<Real> - - optional

Si
m

ul
at

io
n

simulator Choose simulation algorithm String stochastic, ... stochastic always
replications Simulation replications Integer, >0 - 1 required
stopCondition Types of stop conditions - stopTime, ... - always
→stopTime Stop at specific point of time Real, >0 if stopCondition==

”stopTime”
→stopExpression Stop based on simulation state BooleanExpression if stopCondition==

”stopExpression”

O
bs

er
va

tio
n

observation Observation information - - - always
→obsExpressions Expression on model species Array<String> - - always
→obsAliases Alias for observation expression Array<String> - - optional
→obsTime Choose option for observation String atTime, ... - always
→atTime Observe at specific point of time Real, >0 if time==”atTime”
→range Observe time range and interval Array<Real> - - if time==”range”

outputFormat Choose reporting format String csv, ... - optional

simulation initialization, and observation, which we established in our concept in Section 2. In the model
initialization part, the schema asks for a path to a simulation model as well as a set of parameter configurations.
In the simulation initialization part a type of simulator has to be chosen, e.g., a Gillespie style algorithm
(Gillespie 1977), or a hybrid execution scheme (Haseltine and Rawlings 2002). Further, information about
the stop condition, and the number of simulation replications is required. Since in DES we commonly
observe the species of a system over time, in the observation part of the schema an observation time is
required as well as an observation expression specifying which model species are of interest. Finally, the
simulation output has to be recorded, and thus an output format may be chosen.

After we finished the schema definition for DES, we use it to collect and validate user input by iterating
through the first two tasks of our experiment generation process. In our sample case study, the user aims to
analyze a rule-based model of membrane binding processes specified in the file “TernaryComplexModel.mlrj”.
Thus, the user selects this file through the interactive GUI, and also specifies a parameter configuration.
Further, the user specifies a stochastic simulation with 100 replications, evaluated until simulation time
30001. As observation they select the number of “C” species at stop time to be recorded under the variable
“Complexes”, and stored in a CSV file. All the collected and validated input, i.e., the experiment object,
are depicted in the upper part of Figure 2. From this experiment object, we then exemplarily generate
an executable experiment specification for the backend SESSL/ML-Rules (Maus et al. 2011; Ewald and
Uhrmacher 2014). The lower part of Figure 2 shows the completed experiment specification after all
template fragments have been chained together, and the data from the experiment object has been inserted
into the template variables by the template rendering step of our experiment generation. Although we
demonstrated our experiment generation concepts using the backend SESSL/ML-Rules, many other tools
from the area of DES may be exploited such as NetLogo/R (Thiele 2014), or SESSL/ML3 (Warnke et al.
2015).

4 VERSATILIY – A BASIC ELECTROMAGNETIC SIMULATION EXPERIMENT

Next, we evaluate how our concepts for experiment generation, and the experiences we gained for basic
stochastic simulation experiments, can be transferred to the domain of FEM modeling and simulation.
In general, the FEM allows us to solve partial differential equations numerically (Logg et al. 2012). To
conduct FEM experiments, a geometric model as well as a physical model have to be provided. Further,
for the simulation a solver type has to be chosen, e.g., the MUltifrontal Massively Parallel sparse direct
Solver (mumps) for linear systems (Amestoy et al. 2000). The observation block usually specifies an output
format, and some post-processing steps. In Table 2 we define a schema that reflects the general inputs
for a FEM experiment in terms of model, simulation, and observation, analogously to the DES schema.

2788

Wilsdorf, Zimmermann, Dombrowsky, van Rienen, and Uhrmacher

 1a modelPath="TernaryComplexModel.mlrj"

 2a configurationNames=["nR","nL","nX","nCells","kf",

 3a "kr","ka","ku"]

 4a configurationValues=[6e4, 1.05e9, 2.4e4, 1, 5.7e-13,

 5a 1.7e-2, 5e-9, 8e-5]

 6a simulator="stochastic"

 7a replications=100

 8a stopCondition="stopTime"

 9a stopTime=30001

 1b import sessl._

 2b import sessl.mlrules._

 3b execute(

 4b new Experiment with Observation with CSVOutput {

 5b model = "TernaryComplexModel.mlrj"

 6b set("nR" <~ 6e4)

 7b set("nL" <~ 1.05e9)

 8b set("nX" <~ 2.4e4)

 9b set("nCells" <~ 1)

10b set("kf" <~ 5.7e-13)

11b set("kr" <~ 1.7e-2)

12b set("ka" <~ 5e-9)

13b set("ku" <~ 8e-5)

10a obsExpressions=["count("C")"]

11a obsAliases=["Complexes"]

12a obsTime="atTime"

13a atTime=30001

14a outputFormat="csv"

14b simulator = StandardSimulator()

15b replications = 100

16b stopTime = 30001

17b observeAt(30001)

18b observe("Complexes" ~ count("C"))

19b withRunResult(writeCSV)

20b }

21b)

E
x
p

e
ri
m

e
n

t
O

b
je

c
t

E
x
p

e
ri
m

e
n

t
S

p
e

c
if
ic

a
ti
o

n
 i
n

S
E

S
S

L
/M

L
-R

u
le

s

Figure 2: Generating an experiment specification for a basic stochastic simulation experiment. The
experiment object contains all collected user input encoded as name-value pairs. This information is
transformed into an executable experiment specification in the language SESSL/ML-Rules. Blue - model
initialization, orange - simulation initialization, green - observation, black - other backend-specific code.

However, in contrast to DES, where we saw a clear separation of concerns between model specification and
experiment specification, for FEM simulations such a separation is not possible. In particular, the model
block presents an amalgamation of model specification and experiment specification, and thus has been
divided into two parts. Firstly, a geometric model has to be either selected or generated, and its parameter
initializations have to be specified. Secondly, the physical model needs to be defined, i.e., the equations and
the underlying laws of physics. For a strict separation of concerns this definition of the physical model
would have to be removed from the experiment specification. However, due to its compact description using
differential equations, a strict separation is not necessary. In contrast, models for DES are typically rather
complex since their specification involves numerous degrees of freedom, e.g., in the definition of various
agent types with attributes of arbitrary data types, behavioral rules, spatial properties of the modeled system,
etc. As a consequence, one must use full-fledged modeling languages with formal semantics to obtain a
concise description (Macal and North 2005). Further, a single schema for FEM simulations would not be
of much use, since especially the physics part varies depending on the application domain. A common field
of application for the FEM is electromagnetics (Meunier 2010). For these specific kinds of simulations the
physical model block needs to contain the type of equations. Depending on the type of equations, material
parameters such as conductivities and permittivities need to be provided. For a unique solution, proper
boundary conditions need to be specified.

By defining the schemas for a) stochastic DES and b) FEM simulation applied to electromagnetics, we
have seen that although they are two completely different domains, the general concepts about simulation
experiments can be transferred. However, the overall versatility of the experiment schemas vary, i.e., while
the DES schema covers a broader field of simulation, the FEM schema is already application-specific.

We apply the defined schema of Table 2 in a case study where the modeler wants to study the effect
of electrical stimulation on cell cultures (Griffin et al. 2011; Budde et al. 2015). Again, the modeler
first iterates through the input collection and validation phases of our experiment generation process.
An excerpt of the resulting experiment object can be viewed in the upper part of Figure 3. From this
experiment object we then exemplarily generate an executable experiment specification for the backend
EMStimTools/YAML (Zimmermann 2019), which is a Python-based package aimed at linking free and

2789

Wilsdorf, Zimmermann, Dombrowsky, van Rienen, and Uhrmacher

Table 2: Experiment schema for electromagnetic field simulations using the finite element method.
Property Description Type Choices Required

G
eo

m
.

M
od

el

studyName Name of simulation study String - always
dimensions Number of dimensions Integer, >0, ≤ 3 - always
geometryType Choose geometry type String meshFile, always

geometryFile
→meshFile Path to mesh file String - if geometryType==

”meshFile”
→geometryFile Path to geometry file String - if geometryType==

”geometryFile”
→subDomains List of geometry elements Array<String> - optional
→geometryValues List of geometry values Array<Real> - optional

Ph
ys

.
M

od
el

physics Choose a physical model String eqs, es, ... always
materials Materials used in the model Array<String> - always
→conductivityValues Conductivities of the materials Array<Real> - if physics==(”eqs”||”es”)
→permittivityValues Permittivities of the materials Array<Real> - if physics==”eqs”
boundaryCondition Choose a boundary condition String dirichlet, ... always
→dirichlet Dirichlet boundary condition - - if boundaryCondition==

”dirichlet”
→boundaries List of boundaries Array<String> - if boundaryCondition==

”dirichlet”
→boundaryValues List of boundary values Array<Real> - if boundaryCondition==

”dirichlet”
frequencies Frequency value Real - if physics==”eqs”

Si
m

ul
at

io
n

solver Choose a solver type String mumps, ... always
element Choose an element type String cg, ... always
degree Degree of the polynomial Integer - always
meshRefinement Use iterative mesh refinement - - optional
→selectedSubDomains Subdomains to be refined Array<String> - optional
→cycles Number refinement steps Array<Integer> - optional

O
bs

er
va

tio
n

obsAlias Alias for the observation String - optional
obsPosition Coordinates of the observed point Array<Real> - optional
outputFormat Choose an output format String xmdf, ... optional
postProcessing Add options for postprocessing - - optional
→properties Calculation of derived properties - - optional
→propertyNames List of property names Array<String> - optional
→propertyValues List of expressions Array<Expression> - optional
→mesh Plot a mesh Boolean - optional
→submesh Plot submeshes for given elements Array<String> - optional

open-source FEM tools like FEniCS (Logg et al. 2012) and SALOME (SALOME 2019), and show
excerpts in the lower part of Figure 3. We would like to stress that by defining a common schema for all
(electromagnetics) FEM simulations, we achieve a versatile experiment generation approach, in which the
schemas may be reused to generate experiment specifications for other equivalent tools, e.g., the proprietary
FEM platform COMSOL Multiphysics® (COMSOL 2019).

5 COMPOSABILITY - SENSITIVITY ANALYSIS

So far in our case studies we have looked at basic simulation experiments that involve single simulations.
However, for a more comprehensive analysis of simulation models we are in the need of more complex
experiment types that involve the execution of multiple simulations, and combine their results in an appropriate
way. To conduct such complex experiments efficiently, using appropriate methods and experiment designs
is crucial (Kleijnen 1998). Thus, in the following we will extend our previously defined schemas with a
new schema module for experiment design. As an example for an experiment design we use a two-level
full-factorial sensitivity analysis setup (Sanchez et al. 2018), that takes as inputs the factor names, as well
as two values for each factor, i.e., the baseline case, and the pertubated case (see Table 3), and calculates
the individual and interaction effects of the given factors (Saltelli et al. 2004). This rather simple schema
may be easily extended with other experiment designs or methods such as metamodeling (Kleijnen 2009),
or statistical model checking (Wald 1945) which is indicated in Table 3.

2790

Wilsdorf, Zimmermann, Dombrowsky, van Rienen, and Uhrmacher

 1a study="study_griffin2011"

 2a dimensions=3

 3a geometryType="geometryFile"

 4a geometryFile="griffin2011_salome.py"

 5a subDomains=["w_air", "h_air", "r_el", "h_el",

 6a "gap", "r_dish", "h_dish", "t_dish"]

 7a geometryValues=[.1, .05, .04, 0.01, 0.002,

 8a 0.0175, .01, 0.001]

 9a physics="eqs"

10a materials=["dish", "medium", "air", "airgap"]

11a conductivityValues=[1e-14, 1.5, 1e-14, 1e-14]

12a permittivityValues=[2.5, 80., 1.0, 1.0]

13a boundaryCondition="dirichlet"

14a boundaries=["UpperElectrode",

15a "LowerElectrode"]

16a boundaryValues=[0.16, 0.0]

17a frequencies=15.

18a solver="mumps"

19a element="cg"

20a degree=2

21a obsAlias="solution"

22a obsPosition=[0.05, 0.017, 0.011]

23a outputFormat="xdmf"

...

...

 3b SALOMEfile:

 4b griffin2011_salome.py

...

19b physics:

20b EQS

21b materials:

22b [dish, medium, air, airgap]

23b conductivity:

24b dish : 1e-14

25b medium : 1.5

...

28b permittivity:

29b dish : 2.5

30b medium : 80.

...

33b boundaries:

34b Dirichlet:

35b UpperElectrode: 0.16

36b LowerElectrode: 0.0

37b frequencies:

38b 15.

40b solver:

41b linear_solver : mumps

42b element:

43b CG

...

45b output:

46b XDMF: yes

...

E
x
p

e
ri
m

e
n

t
O

b
je

c
t

E
x
p

e
ri
m

e
n

t
S

p
e

c
if
ic

a
ti
o

n
 i
n

E
M

S
ti
m

T
o

o
ls

/Y
A

M
L

Figure 3: Generating an experiment specification for a finite element simulation of electromagnetic fields.
Excerpts of the experiment object are shown in the upper part of the figure, excerpts of the generated
executable experiment specification for the backend EMStimTools/YAML in the lower part respectively.
Blue - geometric and physical model definition, orange - simulation initialization, green - observation.

Table 3: Experiment schema module defining structure and input for various experiment designs.
Property Description ... Choices Required
experimentType Choose experiment type ... statisticalModelChecking, optional

sensitivityAnalysis, ...
→statisticalModelChecking Choose stat. MC method ... sequentialProbabilityRatioTest, ... if experimentType==

”statisticalModelChecking”
→
→sensitivityAnalysis Choose SA design ... twoLevelFullFactorial, ... if experimentType==

”sensitivityAnalysis”
→twoLevelFullFactorial Two-level full-factorial design ... - if sensitivityAnalysis==

”twoLevelFullFactorial”
→factorNames Parameter names for level one ... - if sensitivityAnalysis==

”twoLevelFullFactorial”
→levelOneValues Parameter values for level one ... - if sensitivityAnalysis==

”twoLevelFullFactorial”
→levelTwoValues Parameter values for level two ... - if sensitivityAnalysis==

”twoLevelFullFactorial”
→

Note, that the schema module for experiment design may be composed with both the DES schema and
the FEM schema, and thus is reusable across the various modeling and simulation domains. That is, in
both experiment objects the same schema properties are filled, but with different data. The experiment
objects are then mapped to the backends SESSL/ML-Rules and EMStimTools/YAML by interweaving
the basic experiment templates with templates for sensitivity analysis (for details see the accompanying
material (Wilsdorf et al. 2019)).

6 RELATED WORK

Work on reporting standards is also aimed at representing simulation experiments in a tool-independent
manner, e.g., the Minimum Information About a Simulation Experiment (MIASE) (Waltemath et al. 2011) in

2791

Wilsdorf, Zimmermann, Dombrowsky, van Rienen, and Uhrmacher

the context of systems biology, or Strengthening the reporting of empirical simulation studies (STRESS) for
the field of operational research and management sciences (Monks et al. 2019). However, those are neither
formal nor executable. The Simulation Experiment Description Markup Language (SED-ML) (Waltemath
et al. 2011) presents an implementation of the MIASE guidelines via an XML-based format. It is aimed at
model documentation and at facilitating the reproduction of simulation results presented in systems biology
publications. Consequently, diverse experiment types and their execution as required during conduction of
a simulation study across different modeling and simulation domains are not in the focus.

In (Teran-Somohano et al. 2015) the specification of experiments is supported via a dynamic graphical
user interface that is controlled based on an ontology (Lorscheid et al. 2012). Although the conceptual
idea is similar as it involves the iterative experiment specification based on an ontology (or in our case
experiment schema), they appear to currently only support the generation of XML files. Further, their
ontology focuses on simple designs of experiments, and thus it becomes not clear what other domains or
modeling and simulation approaches can be supported. In contrast, our approach supports widely different
backends (as shown in Sections 3-5). In addition, the knowledge about simulation experiments is enhanced
by default values, and requirements, which capture interdependencies in the specification of a simulation
experiment. Further, the modular design of simulation experiments emphasizes the common characteristics
of simulation experiments, as well as their differences, and facilitates the generation of sophisticated
experiments. Both the enhancement and the modular design add to the growing body of knowledge about
structure and ingredients of individual simulation experiments, e.g., (Ewald and Uhrmacher 2014; Yilmaz
et al. 2016; Lorig et al. 2017; Sanchez et al. 2018; Ruscheinski et al. 2018).

7 CONCLUSIONS

We introduced a two-level experiment generation process where at the first level an abstract experiment
specification is generated that describes the simulation experiment in terms of the used methods and
algorithms based on modularized experiment schemas. From this intermediate representation, at the second
level we generate experiment specifications for concrete implementations by mapping schema properties to
template fragments of a target backend. Our concepts for experiment generation were demonstrated using
two different modeling and simulation domains as well as two corresponding backends. This application
has shown that simulation experiment specifications go beyond specific tools since the required inputs
are primarily determined by the overall modeling and simulation domain. Further, the versatility as well
as composability of the approach could successfully be shown by moving from basic to more complex
experiments. As a side effect, the experiment schemas provide guidelines for implementing new tools, and
thus this paper also contributes to the creation of a body of knowledge for modeling and simulation. In future
work, we will define mappings to additional backends. Also, major efforts will be directed to providing
additional schemas to support a wide range of simulation experiments, e.g., for uncertainty quantification.
Thereby, the structure and the (partly interdependent) ingredients of these simulation experiments will be
made explicit, and thus we will contribute towards a better support for conducting simulation experiments
and studies.

ACKNOWLEDGMENTS

This work was funded by the research grants DFG UH 66/18 ’GrEASE’ and DFG CRC 1270 ’Elaine’.

REFERENCES
Amestoy, P., I. Duff, and J.-Y. L’Excellent. 2000. “Multifrontal Parallel Distributed Symmetric and Unsymmetric Solvers”.

Computer Methods in Applied Mechanics and Engineering 184(2):501 – 520.
Banks, J., J. S. Carson, B. L. Nelson, and D. M. Nicol. 2010. Discrete-Event System Simulation. 5th ed. Upper Saddle River,

New Jersey: Prentice Hall.
Bergmann, F. T., R. Adams, S. Moodie, J. Cooper, M. Glont, M. Golebiewski, M. Hucka, C. Laibe, A. K. Miller, D. P. Nickerson,

B. G. Olivier, N. Rodriguez, H. M. Sauro, M. Scharm, S. Soiland-Reyes, D. Waltemath, F. Yvon, and N. Le Novère. 2014.

2792

Wilsdorf, Zimmermann, Dombrowsky, van Rienen, and Uhrmacher

“COMBINE Archive and OMEX Format: one File to Share all Information to Reproduce a Modeling Project”. BMC
Bioinformatics 15(1):369.

Budde, K., J. Zimmermann, E. Neuhaus, M. Schröder, A. M. Uhrmacher, and U. van Rienen. 2015. “Requirements for
Documenting Electrical Cell Stimulation Experiments for Replicability and Numerical Modeling”. In 41st Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). In Press.

Cangellaris, A. C. 1996. “Frequency-Domain Finite Element Methods for Electromagnetic Field Simulation: Fundamentals,
State of the Art, and Applications to EMI/EMC Analysis”. In Proceedings of Symposium on Electromagnetic Compatibility,
107–116. Piscataway, New Jersey: IEEE.

COMSOL 2019. COMSOL Multiphysics® 5.4. https://www.comsol.com, accessed 5th April.
Ewald, R., and A. M. Uhrmacher. 2014. “SESSL: A Domain-specific Language for Simulation Experiments”. ACM Transactions

on Modeling and Computer Simulation 24(2):11:1–11:25.
FreeMarker 2019. Apache FreeMarker Manual for Freemarker 2.3.28. https://freemarker.apache.org/docs/index.html, accessed 5th

April.
Gillespie, D. T. 1977. “Exact Stochastic Simulation of Coupled Chemical Reactions”. The Journal of Physical Chemistry 81(25):2340–

2361.
Griffin, M., S. A. Iqbal, A. Sebastian, J. Colthurst, and A. Bayat. 2011. “Degenerate Wave and Capacitive Coupling Increase

Human MSC Invasion and Proliferation While Reducing Cytotoxicity in an In Vitro Wound Healing Model”. PLOS
ONE 6(8):1–14.

Grimm, V., U. Berger, D. L. DeAngelis, J. G. Polhill, J. Giske, and S. F. Railsback. 2010. “The ODD Protocol: A Review and
First Update”. Ecological Modelling 221(23):2760 – 2768.

Haseltine, E. L., and J. B. Rawlings. 2002. “Approximate Simulation of Coupled Fast and Slow Reactions for Stochastic
Chemical Kinetics”. The Journal of Chemical Physics 117(15):6959–6969.

JSON 2019. ECMA-404 The JSON Data Interchange Standard. http://www.json.org/, accessed 5th April.
JSON Schema 2019. JSON Schema Specification. https://json-schema.org/specification.html, accessed 5th April.
Kleijnen, J. P. C. 1998. Experimental Design for Sensitivity Analysis, Optimization, and Validation of Simulation Models,

Chapter 6, 173–223. New York: John Wiley & Sons, Inc.
Kleijnen, J. P. C. 2009. “Kriging Metamodeling in Simulation: A Review”. European Journal of Operational Research 192(3):707–

716.
Law, A. M., and W. D. Kelton. 2000. Simulation Modeling & Analysis. 3rd ed. New York: McGraw-Hill, Inc.
Leye, S., R. Ewald, and A. M. Uhrmacher. 2014. “Composing Problem Solvers for Simulation Experimentation: A Case Study

on Steady State Estimation”. PLOS ONE 9(4):1–13.
Logg, A., K.-A. Mardall, and G. N. Wells. 2012. Automated Solution of Differential Equations by the Finite Element Method.

Berlin Heidelberg: Springer.
Lorig, F., D. S. Lebherz, J. O. Berndt, and I. J. Timm. 2017. “Hypothesis-driven Experiment Design in Computer Simulation

Studies”. In Proceedings of the 2017 Winter Simulation Conference, edited by W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz,
N. Mustafee, G. Wainer, and E. Page, 103:1–103:12. Piscataway, New Jersey: Institute of Electrical and Electronics
Engineers, Inc.

Lorscheid, I., B.-O. Heine, and M. Meyer. 2012. “Opening the ‘Black Box’ of Simulations: Increased Transparency and
Effective Communication Through the Systematic Design of Experiments”. Computational and Mathematical Organization
Theory 18(1):22–62.

Ludäscher, B., I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao, and Y. Zhao. 2006. “Scientific
workflow management and the Kepler system”. Concurrency and Computation: Practice and Experience 18(10):1039–1065.

Macal, C. M., and M. J. North. 2005. “Tutorial on Agent-Based Modeling and Simulation”. In Proceedings of the 2005 Winter
Simulation Conference, edited by M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, 14–27. Piscataway, New
Jersey: Institute of Electrical and Electronics Engineers, Inc.

Maus, C., S. Rybacki, and A. M. Uhrmacher. 2011. “Rule-based Multi-level Modeling of Cell Biological Systems”. BMC
Systems Biology 5(1):166.

Meunier, G. 2010. The Finite Element Method for Electromagnetic Modeling, Volume 33. John Wiley & Sons.
Monks, T., C. S. Currie, B. S. Onggo, S. Robinson, M. Kunc, and S. J. Taylor. 2019. “Strengthening the Reporting of Empirical

Simulation Studies: Introducing the STRESS Guidelines”. Journal of Simulation 13(1):55–67.
Oinn, T., M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver, K. Glover, M. R. Pocock, A. Wipat, and P. Li.

2004. “Taverna: a tool for the composition and enactment of bioinformatics workflows”. Bioinformatics 20(17):3045–3054.
Ören, T. I. 2005. “Toward the Body of Knowledge of Modeling and Simulation”. In Proceedings of Interservice/Industry Training,

Simulation, and Education Conference (I/ITSEC), 1–19. Arlington, VA: National Training and Simulation Association.
Reinhardt, O., J. Hilton, T. Warnke, J. Bijak, and A. M. Uhrmacher. 2018. “Streamlining Simulation Experiments with

Agent-Based Models in Demography”. Journal of Artificial Societies and Social Simulation 21(3):9.

2793

https://www.comsol.com
https://freemarker.apache.org/docs/index.html
http://www.json.org/
https://json-schema.org/specification.html

Wilsdorf, Zimmermann, Dombrowsky, van Rienen, and Uhrmacher

Ruscheinski, A., K. Budde, T. Warnke, P. Wilsdorf, B. C. Hiller, M. Dombrowsky, and A. M. Uhrmacher. 2018. “Generating
Simulation Experiments based on Model Documentations and Templates”. In Proceedings of the 2018 Winter Simulation
Conference, edited by M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, 715–726. Piscataway,
New Jersey: Institute of Electrical and Electronics Engineers, Inc.

SALOME 2019. SALOME The Open Source Platform for Numerical Simulation. https://www.salome-platform.org, accessed 5th

April.
Saltelli, A., S. Tarantola, F. Campolongo, and M. Ratto. 2004. Sensitivity Analysis in Practice: A Guide to Assessing Scientific

Models. New York, NY: Halsted Press.
Sanchez, S. M., P. J. Sánchez, and H. Wan. 2018. “Work Smarter, not Harder: a Tutorial on Designing and Conducting

Simulation Experiments”. In Proceedings of the 2018 Winter Simulation Conference, edited by M. Rabe, A. A. Juan,
N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, 237–251. Piscataway, New Jersey: Institute of Electrical and Electronics
Engineers, Inc.

Teran-Somohano, A., A. E. Smith, J. Ledet, L. Yilmaz, and H. Oğuztüzün. 2015. “A Model-driven Engineering Approach
to Simulation Experiment Design and Execution”. In Proceedings of the 2015 Winter Simulation Conference, edited by
L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, 2632–2643. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc.

Thiele, J. C. 2014. “R marries NetLogo: Introduction to the RNetLogo Package”. Journal of Statistical Software 58(2):1–41.
Wald, A. 1945. “Sequential Tests of Statistical Hypotheses”. The Annals of Mathematical Statistics 16(2):117–186.
Waltemath, D., R. Adams, D. A. Beard, F. T. Bergmann, U. S. Bhalla, R. Britten, V. Chelliah, M. T. Cooling, J. Cooper,

E. J. Crampin, A. Garny, S. Hoops, M. Hucka, P. Hunter, E. Klipp, C. Laibe, A. K. Miller, I. Moraru, D. Nickerson,
P. Nielsen, M. Nikolski, S. Sahle, H. M. Sauro, H. Schmidt, J. L. Snoep, D. Tolle, O. Wolkenhauer, and N. Le Novère.
2011. “Minimum Information About a Simulation Experiment (MIASE)”. PLOS Computational Biology 7(4):1–4.

Waltemath, D., R. Adams, F. T. Bergmann, M. Hucka, F. Kolpakov, A. K. Miller, I. I. Moraru, D. Nickerson, S. Sahle, J. L.
Snoep et al. 2011. “Reproducible Computational Biology Experiments with SED-ML-the Simulation Experiment Description
Markup Language”. BMC systems biology 5(1):198.

Warnke, T., A. Steiniger, A. M. Uhrmacher, A. Klabunde, and F. Willekens. 2015. “ML3: a Language for Compact Modeling
of Linked Lives in Computational Demography”. In Proceedings of the 2015 Winter Simulation Conference, edited by
L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, 2764–2775. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc.

Wilsdorf, P., J. Zimmermann, M. Dombrowsky, U. van Rienen, and A. M. Uhrmacher. 2019. Simulation Experiment Schemas -
Beyond Tools and Simulation Approaches (Software Appendix). https://doi.org/10.18453/rosdok id00002465, accessed 1st

December 2019.
Yilmaz, L., S. Chakladar, and K. Doud. 2016. “The Goal-hypothesis-experiment Framework: A Generative Cognitive Domain

Architecture for Simulation Experiment Management”. In Proceedings of the 2016 Winter Simulation Conference, edited by
T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, 1001–1012. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc.

Zeigler, B. P. 1984. Multifacetted Modelling and Discrete Event Simulation. San Diego, CA: Academic Press Professional, Inc.
Zimmermann, J. 2019. EMStimTools. https://github.com/j-zimmermann/EMStimTools/releases/tag/v0.1.2.dev0, accessed 5th April.

AUTHOR BIOGRAPHIES
PIA WILSDORF is a Ph.D. candidate in the Modeling and Simulation group at the University of Rostock. Her e-mail address
is pia.wilsdorf@uni-rostock.de.

JULIUS ZIMMERMANN is a Ph.D. candidate in the Theoretical Electrical Engineering group at the University of Rostock.
His e-mail address is julius.zimmermann@uni-rostock.de.

MARCUS DOMBROWSKY is a student assistant in the Modeling and Simulation group at the University of Rostock. His
e-mail address is marcus.dombrowsky@uni-rostock.de.

URSULA VAN RIENEN is professor at the Institute of General Electrical Engineering, University of Rostock, and chair of
the Theoretical Electrical Engineering group. Her e-mail address is ursula.van-rienen@uni-rostock.de.

ADELINDE M. UHRMACHER is professor at the Institute of Computer Science, University of Rostock, and head of the
Modeling and Simulation group. Her e-mail address is adelinde.uhrmacher@uni-rostock.de.

2794

https://www.salome-platform.org
https://doi.org/10.18453/rosdok_id00002465
https://github.com/j-zimmermann/EMStimTools/releases/tag/v0.1.2.dev0
mailto://pia.wilsdorf@uni-rostock.de
mailto://julius.zimmermann@uni-rostock.de
mailto://marcus.dombrowsky@uni-rostock.de
mailto://ursula.van-rienen@uni-rostock.de
mailto://adelinde.uhrmacher@uni-rostock.de

	INTRODUCTION
	EXPERIMENT GENERATION PROCESS
	Input Collection
	Schema Validation
	Template Rendering
	Experiment Execution

	A BASIC STOCHASTIC SIMULATION EXPERIMENT
	VERSATILIY – A BASIC ELECTROMAGNETIC SIMULATION EXPERIMENT
	COMPOSABILITY - SENSITIVITY ANALYSIS
	RELATED WORK
	CONCLUSIONS

