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ABSTRACT

Humans often switch between different levels of abstraction when reasoning about salient properties of
systems with complex dynamics. In this paper, we study and compare multiple modelling and simulation
techniques for switching between abstractions. This improves insight and explainability as well as simulation
performance, while still producing identical answers to questions about properties. Traffic flow modelled
using an Agent Based Simulation formalism is used to demonstrate the introduced concepts. The technique
requires explicit models (1) of the dynamics of both individual cars and of emergent “jams”, (2) of the
conditions –often involving complex temporal patterns– under which switching between the levels of
abstraction becomes possible/necessary and (3) of the state initialization after a switch. While aggregation
is natural when going from detailed to abstract, the opposite direction requires additional state variables in
the abstract model.

1 INTRODUCTION

Models typically only capture specific properties of the system under study and result in particular abstrac-
tions. By definition, an abstraction is a simpler representation: it is meant to contain carefully selected
information, captured in a way that only satisfies the aspects the modeler wants to study. The idea that a
model is an incomplete representation of a system, only relevant to answer specific goals is well addressed
in general system theory literature (Minsky 1965; Stachowiak 1973).

Thus, before the formulation of a model, an important task is to determine the most appropriate level
of abstraction at which to solve the problem (Iwasaki 1993). The study of complex systems may involve
many modeling perspectives, eventually with heterogeneous domains and different goals, which suggests
multiple abstraction levels to be considered. Multi-level models can be used to solve several modeling
problems (Morvan 2013) which are related to the concerns of multi-paradigm modeling: (1) the modeling
of cross-level interaction, (2) the coupling of heterogeneous models and (3), the dynamic adaptation of the
level of abstraction. For this paper, we mainly focus on adaptive abstraction, where levels are automatically
switched to other levels according to the simulation context at runtime. This technique has various benefits
since it may improve:

• insight and explainability of the system, by automatically detecting emergent behaviors and corner
cases, all being enablers for a switch to another abstraction level to happen;

• simulation performances in terms of computational needs, both CPU and memory wise.

However, switching from one level to another during simulation certainly has an impact on results. This
paper aims at studying this impact on a different set of results, in order to find the best trade-off between
simulation execution time and accuracy. Based on a traffic network model, we compare obtained results with
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different variants of adaptivity to the results obtained with the fully microscopic model, where no adaptivity
is involved. Agent-based models (ABM) are often used to microscopically describe complex systems, and
their simulation can both reveal interesting collective behaviors and require important computational needs.
As adaptive abstraction aims at reducing computational needs through pattern recognition, this paradigm
is well-adapted to the study of adaptivity.

This paper is organised as follows. In the next section, we provide some background about multi-level
modelling and adaptive abstraction. We then present our traffic modelling case study used to compare
the results of several adaptive variants of a model. Then, we discuss the results and the remaining
research challenges to provide a generic modelling and simulation framework for adaptive abstraction
before concluding the paper.

2 BACKGROUND

Multi-level modelling received growing interest, particularly in the agent-based community since the need
to simulate large populations as individuals (Scheffer et al. 1995) have been expressed. In this section,
we first briefly provide some background about the notion of abstraction as well as adaptivity. We then
present related works specifically related to adaptive abstraction in ABM.

2.1 Model abstraction

While humans switch naturally back and forth among abstractions without any pre-defined hierarchy, an
explicit representation of levels and of their relations must be defined for a program to switch between
levels. In this section, we describe what a level includes, besides the model itself.

An abstraction level is related to the amount of information found in a model (Benjamin et al. 1998):
the more information a model encodes, the less abstract it is. Conversely, the less information it contains,
the more abstract the model is. This amount of information is tightly coupled to the viewpoint on the
system, which includes assumptions, observations, and modelling goals. Such a viewpoint helps decide
what information is relevant, in what detail and thus, is essential for an abstraction level to be shaped.

The very idea of abstracting a model is to aggregate information by relaxing one or several dimensions,
while the inverse of abstracting is about disaggregation. There are many dimensions along which a model
can be abstracted (Iwasaki 1993), namely:

1. the structural dimension, which consists of lumping together a group of components that are spatially
close;

2. the functional dimension, where several components are lumped together to achieve a distinct,
higher-level function;

3. the temporal dimension, where abstraction involves ignoring a behavior over a given period of time;
4. the quantitative dimension, where abstraction involves ignoring relative differences in state variables

values.

Switching from one level to another does not necessarily involve only one of these dimensions being
abstracted. For example, a structural aggregation may come with a quantitative aggregation: models that
are physically close are lumped together, and a meaningful state for the new model is constructed from the
more detailed ones. Some formalisms already support hierarchical constructs, providing means to model
multiple levels of abstraction. Some ABM platforms which provide dedicated modelling languages such
as GAMA (Grignard et al. 2013) or NetLogo (Tisue and Wilensky 2004) offers multi-level capabilities
since agents can be nested in other agents, also allowing cross-level interaction between multiple levels.

A switch may cause a dimension to disappear entirely from a level. In such case, the question which
arises is one of the particular formalism to express the abstraction. If the abstraction of a spatially-explicit
model results in a spaceless model, the formalism used in the former is likely to be inappropriate to
represent the latter. This means adaptive abstraction may involve heterogeneous models to be used. For
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example, an agent-based model can eventually be abstracted to a macroscopic model, where the population
is considered as a whole and expressed in another formalism such as System Dynamics, causing the space
dimension to be irrelevant altogether.

To be able to partially order the different abstractions, upward and downward relationships between
abstractions should be defined so that a pre-defined hierarchy can be used to determine which abstraction
to switch to depending on the context. Another way to infer level hierarchy is by explicitly defining
scales and precision units (Iwasaki 1993). Although the author only focused on the temporal dimension
(simulation time), we believe this idea can also be applied to structural and quantitative dimensions by
defining precision scales for space and states, respectively. However, such an idea requires the model
visibility to be a “white box”. More generally, visibility is an important concern regarding features to
consider for an adaptive abstraction approach. Thus, an abstraction includes the following metadata: (1) the
viewpoint (a.k.a experimental frame), (2) the featured dimensions and (3) their scales, (4) the formalism(s)
used to express the model, (5) the visibility of the model and the model itself.

2.2 Adaptivity

Adaptive abstraction has been particularly studied for agent-based models (ABM), which resulted in the
Multi-Level Agent-based Modeling (ML-ABM) domain. An extensive literature survey on this topic was
recently proposed (Morvan 2013), which raise the following challenges to perform adaptive abstraction:
(1) the definition of generic representations for aggregated entities, and (2) the detection of emergent
phenomena. A section is dedicated to each.

2.2.1 Representing aggregates

Recently, Mathieu et al. (2018) provided four Design Patterns defined after a literature study that can be
generally applied to perform the aggregation or the disaggregation of agents. Such a process has different
characteristics: whether information transformation is involved, whether the behaviour is transferred to
the other level, or if both levels evolve independently. Table 1 lists the patterns and summarise their

Table 1: Aggregation/disaggregation patterns identified for multi-level ABMs.

Pattern Behavior Information transformation

ZOOM transferred yes
PUPPETEER transferred no
VIEW unchanged no
COHABITATION distinct no

characteristics. The ZOOM pattern is destructive in both ways, meaning behaviour is transferred to the new
level and states are transformed: information must be reduced when aggregating and re-constructed when
disaggregating. The PUPPETEER pattern is the closest to the ZOOM one since behavior is also transferred
to the new abstraction. However, individual states are gathered by the upper-level and kept as-is, meaning
there is no information transformation involved. As its name suggests, the VIEW pattern is only here to
provide insight to the user. The behaviors and states from the lower level remain as-is; the upper-level is
only here to keep track of the individual models without having any specific behavior, as in Caillou and
Gil-Quijano (2012). Finally, the COHABITATION pattern features levels with distinct behaviours and states,
and with feedback loops between levels.

Previous works either use one of these patterns or a combination of them. For example, Sarraf-Shirazi
et al. (2014) approach is mainly based on the PUPPETEER pattern to aggregate agents that are physically
close, i.e. along the structural dimension, and delegate their behavior. A relatively small amount of
information is added to the aggregate level during aggregation, but all individual states are also kept.
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Similarly, Wendel and Dibble (2007) work is also based on this pattern. Both works claim a speedup with
adaptivity enabled.

Sharpanskykh and Treur (2011) apply multiple methods on a social diffusion model and compare results
both in terms of computational efficiency and of approximation errors. To our knowledge, this comparative
study is the closest work found in the literature that allows observing accuracy versus performances, as
we aim at. However, disaggregation is not involved and all variants of their adaptive models are based on
the ZOOM pattern. Two approaches are considered to build the upper-level state during aggregation: (1)
statistical-based (weighted averaging) and, (2) invariant-based (determining equilibrium state).

Navarro et al. (2011) use a hybrid approach which combines the PUPPETEER and the ZOOM patterns
to aggregate agents spatially when a cluster is detected. Individual states are kept when an abstraction is
first formed, and information is gradually transformed as the abstraction evolves. Bouha et al. (2015) also
use two different patterns to switch between heterogeneous models: ZOOM for adaptivity and PUPPETEER
for cross-level interaction.

The first three patterns from Table 1 (ZOOM, PUPPETEER and VIEW) are suitable for adaptive abstraction
with different purposes, while the last one is more suitable for cross-level interaction goals. For scenarios
seeking to improve simulation performances, the ZOOM and PUPPETEER patterns are the most appropriate
ones. Since our objective is to study performance gains, we will focus on those two in this study.

In order to support to some extent multiple levels, many platforms and formalisms have been proposed.
For example, Steiniger et al. (2012) extends the DEVS formalism to ease the modelling of environments
in ABM models, however, the resulting Multi-Level-DEVS formalism can also be used to implement the
COHABITATION pattern, eventually in a heterogeneous way. On the tooling side, the GEAMAS-NG agent-
oriented platform (David et al. 2012) was specifically developed to provide multiple levels of abstraction.
Similarly, the Janus platform (Galland et al. 2017) has builtin support for multiple abstraction levels. It
is described as an holonic platform, referring to the concept of holons (Koestler 1967), which is used by
the HMAS (Holonic Multi-Agent System) community to build multi-level agent societies with interaction
between abstraction levels (COHABITATION pattern).

Nevertheless, broader ABM simulation platforms such as NetLogo (Tisue and Wilensky 2004) or
GAMA (Grignard et al. 2013) also supports the implementation of multiple levels in an integrated and
homogeneous way: abstractions are agents, as individuals, and they share entities and the environment. In
order to implement the PUPPETEER pattern, the underlying modelling language must support some kind
of hierarchy between levels. In the case of the two platforms, this can be done by nesting agents within
agents through simple references. To implement the ZOOM pattern, the language must support dynamic
structure so that models can be removed and added during simulation, which is already a requirement of
multi-agent systems.

The switching semantics between levels also requires an “omniscient” process that is capable of checking
domain-specific properties about the system. ABM simulation platforms usually allow this by providing
an “observer” agent to which a specific behavior can be associated. In the case of adaptive abstraction,
this behavior is about detecting the conditions under which a switch to another level should occur.

2.2.2 Detecting emergent behavior

An important aspect to perform adaptive abstraction concern the conditions under which a switch to a
particular level is triggered. A trigger can be either manual or automatic. A manual switch occurs as
a result of a user-input when a new modelling perspective on the system is considered by the user. An
automatic switch however, is much more challenging since specific model properties must be checked
during simulation, which involves a process periodically sampling the model to detect over time if a more
appropriate level should be instantiated.

Interacting entities such as agents typically generates emerging properties and behaviors that hold for a
certain amount of time, either in an ephemeral or in a long-lived way. While humans easily detect patterns
from a particular dimension out of a temporal sequence, adaptive abstraction requires such phenomenon to
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be detected by explicitly keeping track of interactions. We should emphasize that the notion of temporal
sequence is not related to the temporal dimension defined in section 2.1. Both could be combined to
detect a particular phenomenon. For example, a periodic peak in the event distribution of a discrete-event
simulation is a temporal pattern over a time sequence. If detected, such pattern could be used as a condition
to switch to a more appropriate abstraction where discrete time is used instead.

The detection process involves several distinct steps, namely:

1. state monitoring, where properties are checked for a snapshot of the states;
2. aggregation, where upward abstraction is done if enabling properties holds since a given amount

of time;
3. and disaggregation, where downward abstraction is done if disabling properties holds since a given

amount of time.

The main difficulties are (1) to recognize possible emergent phenomena over a snapshot and (2), to reinforce
these by keeping track of them over time.

For recognition, most existing works in ABM explored abstraction through the structural dimension
by aggregating close agents together in a mesoscopic level, but some also explored abstraction through the
quantitative dimension, e.g. grouping agents with similar states. Most authors use statistical classification
to detect emergence through graph-based clustering methods (Moncion et al. 2010) or clustering algorithms
(Gil-Quijano et al. 2012). Formal frameworks were also proposed to detect emergence. David and Courdier
(2008) formalize the concept of emerging structures along with emergence revelators and laws. However,
the notion of temporal sequence is not addressed, and domain-specific properties about the model cannot
be expressed. Chen et al. (2009) allows entities to be located in a hyperspace that includes the structural
and temporal dimensions and that can also include other dimensions.

To keep track of properties over a temporal sequence, graphs are often used in the literature. Moncion
et al. (2010) use a weighted graph where vertices are the agents and edges represents the likelihood for
an emergent property to exist between two agents. The graph is updated each time the state monitoring
process sample states, and weights are adjusted depending on agent properties. Strong relations between
agents indicates long-lived emergent phenomena. Conversely, ephemeral phenomena disappear from the
graph when a relationship is not strong enough to be maintained. Groups are formed using a graph
clustering algorithm. However, since their work implements the VIEW pattern, nothing is mentioned about
disaggregation.

In a similar way, Sarraf-Shirazi et al. (2014) use a weighted graph to keep track of emergent properties
over time. However, since the authors implemented the PUPPETEER pattern, vertices can be either agents or
meta-agents from upper levels. This way, when a cluster is detected, the graph is also transformed. Vertices
corresponding to agents from the group are deleted, a new vertex is inserted and edges are adjusted. As for
disaggregation, authors’ approach is to assign a confidence value to each group. Groups are periodically
and temporarily disaggregated to observe over time if the underlying agents still exhibit the same properties.
Confidence is adjusted accordingly and agents are aggregated back if the group still holds. While this
technique allows performing disaggregation without checking additional properties, it is less appropriate
if used together with the ZOOM pattern. Periodic disaggregation/re-aggregation as a validation process is
less costly when individual agents are kept in memory than if they are re-allocated and freed over and over.

3 CASE STUDY: APPLICATION TO TRAFFIC MODELLING

In order to study the trade-off between results accuracy and simulation execution time that adaptive
abstraction can offer, we base our case study on an agent-based traffic network model. Road traffic systems
feature complex dynamic interactions between vehicles and have self-organisation properties and observable
emergent behaviors such as traffic jams. Therefore, traffic modelling is an appropriate candidate to study
dynamic adaptation between levels of abstractions.
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This section is organised as follows. We first introduce the microscopic model. We then present the
different variants of adaptive abstraction we use for this case study. Finally, we present the results of our
experiment.

3.1 Traffic network model

Road traffic networks are typically studied across different levels of abstractions, macroscopically or
microscopically. The first focuses on macroscopic variables such as flow, mean speed or density and are
usually expressed by mathematical relations. Microscopic traffic models focus on drivers behavior and on
their interactions with other vehicles, which requires high computational needs. The benefits of introducing
intermediate levels in traffic simulation were already stated: previous works also used traffic networks to
study ABM multiple level capabilities both for cross-level interaction (Tchappi et al. 2018) and for adaptive
abstraction (Bouha et al. 2015) purposes.

We describe a microscopic model which features a simple car-following behavior, where each vehicle
tries to maintain its preferred speed and adjust it when a car is ahead. With heterogeneous speeds and no
overtaking allowed, traffic jams are likely to occur. Traffic jams can be recognized through space locality,
which is used for our adaptive variants to construct aggregates. The different levels of abstraction in our
traffic network example are based on spatial clustering. They are expressed in the same formalism and are
integrated, meaning they interact and share the same environment and the same entities such as cities and
road segments. Such a model can be implemented in existing ABM tools as we mentioned in section 2.
Our implementation is based on NetLogo 6.0.4.

Cars and jams, that represent different abstraction levels, are modelled as agent types: C ⊂ V and
J ⊂V , respectively, with C∩J = /0 and where V is the set of vehicles. Road segments and cities are defined
by the R and T sets and form a road network through the graph GN = (R,T ). The road network is a
representative example which lacks some details since the model does not feature multiple lane roadways
and no overtaking behavior is taken into account.

Let S =
⋃

i si∈A be the set of agent states. For all i ∈C, cars states are defined by the following n-tuple:

si = (pi, ti,vi,vpre fi ,ri, tti)

where pi ∈R2 is the location of the vehicle, ti ∈ T is the target city to reach, vi ∈ [0,1] is the current speed
of the vehicle, vpre fi ∈ [0,1] is the preferred speed of the driver, ri ∈ R is the current road segment and tti
is the transit time of the vehicle along the current segment.

Based on a given number of cities ncities, a random road network is generated using a preferential
attachment process. The network is then laid out in space. For each road segment i ∈ R, the state si is
defined by the following n-tuple:

si = (vlimi , t̄ti,mi,marri)

where vlimi ∈ [0,1] is the speed limitation on this road segment, t̄ti is the mean transit time on this road
segment, and mi is the number of vehicles on the roadway, and marri is the number of cars that passed this
segment. The density represents the number of vehicles present on a road segment at a given time. Thus,
the density of a road section is given by ki(t) = mi(t)/li, with li the length of the road segment. The mean
road transit time is a simple moving average and evolves according to the following relation:

¯tti(t +∆t) =
¯tti(t).marri(t)+ tt j(t)

marri(t)+1
with i ∈ R and j ∈C

As for jams, since the state depends on the variant of the adaptive abstraction used, it is given in the
next section. However, each variant i ∈ J share the following variables: pi the position, ni the number of
cars stuck in the traffic jam, tti the transit time of the jam along the current road segment ri.

Vehicles are either driving on a road segment or waiting inside cities. If waiting inside a city, cars
have a probability of leaving determined by the ρleave ∈ [0,1] parameter. If leaving, a car i ∈C randomly
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choose a final target city ti ∈ T and a path towards ti is computed following the road network GN . Once
they have a target, cars will adjust their speed to move towards the target with a car-following behavior.
Each driver will always try to maintain its desired speed vpre fi , with respect to the allowed speed on the
current segment vlimti

(no speeding assumed). If a vehicle in front is present, the driver decelerates to match
the other’s speed.

The macroscopic output of the ABM that we use to compare the results of the model variants is given
by variables such as transit time, speed and density. The average transit time can be calculated from a
road segment and is given by ¯ttroads(t) while the average vehicle speed is given by v̄(t). Finally, the mean
density is calculated with k̄(t) using the number of driving vehicles and the total roadway length. All three
are given as follows:

¯ttroads(t) =
∑i∈R

¯tti(t)
Card(R)

v̄(t) =
∑i∈C vi(t)+∑i∈J si(t).ni(t)

ncars
k̄(t) =

∑i∈R mi

∑i∈R li

Despite the simplicity of this agent-based traffic model, emergent properties such as traffic jams appear
on multiple road segments during simulation. Involved vehicles then exhibit similar behavior, driving at a
similar speed until the next city. The next section presents several adaptive variants which take advantages
of these traffic jams to reduce the number of simulated agents.

3.2 Adaptive variants

To study different types of adaptivity, we propose several variants of the traffic model based on the PUPPETEER
and on the ZOOM patterns (see section 2.2.2). While the former is simply about delegating behavior and
involves no state transformation, the latter does introduce additional state variables to represent the aggregates
(in a reduced way). The way aggregation and disaggregation reduce and reconstruct information is important
since it can eventually increase the error drift from the original model. As the (dis-)aggregation process is
domain-specific and requires the modeller to make explicit choices, we explore distinct ways of performing
those choices. Sharpanskykh and Treur (2011) explored two ways of abstracting data for the ZOOM:
by determining equilibrium states or by using statistics. Since the authors obtain better results in terms
of execution time and in terms of errors with the statistical approach, we compare different variants of
statistical aggregation. Those are also compared with the PUPPETEER pattern and with the microscopic
variant of the model.

For the variants based on the ZOOM pattern, we use more or less naive statistics and probabilities
across different dimensions. For quantitative values such as speed or preferred speed, a naive approach is
to gather incomplete information over the distribution. For example, only calculating mean values makes
the reconstruction of the statistical dispersion arbitrary. Conversely, calculating statistical dispersion adds
some overhead but makes the reconstruction of individual states more precise. Dispersion is a key element
to automatically detect cases where abstraction is still relevant while it evolves. If we consider space (or
any other dimension), a squeezed dispersion reveals a strong space locality. If the distribution stretches
over time, it is an indicator that the flock is collapsing.

However, not all vehicle characteristics are meaningfully represented by spatial values. As cars have
different target cities while being stuck in the same traffic jam, the question of how to represent destinations
in the aggregate arise. Again, this can be made in a more or less destructive way. Final destinations could
be ignored altogether during aggregation, but a random city must be assigned to cars during disaggregation.
Another solution is to count occurrences and to preserve the most recurrent destination, but all cars in the
traffic jam will end up to this destination. These two solutions are very destructive as they change final
destinations of the cars and might increase the error on results. In order to keep the final destinations, a
solution is to keep a vector of all final destinations. During disaggregation, cars have a similar probability
to go to any target from the vector. Finally, the most precise solution is to keep occurrences so weight can
be assigned to each destination, and better assign event probabilities.
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As there are many possible variants, we had to restrict our study on a few of them. The baseline
is based on the microscopic variant described in section 3, where no adaptivity is involved. A second
variant does not perform information transformation during aggregation and is based on the PUPPETEER
pattern. For the ZOOM pattern, we selected three different variants. The most naive only gather mean
values from the quantitative values and keep a vector of unique final destinations. Another variant follows
the same principle but only gather the minimum speeds instead of the mean. Finally, a third variant gathers
more information: mean values are calculated along with the standard deviation, which is used when
disaggregating. The destinations are also based on a vector, but it is weighted so probabilities better reflect
the original behavior. As for the location and the length of the “jam”, it is calculated based on the number
of vehicles and on the minimum allowed distance headway in the model, and thus, is trivial to reconstruct.

Regarding emergence detection, we adopted a graph-based approach similar to Sarraf-Shirazi et al.
(2014). The state monitoring process checks agent properties every ∆mon and update the weighted graph
(V,L), where L is the set of interaction links that connects the set of vehicles (cars and jams) V according to
possible detected emergent phenomena. When a strong interaction is detected between vehicles, an initial
weight of ∆inc is associated with the edge if it does not exist already. Otherwise, the weight is incremented
with ∆inc. For all existing edges that were not reinforced, associated weights are decremented with ∆dec.
An edge is deleted if its weight reaches 0.

The aggregation process happens every ∆agg to analyse the state of the (V,L) graph to detect clusters
of strongly interacting agents. A new subgraph is first built from (V,L), where only vertices connected
through edges having a weight greater than the θw threshold are considered. Clusters are then identified
by cutting the graph using a weakly connected components algorithm. Each cluster of vehicles represents
emerging collective behaviours and is used to perform an aggregation.

3.3 Results

This section presents the results of the comparative study of each variant of the traffic model. After
exposing our methodology in a first subsection, two subsequent ones discuss the model output results and
the execution performances, respectively.

3.3.1 Methodology

The hardware environment used to run the study is based on an Intel(R) Core(TM) i7-4870HQ CPU @
2.50GHz, 16 GB (1600 MHz DDR3) of RAM, and an Apple SM0512G SSD hard drive. As for the software
stack, NetLogo 6.0.4 is running on the Java HotSpot(TM) 64-Bit Server VM (build 25.0-b70, mixed mode)
and relies on macOS 10.14.4. Mean wall clock time of 5 repetitions is measured for each variant of the
model. Results used for comparison are the following macroscopic outputs: mean transit time, mean road
density, and mean car speed over 2000 time steps. To compare the results on a smaller and on a larger
scale, two parameters are varied: the number of vehicles and the number of cities (which impacts the size
of the road network). The fist pair of parameters is based on ncars = 100 and ncities = 10 while the second
pair is based on ncars = 400 and ncities = 20. Due to some noise in the results, density and speed plots
(Figure 1 and 2) have been smoothed using a cubic spline interpolation for better clarity.

3.3.2 Model outputs

Across all variants, density results (Figure 1) are the closest from the original model. The maximum relative
standard deviation (RSD) from the whole set is ±8.25% for the small scale and ±6.94% for the larger
scale. The average RSD is ±2.44% for both scales. However, this is not surprising since the approximation
of the spatial distribution is aggregated in a similar way for all variants: jam length is calculated based
both on the minimum distance headway and the number of stuck vehicles. Once calculated, the spatial
dispersion does not vary with the behaviour of the abstracted traffic jam.
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Regarding speed results (Figure 2), overall dispersion across all variants is higher. Here, the maximum
and average RSD is ±23.28% and ±16.75%, respectively. From the variants implementing the ZOOM
pattern, the min one seems to produce the closest results from the original model. However, this makes sense
since in the model we described, vehicles do not accelerate once the preferred speed or the maximum allowed
speed is reached. All cars in a jam undergo the preferred speed of the front car, which is the minimum
preferred speed from all the values. Thus, taking the mean value -with or without dispersion approximation-
does not reflect the original behavior, especially since the dispersion is likely to be significant. While this
is true for the preferred speed, the aggregation of the actual speed does not follow the same principle.
Taking the minimum or the mean value for the actual speed does not make a significant difference since
the dispersion is likely to be squeezed. Indeed, during aggregation, all cars already drive at a similar speed.
The results between the two mean variants show that having an approximation of the dispersion does not
impact the results in this case.

Since the transit times results (Figure 3) are directly influenced by vehicle speeds, similar observations
can be made. However, the large scale simulation results (Figure 3b) show that the variant with more
detailed information about final destination is more accurate than its counterpart. This can be explained
by the fact that road segments have heterogeneous maximum allowed speed. Thus, the roads taken by the
vehicles have a direct influence on transit times results.
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Figure 1: Mean road density results for each variant on a small scale (a) and a larger scale (b).
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Figure 2: Vehicle speed results for each variant on a small scale (a) and a larger scale (b).

3.3.3 Execution speed

Table 2 gives the measured wall clock time in seconds along with the standard deviation for each model
variant. The PUPPETEER implementation slightly improves runtime performances both for the small scale
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Figure 3: Mean road transit times results for each variant on a small scale (a) and a larger scale (b).

and for the large scale experiment (1.12X and 1.4X respectively). However, this is not surprising since
previous works (Sarraf-Shirazi et al. 2014) already shown that this approach improves performances. On
a small scale, variants based on the ZOOM pattern also improve simulation performance, with a speedup
between 1.16 and 1.60. The variant taking mean values with an approximation of the dispersion offers
better performance in this case, which can be surprising, since having an extra calculation for the dispersion
adds a slight overhead during aggregation. On a larger scale, however, the best performance results are
given by the minimum approach variant with a speedup of 6X, outperforming other ZOOM variants, which
obtain a speedup of approximately 2.69X.

Table 2: Execution time for each variant and for each configuration, wall clock time (s) measured.

Variant Smaller scale Larger scale
Execution time (s) Std. dev. Execution time (s) Std. dev.

Micro 15.8286 0.217334535 129.4378 10.77029241
Min 11.75244444 1.477378092 32.06522222 6.331938976
Mean 13.5938 0.488359192 48.5176 2.904819926
Mean + std 9.845 0.380067099 47.7462 15.27419781
Puppeteer 14.0872 0.542739072 92.44133333 1.280585934

4 DISCUSSION

The traffic network example shows that adaptive abstraction can be used to speedup simulations in a more
or less effective way. The result set presented in the previous section suggests that the best trade-off
between performance and result accuracy is either given by a conservative approach such as PUPPETEER
or by a destructive approach such as ZOOM with aggregation rules that closely match the domain-specific
properties of the model (i.e. the minimum variant). In our case, the former has closer results to the original
model while the latter has more distant results, but is significantly faster. The domain-specific knowledge
encoded to express when and how to switch between abstractions is crucial. Appropriate choices to choose
what to keep or re-construct during aggregation and disaggregation have to be made to reduce errors.

An open research question is about expressing the tolerance over errors with regard to certain value
properties of the system. This would allow the definition of a set of properties of interest that should be
satisfied at all times regardless of the abstractions that are switched to. Explicitly bounding tolerance is
a way to allow relative errors while considering the results to be correct with respect to the properties of
interest. Such an approach would allow a particular abstraction to be considered substitutable over a more
detailed model.
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Another area of research is related to multi-formalism adaptive abstraction. To our knowledge, previous
works only focused on adaptivity over the same formalism, as we did in this paper. However, the most
appropriate formalism for a particular abstraction may be different from the formalism used to express
another. If we consider the traffic model example, a dense road segment where a large traffic jam occurs,
with a very low car flow, can be a condition to switch to a queuing model of the road segment. Such an
approach requires a general framework for monitoring and adapting the network of models, and can be
integrated into a multi-paradigm tool or defined as an external process.

5 CONCLUSION

In this paper, several adaptive techniques allowing to switch between different model abstractions during
simulation are compared. Particularly, we focus on agent-based simulation (ABS), which often requires
important computational needs and exhibits emerging properties. On one hand, this work is an opportunity
to give an overview of existing adaptive abstraction techniques in agent-based models. On another hand, it
is an opportunity to compare existing approaches and to study their respective impact on results in terms
of errors and performances, to find the best trade-off. The different techniques to monitor and detect
specific temporal sequences used to recognize emergent properties, to perform aggregation, as well as
disaggregation and how to represent abstractions is discussed. A comparative study based on a traffic
modelling example first describes the model as well as different adaptive abstraction variants. Performance
results are compared to several outputs of the model, which suggest the best trade-off is provided by variants
where the associated aggregation function either keeps all individual states or better grasp domain-specific
properties of the model. Finally, we discuss open research challenges for a general modelling and simulation
adaptive abstraction framework to be defined.

As future work, we will attempt to introduce a modelling and simulation framework for switching
between abstractions which address two main concerns: (1) formalize the notion of substitutability between
abstractions through the explicit modelling of properties of interest and (2), allowing heterogeneous models
to be switched from one formalism to another.
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