Proceedings of the 2019 Winter Simulation Conference
N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds.

INVESTIGATION OF VERSATILE DATATYPES FOR REPRESENTING
TIME IN DISCRETE EVENT SIMULATION

Damian Vicino
Gabriel A. Wainer
Guillermo G. Trabes

Department of Systems and Computer
Engineering, Carleton University
1125 Colonel By Dr.

Ottawa, ON K1S 5B6, CANADA

ABSTRACT

Discrete-Event Simulation (DES) is a technique in which the simulation engine plays a history following a
chronology of events in which the processing of each event takes place at discrete points of a continuous
timeline. The simulator must interact actively with time variables for reproducing the chronology of events
over positive real numbers, which is usually represented by approximated datatypes as floating-point. Nev-
ertheless, the approximation made by commonly used datatypes in simulations can affect the timeline, pre-
venting the generation of correct results. To overcome this problem, we present two new versatile datatypes
to represent time variables in DES. These new datatypes provide a wider range of numbers reducing ap-
proximation errors, and if an error occurs, the simulation user is notified. To test our datatypes, we perform
an empirical evaluation in order to compare their performance.

1 INTRODUCTION

Discrete-Event Simulation (DES) is a technique in which a simulation engine plays a history following a
chronology of events. The technique is called “discrete-event” because the processing of each event of the
chronology takes place at discrete points of the timeline. The events in the chronology are not needed to
align to any clock; they could be placed freely over a continuous timeline, usually represented by R+.

When implementing computer simulators, we need datatypes to represent time and its operators. In the
most general case, time variables need representing arbitrary numbers in R+. The most common approach
is to choose a standard fixed-length approximated datatype such as integer or floating-point numbers.

Fixed-length approximations are adequate (and are widely adopted) for modeling and simulation
(M&S) of Continuous Systems, as these methods are based on approximated results obtained for approxi-
mated input values, using approximated operations. Furthermore, the errors introduced by such approxima-
tions can be bounded (and its propagation constrained) following well-established concepts and practices
from Calculus and Numerical Methods, for instance using min-max in a restricted domain (providing an
interval of possible results by bounding the simulation error, using derivatives and other Calculus concepts).

In the case of DES, approximating an input can adversely affect the behavior of the model, making its
trajectory diverge from that point forward. For example, an approximation could cause a permutation in the
order of two events in the timeline. As we are going to show in Section 2, DES states are products of their
histories; a change in their histories potentially leads to different events and eventually on errors in the
results of the simulation. The datatypes adopted by most simulators, such as floating-point datatypes, ap-
proximate the numbers and are silent about the consequences the approximations can have in the result of
the simulation.

978-1-7281-3283-9/19/$31.00 ©2019 IEEE 2701

Vicino, Wainer, and Trabes

In this research we present new datatypes to solve the issues mentioned. The datatypes are suitable to
represent rational numbers and allow to replace floating-point or other basic datatypes. Even though the
datatypes can be used on general M&S models, in this work we will focus on the time requirements and
operations used by the DEVS model.

The standard way to represent the measure of a time lapse is the product between its magnitude, a time
unit, and a scale-factor for the unit. The datatypes proposed in this work can represent multiple scale-factors,
this way the datatypes are able to represent a wider range of numbers according to the models’ requirements.
This approach over the DEVS model has the characteristic that the time representation can be different on
different atomic models. To provide a uniform time representation on the models, we propose a novel ap-
proach to find a common scale-factor between different number representation. Four different mechanisms
to obtain a common scale-factor in coupled models are presented and evaluated. We call this search of a
common scale-factor for interoperation an “agreement”.

With these ideas in mind we propose: first, the datatype called Rational-Scaled Floating Point (RSFP),
which provides a correct representation for all the values that can be represented with existing datatypes.
Next, we present a second datatype, called Multi-Base Floating Point (MBFP) covers a different set of
numbers and it has a more compact representation. The main advantages of our datatypes are two, first their
ability to adjust their representation to cover a wider range of numbers, minimizing the known errors in
time representation, and second, their ability to warn if any number representation issues arise, this way the
user can know if the simulation gave a correct result. We also present a performance comparison using a
Discrete-Event simulator based on the DEVS formalism and the DEVStone benchmark. The results ob-
tained show how these new datatypes can even perform better than existing datatypes adding an accurate
time representation.

2 RELATED WORK

Discrete-Event Simulation (DES) is a technique in which the simulation engine plays a history following a
chronology of events (Wainer 2009; Zeigler et al. 2000). The technique is called “discrete-event” because
the processing of each event of the chronology takes place at discrete points of the timeline. The virtual
time of the simulation does not need any synchronization with real time. This allows to predict future phe-
nomena or study complex process happening in a short time.

In the earlier days of DES, multiple M&S languages were developed, such as SIMULA (Dahl and
Nygaard 1966), although according to (Nance 1981) most of these languages lacked formal soundness. The
earliest approaches for formalizing DES added time semantics to well-known static modeling approaches,
including well-known methods such as Timed-Automata (Alur and Dill 1994), and Generalized Semi-Mar-
kovian Processes (Glynn 1989). Other formalisms focused on concurrency problems that emerged at the
time, i.e. Petri-nets (Peterson 1981), Calculus of Communicating Systems (CCS) (Milner 1982) and Com-
municating Sequential Processes (CSP) (Hoare 1978). We are interested in formal methods, and we will
use DEVS (Zeigler et al. 2000) to conduct our research. DEVS provides a theoretical framework to think
about Modeling using a hierarchical, modular approach. This formalism is proven universal for DES mod-
eling, meaning that any model described by other DES formalism has an equivalent model in DEVS. Other
characteristic of DEVS is the clear separation between model and simulation: models are described using
a formal notation, and simulation algorithms are provided for running any model.

In DES, the most commonly used datatypes for representing time include floating-point, integers, fixed
point, rational, and intervals between rational numbers. These datatypes are conveniently implemented in
processors, or they are easily implementable combining native ones. Here, we focus on simulations that
represent time as a continuous timeline, defined by R+. The most common datatype to represent this set of
numbers is floating point. Adopted by many simulators, this leads to variants due to the selection of different
precision levels. For example, infinity can be mapped onto a reserved value, or an additional variable (e.g.,
a Boolean) can be used to handle the special case of infinity, in a structure or wrapper datatype.

2702

Vicino, Wainer, and Trabes

The floating-point datatype was engineered to represent an approximate Real number and to support a
wide range of values. The basic structure is the use of a fixed length mantissa and a fixed length exponent.
The main strengths of using floating-point include:

Compact representation, usually between 32 and 128 bits;

Implementation in almost every processor;

A large spectrum between the maximum and minimum number represented;
Internal representation for infinities;

Widely used standards make the simulator code portable;

A mechanics of its arithmetic approximations that has been studied in detail.

On the other hand, floating-point has well known limitations (Goldberg 1991) like rounding errors,
where operations (including assignment) may round the values; cancellation issues, portability (the same
operation may be implemented differently in different CPUs or languages, providing different results),
rounding modes, and flags/exceptions. Likewise, associativity (floating-point arithmetic is not associative,
but usually used as if it was) and unexpected results for special cases: e.g. in IEEE-754, an addition overflow
will result in an infinite value. These limitations are often considered an acceptable trade-off in some areas,
due to their intuitive use and properties guaranteeing the errors of the result obtained could be bounded
enough to produce the answers needed. In the context of DES this kind of errors can result in representation
errors.

In the most generic DES formalisms, the models’ domain of the time variables is R+. This results in a
quantization problem at the time of implementing the model in computers. Depending on the datatype cho-
sen for implementation, different approximations or operation restrictions may be observed.

The most common errors in DES timelines are time shifting errors (Vicino et al. 2014). These are direct
consequence of approximating the time values, reproducing events in the simulator slightly earlier or later
than formally defined, but always maintaining the partial order of the events in the chronology. Time shift-
ing errors usually have a minor impact or no impact at all on the simulation execution. For instance, in the
case of normalized half-precision floating-point (16 bits) described by the IEEE-754 standard, we have a
mantissa of 10 bits (plus an implicit bit in 1), an exponent of 5 bits, and a bit for the sign of the number. A
number is read as sign - 2“7 - mantissa. For example the numbers 2.0039062 and 3.9980469 are repre-
sented, respectively, as: 0 10000 0000000010 = 1 x 2'67*% X 1.0000000010;, = 2.0039062 and

sign exponent mantissa

0 10000 1111111111 =1 x 2715 x 1,1111111111,;, = 3.9980469. But 2.0039062+3.9980469=6.0019531,

-
sign exponent mantissa

and to represent 6.0019531 accurately we need a mantissa with more than 10 bits. The result obtained is 6,

represented as 0 10001 1000000000 = 1 x 2'775 x 1.100000000,;, = 6. In logical time formalisms where
sign exponent mantissa

only the logical order of events is considered to decide the next state (i.e. Petri Nets), this is not a problem.

Nevertheless, this is a problem for timed formalisms like DEVS where it is legal to use the time elapsed

since last event to define the new state, and time shifting errors may be enough to make the resulting tra-

jectories diverge.

The second problem in time representation is the event reordering, in this case, the approximation leads
to a different order of events in the timeline than the one expected using exact arithmetic on Real numbers.
Here, the list of events on the timeline is permuted and the partial order of events is erroneous. In some
cases, the causality chain breaks, and the resulting trajectory diverges arbitrarily from the expected one,
since the following events in the chain are not necessarily related to those expected. Sometimes, an event
reordering error is the result of accumulating multiple time shifting errors.

Finally, another known representation problem in time for M&S is the Zeno conditions, which occur
when the definition of instantaneous or close to instantaneous actions are allowed (Lee 2014): it is possible
to have infinite actions in a finite period. The distance between two events in the timeline can be defined

2703

Vicino, Wainer, and Trabes

as any Real number, particularly those very close to zero. If the values represented are small enough, when
added to the current time, they will not produce any change. This behavior can be reproduced indefinitely
making the system stale. Systems producing this behavior were studied in concurrent systems (Lee 2014;
Manna and Pnueli 1992). In simulation formalisms like DEVS, legitimate models never reproduce Zeno
behavior (Zeigler et al. 2000). Once models’ legitimacy is formally proven, the placement of events in the
timeline is assumed exact. A model theoretically safe may still be unsafe in practice; a simulator using
fixed-size approximated datatypes recreates the conditions for it. For example, with half-precision floating-
point, adding the number 0 01111 0000000000 = 1 x 215715 x 1.0000000000,;, =1 to the number

sign exponent mantissa

0 11011 0000000000 = 1 x 227~*% x 1.0000000000,;, = 22 = 4096 results in 4096, but the correct arithmetic

sign exponent mantissa

result is 4097. Here, the result is approximated because 4097 is not that can be represented in this datatype.
If this addition was to represent the time-advance of the simulation, we could reach a Zeno condition. It is
important to emphasize that the Zeno problem we will focus in this work is the one that can arise in the
time advance computation of the simulation in DEVS models. We will not focus on the Zeno problems on
the models’ internal representation, as we will assume the model is correct. The Zeno problem can easily
occur in simulators using floating-point variables for representing a global clock, a common design choice
in many implementations; in this case, if we simulate a metronome (a device repeatedly ticking after fixed
time intervals), after enough simulation time, the accumulation in the variable renders the subsequent ad-
ditions irrelevant (being too small for affecting the mantissa).

Reordering errors and Zeno problem errors are practically impossible to predict. Moreover, they may
occur in irregular frequency patterns, which, in the worst case, will be undetected during verification. This
was the case of the popular simulators NS-3, and OMNeT++. In (Lacage, 2010) a case was reported for
NS-3 where different trajectories were obtained when using different processors to run the same simulation,
due to the differences in the floating-point arithmetic implementation of each processor, including follow-
ing different standards or differences in the rounding policies implemented. Having different implementa-
tions produce different approximations. A similar case was presented in (Varga and Horning 2008) about
OMNeT++, the authors stated that “well-known precision problems with floating-point calculations, how-
ever, have caused problems in simulations from time to time”. Neither NS-3 nor OMNeT++ investigated
the problem further.

In DES, the state of the simulation can be thought as a function of its history, producing a causal relation
between them. When an event in the history is approximated, the evolution of the simulation may diverge
from the expected one and produce an incorrect sequence of states. When this happens, we say that the
causality chain was broken. Current simulator implementations are generally silent about these errors, be-
cause usually it is impossible to detect them properly using their time datatypes. The floating-point
datatypes native in most programming languages do not include any reporting of errors.

Some of the authors have done previous research in this topic. On (Vicino 2014) a preliminary version
of the RSFP datatype was introduced. More recently on (Vicino 2016) a new datatype was presented to
represent irrational numbers. In this paper we extend the previous works by proposing more flexible repre-
sentations for rational numbers.

3 DATATYPES FOR TIME

In this section, we present new versatile datatypes for DES. We will make assumptions based in our use of
the datatypes for DEVS simulators, but the concepts can be easily applied to any other DES.

The standard way to represent the measure of a time lapse is the product between its magnitude, a time
unit, and a scale-factor for the unit. For example, 3 ns have a magnitude of 3, a nano scale-factor (10°) and
a unit of seconds. Our proposed datatypes aim at representing magnitude and scale-factor better. As we
want to represent time, the unit is implicitly assumed to be Seconds, as proposed by Bureau International
de Poids et Mesures (BIPM) for International Standardization of the Time Unit. Adhering to the interna-
tional standard reduces the complexity of defining conversion functions and calling them at runtime.

2704

Vicino, Wainer, and Trabes

Our research aims to investigate more versatile datatypes that can change their representation to adapt
to the values that the model may need to represent time correctly. Nevertheless, in some cases our datatypes
won’t be able to correctly represent the time advance, and in this case an error will be provided to the user
to warn about the incorrect time representation occurred. With this information, the user can take actions
to solve the problem, such as rerun the simulation with a more suited datatype. In any case, as we will show,
our datatypes can represent any floating-point number and extend their range of numbers represented. This
way the errors discussed before are less likely to appear.

For the datatypes proposed we cover the following functional requirements:

e Supporting multiple scale-factors.

e Providing additive operation not leading to time shifting errors, event reordering errors, or Zeno
problems. - providing comparison operators (=, <).

o Including a range large enough to include every value that can be represented in floating-point and
rational variables, provide safe arithmetic such that any operation with unsafe result will produce
an error.

e Supporting seamlessly the coupling of models allowing the possibility of operating using multiple
different scale-factors in a single simulation.

In addition, we have the following non-functional requirements: keep a compact representation, en-
courage optimizing the addition and comparisons over any other; and delay operations deriving from the
composition of models as much as possible. These operations are known to be expensive. Based in these
requirements, we propose two datatypes, Rational-Scaled floating-point (RSFP) and Multi-Base floating-
point (MBFP), which are presented as replacement of floating-point and rational datatypes.

3.1 Rational Scaled Floating Point

The first datatype we propose is the Rational-Scaled floating-point (RSFP), a preliminary version of this
datatype was presented on (Vicino 2014). A RSFP number is defined by four integer variables, called quan-
tum,, quantumg, magnitude, and exponent. They are combined to form a number as described in Equation

(1).

uantum
q n . pexponent (1)

magnitude -
quantumg

The unit, second, is implicit when using it for time. The exponent and quantum variables take care of
scaling the units when needed. We call this group of variables the scale-factor. The quotient between quan-
tum, and quantumgwe call it the ratio. For example, a time lapse of 3 nanoseconds can be expressed in the
following way: 3 - el 275, where the magnitude is 3, the scale-factor is 10 and the unit is second. This
new datatype provides a correct representation for all the numbers implemented in existing simulators. For
example, a floating-point value can be converted to a RSFP setting both quantum variables to one matching
the exponents and assigning the mantissa to the magnitude. Depending on the unit associated to the original
value, some minor adjustments to the quantum and exponent variables may be needed. For example, the

binary floating-point 1E-3 %milliseconds can be defined in RSFP with quantum, = 1, quantums~= 1000,

. . . o 1 1
magnitude = 1, and exponent = -3. This equivalence derivation is as follows: 5 ms= 1:23 - ms= Tooo 2

s=1-—-23-5.In addition, RSFP can be used to represent and operate in a large range, covering all

previously available representation values (floating-point and rational) safely, and introducing new num-
bers not available on any of the previous datatypes. For example, 0.1-:2'* can be represented in RSFP, but

2705

Vicino, Wainer, and Trabes

it has infinite binary periodicity, and therefore it cannot be represented using binary floating-point
datatypes, and it is too large to be represented as rational.

3.2 Multi-Based Floating Point

The RSFP datatype, presented in the previous section, solves basic issues in current simulators; neverthe-
less, it has usability limitations. Our first concern is a representation restriction over large and small num-
bers. We can represent any (binary) floating-point number. Nevertheless, we cannot represent any large or
small number produced by multiplying only co-primes of 2. For example, the largest odd number being
represented must use exponent 0 (or its simplification against quantuma be 0), because using any larger
value makes the number even. Then, an accumulator repeatedly adding an odd number reaches a point
where next addition result is not that can be represented in RSFP. This is a consequence of not having
addition-closure in the datatype.

To solve these issues, we propose the Multi-Base floating-point datatype (MBFP) as an alternative to
RSFP. This datatype covers a different set of numbers, and it has a more compact representation. These
characteristics make MBFP more appropriate than RSFP in some simulation scenarios. In Equation (2) we
show how to interpret a number represented using MBFP.

mantissa - base®xponent ()

The MBFP datatype can be implemented using three integer variables representing base, mantissa, and
exponent. For example, 37° can be represented in MBFP setting mantissa to 1, base to 3, and exponent to -
70. Operations are simpler, because only the base needs agreements. A drawback here is the need to work
with non-binary powers, which are not optimized the same as powers of 2. However, never need to use
compute power operations using high exponents. We are limited to use exponents below the size of the
mantissa. Multiplying for a power of the base is seen as shifting digits (left or right) in the mantissa (con-
sidering the base in use).

This new datatype also provides a correct representation for all those numbers represented in current
datatypes for DES. For converting an integer to MBFP, we set the integer value in the mantissa. If the
integer was representing seconds, we set the exponent to 0, and the base to 2. Otherwise, we need to adjust
the unit. For example, for milliseconds, we set base to 10, and exponent to -3. Every integer with equal or
smaller size than the mantissa can be represented using this conversion. Conversion from floating-point is
also simple. We set the base to 2 and copy the exponent and mantissa. We need to add the implicit 1 when
writing the MBFP mantissa. An example of a half-precision floating-point converted to MBFP is

9, 10001 1100100000 = 1.1100100000,;, X 217715 = 1.78125 x4 =7.12 =275 x 57 x 22 =57x 273 = MBFP: <

sign exponent mantissa

57 , 2 ,z3 > Conversion from Rational can be done by setting the exponent to -1, the denominator
mantissa base exponent
as the base and the numerator as the mantissa. Conversion from and to RSFP is not always possible, even
assuming both use same integer size for internal variables. An example of a valid RSFP conversion to
MBFP is RSFP: < 3 , 55 , 1000 , 5 > — 220y 25-_2 %1000 x25=3000x 45x 1075 =

o 2 — =~ 5 3125
quantum, quantumg magnitude exponent

3072000 x 107° — MBFP: < 3072 , 10 ,-2 >. If the RSFP converted has a large exponent, the denom-

mantissa base exponent

inator cannot be defined as a base with a negative exponent, making it impossible to convert to MBFP if
quantumg is not zero. An example of RSFP that cannot be converted to MBFP is RSFP: <

1 . .
i, 5 , 1 , 220 > =x1x 21048576 = 51 21048576 _, MBFP:?. In this example, if we set
R e ad N
quantum, quantumg magnitude exponent

the base to 5 and the exponent to -1, the product of the magnitude by the power does not fit in the mantissa,
and if we set the base to 2, we are not allowed to set a denominator. Finally, some numbers represented in

2706

Vicino, Wainer, and Trabes

MBFP, as 377°, cannot be converted to RSFP. This shows that MBFP and RSFP representation domains
overlap, but they are not equal. In different application domains we may find a better fit for each of them.

33 Balancing the Representation

An important characteristic of our proposed datatypes is that they have redundant values, like in the rational
representation. We can exploit this redundancy to work around operation overflows of any component of
the datatype. For example, to represent a second on RSFP, we can doitas: 1 - % 20.5=2" % 20.5=1" %
.olg,

For the RSFP datatype, if an overflow on quantum, occurs, we balance with quantumg. If simplifying
is not enough, we can transfer weight to the magnitude, dividing quantum, by a divisor and multiply the
magnitude by the same divisor. Another alternative, if the binary representation ends in 0, magnitude digits
can be shifted, and the exponent adjusted to compensate. For example, using 32-bit integers, if the result of
an operation produces <2%, 8, 1, 4 >, we cannot fit the value of quantum,. Instead, we can increment the
exponent to 10 and set quantum, to 2*” and it fits. Or we can simplify quantum, against quantum,, setting
quantum, to 2°° and quantum, to 2°. Or we can increment the magnitude, for instance to 16, and reduce
quantum, to 2%°. Prioritizing any of these tactics over others is an implementation detail. For overflow on
quantumy, simplification against quantum,, magnitude, or exponent can be used. We can simplify quantumq
against the magnitude. For example, using 32-bit integers, if the result of an operation produces <8, 2*3, 4,
0>, we cannot fit the value of quantum, in its variable. Instead, we can decrement the exponent to -10 and
set quantum, to 2%°. Or, we can simplify quantum, against quantum, setting quantum, to 1 and quantum,
to 2%, Or, we can simplify quantum, against the magnitude, setting magnitude to 1 and quantum, to 23!,
Prioritizing any of these tactics over others is an implementation detail. For an overflow on the magnitude,
we can simplify it against quantum,. Or, we can transfer some weight to quantum,. In some cases, we can
shift digits and adjust the exponent. The options for quantum, and magnitude are similar, since numerically
permuting quantum, and magnitude have the same meaning. The difference between these variables is the
intended use, which impacts in the design of the operations. For example, using 32-bit integers, if the result
of an operation produces a quantum, of 1, a quantumg of 8, a magnitude of 2%, and an exponent of 4, we
cannot fit the value of magnitude in its variable. We can increment the exponent to 10 and set the magnitude
to 2%7. We can simplify against quantumg, setting magnitude to 2°° and quantumg to 64; or we can increment
the quantum, to some value as 16 and reduce the same factor from magnitude setting it to 2%°. All these
manipulations of internal representation should be delayed until they are needed to keep complexity low.
Running a simplification needs computing expensive algorithms to run as Greater Common Divisor (GCD)
and Least Common Multiple (LCM).

A similar analysis can be done for the MBFP datatype, where the any overflow over the mantissa, base
or exponent can be handled adjusting the parameters.

34 Agreeing on a Scale-Factor for Representation

Our proposed datatypes can adapt the representation to cover different sets of numbers needed by the mod-
els. This approach has the drawback that the representation can be different on DEVS atomic models that
must interact. For the design of our datatypes, we will set every time advance in a model with an identical
scale-factor. This assumption is a relaxed version of the one made by most current simulators, in which
every model normally uses the same time unit and scale-factor. Under our assumption, we must find a scale-
factor value for all the coupled models connecting atomic components. We call this search of a common
scale-factor for interoperation an “agreement”. Having mechanisms to discover a common scale-factor for
a coupled model, allows us to iterate and find a common scale-factor for the simulation. This globally
common scale-factor allow us to reduce the complexity of our simulation.

On the RSFP datatype for finding an agreement between two numbers A and B, and agreement on the
ratio and exponent must be found. To achieve this, first a common denominator is found with the LCM of

2707

Vicino, Wainer, and Trabes

the quantumg values from A and B. The exponent is the minimal between A and B, then the quantum, and
magnitude should be adjusted. An example of an agreement for addition between two RSFP numbers is

showed next. 4:< 3 , 5 , 1 , 5 >, B< 5 , 10 , 2 , 6 >,
Lo Lo - - L N - Rl
quantum, quantumg magnitude exponent quantum, quantumg magnitude exponent
LCM (5,10) =10 , min(5,6) =5 , After Adjustment: A:< & , lg , é, , é > , B:<
quantum, quantumg magnitude exponent

1 , 10 , 20 , 5 >, Result: A+ B =< 1 , 10 , 26 , 5 >,

o N e b L A E -
quantum, quantumg magnitude exponent quantum, quantum, magnitude exponent

On the MBFP datatype the rule for agreement between two numbers A and B is the following: the
common base is the LCM of the bases of A and B, the exponent is the minimal exponent between A and B,
and the mantissa needs to be adjusted for compensation shifting digits. Next, we show an example of an
agreement for addition between two MBFP.

A< 2,3 =2 > B:< 4 ,4 2 > LCM (34) =12 , min(-22)=-2
mantissa base exponent mantissa base exponent
After adjustment: 32 x 1272 4+ 11520 x 1272 = 11552 x 1272 Result:< 11520, 12, -2 >.
—— '
A B Result mantissa base exponent

To reach a globally common scale-factor agreement on a DEVS model several approaches can be im-
plemented. We propose four approaches the two datatypes proposed: static, dynamic-initialization, local,
and global.

In the static approaches, called RSFP-static and MBFP-static, the modeler needs to declare the scale-
factor in advance for each atomic model, and then a preprocessor or compiler computes the common scale-
factor. After finding it, every value in the models is adjusted. Before the simulation starts, we define a
variable for each scale-factor, and we call the establish-static-scale-factor function based on template pa-
rameters. This approach can be implemented only in languages that allow processing operations at compile
time, like C++.

In the dynamic-initialization approach, called RSFP-init and MBFP-init, each variable internally keeps
a scale-factor. We must declare at least one variable of each scale-factor to be used. Each variable is regis-
tered in a global queue. After declaring all the scale-factors, and before the simulation starts, an agreement
is negotiated, and every variable in the queue is adjusted. Like the static approach, it is possible to relax our
assumption of single scale-factor per model as far as every scale-factor is declared before the simulation
starts. Like in the static approach, we still need to declare scale-factors in advance, and there is no straight-
forward way to prevent the use of balancing the representation, adding overhead. Unlike the static approach,
it can be implemented in languages like Python or PHP, which do not support the evaluation of expressions
at compile time.

In the local approaches, called RSFP-local and MBFP-local, we find agreements between parameters
of binary operations. A global agreement may never be reached, but that does not affect the results of the
simulation. Interaction between models is the driving force of the propagation. Thus, models with low level
or no interaction may create clusters of scale-factors (i.e., a group of variables sharing a common scale-
factor). As we use a single scale-factor per model, after the models interact with them each will reach a
stable factor. We do not need casting operations or calling to a common established scale-factor, as each
variable has its own. For binary operations, the scale-factors of operands are checked and adjusted to a
common scale-factor if needed.

Finally, in the global approaches, called RSFP-global and MBFP-global, a globally accessible scale-
factor variable is defined. For each operation, each operand scale-factor is compared with the global. In
case it does not match the global, an agreement is searched and registered. The agreement eventually
reaches a global consensus. In many cases, the global approach converges faster than the local one, but it
has limitations for concurrency. Using global variables may not be suitable for distributed simulators, and
it is a bottleneck in multi-threading. The global approach gets to a scale-factor representation agreement
faster because it only needs setting each model scale-factor representation to the global once. After this, to
propagate the scale-factor, only one operation with each variable is needed. In contrast, in the local approach

2708

Vicino, Wainer, and Trabes

the agreement is driven by the operations, and a chain of operations between local agreements is needed to
obtain higher level agreements and a chain of binary operations involving every variable is needed for
propagating the representation.

For the local and global approaches, we do not need to declare scale-factors in advance. Their perfor-
mance penalty is only significant until the scale-factors of the simulation stabilizes. In the worst-case sce-
nario, every operation produces a penalty for computing Greatest Common Divisor (GCD) and Lowest
Common Multiple (LCM) during the agreement. However, under our assumption of a single scale-factor
per model, finding agreements is easier, because each GCD and LCM work as accumulators of information.
If we find an agreement ¢ between A and B, the agreements between ¢ and A, ¢ and B, are again c.

3.5 Operations

The abstract DEVS simulator presented in (Zeigler et al, 2000), which we use, only operate on time varia-
bles through four operations: addition, subtraction, equality comparison, and “lower than” comparison:
comparison for deciding which transition to execute next, addition for advancing the chronology, and sub-
traction for obtaining the elapsed time.

To compare if two RSFP datatype numbers are equal, checking the variables is enough to provide a
positive answer. If any of the variables differ, we cannot decide, then we produce an agreement for the
scale-factor and compare their magnitudes. If there is no agreement, we know that the numbers are not
equal. Else, we compare their magnitudes. In contrast, to compare if two MBFP datatypes are equal, after
finding an agreement for the bases, the exponent of both operands must be matched. The difference between
exponents is compensated by shifting digits in the mantissa. Then the mantissas can be compared to obtain
an answer.

On RSFP when comparing by lower-than, several things need to be checked.

o Check if the operands are equal. If they are, we can give a negative answer.

If not, one of them is lower than the other. If an agreement can be found, we compare the magni-
tudes.

e If an agreement cannot be found (i.e., the difference between two operands is large), we can still
compute the comparison by lower than.

e We check if the signs of both numbers match; otherwise the negative is lower than the positive.

e We search for a partial agreement by adjusting the operands to have the same quantum,, and the
closest possible exponents without rounding. Having a common quantum,, we can compare num-
bers looking at their exponents’ difference. If the difference between their exponents is larger than
two times the size of the integers used to represent the internal values, then the large exponent
correspond to larger value in positive numbers, and lower exponent corresponds to larger value in
negative numbers.

e Ifnot, we can use a temporary larger datatype for comparing the magnitude, quantum, and expo-
nents. In this case, a common scale-factor is not produced, and the exponent difference is not
enough to decide using the common quantum,. Then, we must compare quantum, and magnitude
values too. On MBFP when compare by lower-than, the algorithm is like the one for comparison,
given than an agreement for the base was made, the exponents of both operands must be matched.
After these steps comparing the mantissas will give a result.

Finally, for RSFP, the addition operation usually adds the magnitudes of numbers in agreement. A
special case is overflow. In this case we can return a result that is not represented in the same scale-factor
or raise an error. The introduction of a new scale-factor may cascade in a global readjustment of variables.
In case the scale-factor of the operands have different exponent, we first check their difference. If the dif-
ference is larger than two times the bits of the magnitude, we raise an error. Otherwise, we use a temporary
variable to compute the addition using the lower exponent in both variables and balance the result. If the

2709

Vicino, Wainer, and Trabes

result does not fit the original variable after balancing, an error is raised. On MBFP the addition can be
made between numbers in agreement by matching their exponents. The difference between exponents is
compensated by shifting digits in the mantissa. If we must shift more digits than the size of the mantissa,
the mantissa losses values. In this case a balance on the representation can be made and if it is not possible
an error is notified.

3.6 Handling Errors

Comparison operators always return a result, but the addition may throw an error. This occurs when we fail
to reach an agreement on the result’s scale-factor, because our datatype does not have addition-closure.
Nevertheless, this problem happens less in RSFP and MBFP than in floating-point, because the timeline
represented by our datatypes is denser, and balancing can prevent it. If the issue arises, we detect and notify
the error, as opposed to floating-point that silently approximates and continues.

In the case an error is notified, we have options to complete the simulation. First, we can increase the
representation of our datatypes by using a larger datatype on any of the parameters. If a proper representa-
tion cannot be estimated, or the programming language does not allow it, a dynamic arbitrary length can be
used, i.e. the BigInt provided by the Boost multi-precision library. We do not use this kind of datatype by
default because of their low performance. A second alternative would be to introduce approximation algo-
rithms to run when the error is detected. This would allow the simulation to incorrectly advance the trajec-
tory, but it should still mark in the timeline where and what errors were introduced for after-run analysis.

4 EXPERIMENTAL EVALUATION AND RESULTS

Predicting when representation errors will appear is not an easy task, and we propose to study analytically
and empirically this problem as future work. In this paper we will focus on an empirical evaluation of how
our datatypes perform. The main drawback of our datatypes is that a more complex representation can lead
to a more expensive computation time to execute a model. Also, the agreement for the scale-factor needed
by our datatypes can create an additional overhead.

To evaluate the performance of our proposed datatypes empirically, we implemented every proposed
datatype in C++14 and compared them against the native datatype double. We used the DEV Stone synthetic
benchmark (Wainer et al. 2011) implemented for a customized version of aDEVS-2.8. DEVStone helps
automating the evaluation of DEVS based simulators, and it can be adapted to other DES engines. It gen-
erates a suite of models of different sizes, complexities and behaviors like diverse applications that exist in
the real world. Different types of models with different internal and external structure can be used. For this
work we will use the following ones:

e LI: Models with a low level of interconnections for each coupled model. Each coupled component
has only one input and one output port. The input port is connected to each component but only
one component produced an output through the output port.

e HI: Models with a high level of input couplings. HI models have the same number of atomic com-
ponents with more interconnections: each atomic component (a) connects its output port to the
input port of the (a+1)th component.

All experiments were compiled using clang 4.1 over the x86-64 version of FreeBSD 10.1-18 operating
system. The compiler was used with level 2 optimization. To compare the different implementations, the
four scale-factor agreement techniques discussed in Section 3.1.1 were used on the experiments (static, init,
local and global) for the RSFP and for the MBFP datatypes.

Table 1 shows the results obtained for each datatype in four Low-level of Interconnections (LI) config-
uration experiments, and in four High-level of Input coupling (HI) configuration experiments. To simplify
comparisons, the overhead is measured relatively to the one obtained for double. In these experiments, the

2710

Vicino, Wainer, and Trabes

period of time-advance used by the DEV Stone models was handpicked to produce correct results using any
datatypes being compared. Every experiment was executed 20 times, with no significant variance in the
results. In Table 2, we show the theoretical number of transitions being executed according to the DEV Stone
formulas to show how our experimentation was performed over a representative set of different models but
with a similar amount of internal and external transitions.

From the obtained results, we see RSFP-static and MBFP-local are leading the performance compari-
son. And, they produce even better results on LI than HI. We attribute this to the fact that HI configurations
make more intensive use of comparison than arithmetic operations. The worst performance obtained in the
LI configurations is MBFP-static. This is attributed to power function used for adjusting the mantissa when
the exponents are different in the operands. This is not a problem for RSFP-static because it removes any
adjustment by fixing the scale-factor at compile time. The difference with others in the MBFP family is due
to our implementation using C++ templates preventing some optimization in the compiler. This is a point
that should be looked further to fully understand its implications.

Table 1: DEVStone comparing time datatypes in aDEVS.

LI
datatype width | depth | Overhead | width | depth | overhead | width | depth | overhead | width | depth | overhead
RSFP-static -12.35% -10.77 % -11.33% -7.48 %
RSFP-init 12.55% 12.98 % 19.40 % 17.25%
RSFP-global 19.56 % -19.56 % 19.56 % 19.56 %
RSFP-local -4.90 % -7.08 % -6.80 % -5.87%
double 51 10001 0.00% | 501 1001 0.00 % | 5001 101 0.00% | 50001 11 0.00 %
MBFP-static 37.99 % 73.23 % 81.39 % 78.97 %
MBFP-init 6.62 % 15.09 % 18.36 % 20.08 %
MBFP-global 3.95% 7.58 % 6.95 % 8.32%
MBFP-local -7.39 % -9.43 % -9.97 % -7.34 %
HI
datatype | width | depth | overhead | width | depth | overhead | width | depth | overhead | width | depth | overhead
RSFP static -27.89 % 2181 % -36.67 % -42.77 %
RSFP-init 11.28 % 31.28% -1.12% 12.71 %
RSFP-global -1.06 % 8.67 % -11.71 % -13.00 %
RSFP-local 2517 % -17.20 % -28.91 % -21.14 %
double 100 200 0.00% | 142 100 0.00% | 205 50 0.00% | 720 5 0.00 %
MBFP-static -16.29 % -10.82 % -28.42 % 6.15%
MBFP-init 311 % 424 % -18.54 % 23.50 %
MBFP-global -15.74 % -3.91% -16.01 % 16.35%
MBFP-local -30.61 % -17.89 % -34.46 % -40.47 %
Table 2: DEVStone theoretical transitions on experiments.
configuration | width | depth | #05, transitions | #0,, transitions | configuration | width | depth | #5,,transitions | #5,, transitions

51 10001 499999 499999 100 200 1004651 1004651

LI 501 1001 499999 499999 Hr 142 100 1005148 1005148

5001 101 499999 499999 205 50 1034636 1034636

50001 11 499999 499999 720 5 1038241 1038241

In both datatypes, RSFP and MBFP, the init and global implementations are doing worse than others
in performance. We attribute this to the loss of locality affecting the cache. We believe in the value of these
datatypes for context were CPU have lower sizes of cache.

5 CONCLUSIONS AND FUTURE WORK

In this work we presented the problems that arise in time representation in DES in current simulators. To
solve these problems two new datatypes were presented. We also presented four different mechanisms to
assure a globally common scale-factor on a DEVS model. We discussed these datatypes limitations and
presented an empirical evaluation of their performance using the DEVStone benchmark. The results ob-
tained from the empirical evaluation show how these new types can be used in simulations without creating

2711

Vicino, Wainer, and Trabes

significant overhead. As future work we propose to extend the work with mathematical analysis of the
datatypes and how they solve the representation problems and to evaluate these datatypes on different plat-
forms.

REFERENCES

Alur, R. and D. L. Dill. 1994. “A Theory of Timed Automata”. Theoretical Computer Science 126(2):183-235.

Bolduc, J.-S. and H. Vangheluwe. 2002. “The Modelling and Simulation Package pythonDEVS for Classical Hierarchical DEVS”.
MSDL Technical Report MSDL-TR-2001-01, McGill University, Montreal, QC, Canada.

Dahl, O.-J. and K. Nygaard. 1966. “SIMULA: An ALGOL-based Simulation Language”. Communications of ACM. 9(9):671-678.

Goldberg, D. 1991. “What Every Computer Scientist Should Know About Floating-point Arithmetic”. ACM Computing Surveys
23(1):5-48.

Glynn, P. W. 1989. “A GSMP Formalism for Discrete Event Systems”. Proceedings of the IEEE 77(1):14-23.

Himmelspach, J. and A. M. Uhrmacher. 2007. “Plug’N Simulate”. In ANNS '07: Proceedings of the 40th Annual Simulation
Symposium, edited by H. Karatza and T. F. Znati, 137-143, Washington, DC, USA: IEE Computer Society.

Hoare, C. A. R. 1978. “Communicating Sequential Processes”. Communications of ACM 21(8):666—677.

Hwang, M. H. 2007. “DEVS++: C++ Open Source Library of DEVS Formalism”. http://odevspp.sourceforge.net/, accessed 28™
June 2019.

Janousek, V. and E. Kironsky. 2006. “Exploratory Modeling with SmallDEVS”. In Proceedings of the 20" annual European
Simulations and Modelling Conference, edited by A. Nkesta, M. Paludetto and C. Bertelle, 122-126, Ghent, Belgium:
EUROSIS-ETL

Lacage, M. 2010. Experimentation Tools for Networking Research. Ph.D. thesis, Universite De Nice-Sophia Antipolis, France.

Lee, E. A. 2014. “Constructive Models of Discrete and Continuous Physical Phenomena”. Technical Report UCB/EECS-2014-135,
EECS Department, University of California, Berkeley.

Manna, Z. and A. Pnueli. 1992. The Temporal Logic of Reactive and Concurrent Systems. Berlin, Heidelberg: Springer-Verlag.

Milner, R. 1982. 4 Calculus of Communicating Systems. Berlin, Heidelberg: Springer-Verlag.

Nance, R. E. 1981. “The Time and State Relationships in Simulation Modeling”. Communications of ACM 24(4):173-179.

Peterson, J. L. 1981. Petri Net Theory and the Modeling of Systems. Prentice Hall Inc., Englewood Cliffs, New York, USA.

Varga, A. and R. Hornig. 2008. “An Overview of the OMNeT++ Simulation Environment”. In Proceedings of the Ist International
Conference on Simulation Tools and Techniques for Communications, Networks and Systems, edited by O. Dalle and G.
Wainer, Article 60, Brussels, Belgium: ICST.

Vicino, D., O. Dalle, and G. A. Wainer. 2014. “A Data Type for Discretized Time Representation in DEVS”. In Proceedings of
7th International ICST Conference on Simulation Tools and Techniques, edited by F. Barros, K. Perumalla and R. Ewald,
11-20, Brussels, Belgium: ICST.

Vicino, D., O. Dalle, and G. A. Wainer. 2016. “An Advanced Data Type with Irrational Numbers to Implement Time in DEVS
Simulators”. In Proceedings of TMS/DEVS Symposium on Theory of Modeling & Simulation, edited by F. Barros, X. Hu, H.
Prahofer and J. Denil, 164-171, Red Hook, NY, USA: Curran Associates Inc.

Wainer, G. A. 2009. Discrete-Event Modeling and Simulation: A Practitioner’s Approach. Boca Raton, FL, USA, CRC Press, Inc..

Wainer, G. A., E. Glinsky, and M. Gutierrez-Alcaraz. 2011. “Studying Performance of DEVS Modeling and Simulation
Environments Using the DEV Stone Benchmark”. Simulation, 87(7):555-580.

Zeigler, B. P., H. Prachofer, and T. Kim. 2000. Theory of Modeling and Simulation (2nd ed.). Orlando, FL, USA: Academic Press,
Inc.

Zeigler, B. P. and H. Sarjoughian. 2003. Introduction to DEVS Modeling and Simulation with Java: Developing Component-based
Simulation Models. Tempe, Arizona, USA: Arizona State University.

AUTHOR BIOGRAPHIES

DAMIAN VICINO has obtained a co-joint Ph.D. in Computer Science (Université de Nice-Sophia Antipolis) and Systems and
Computer Engineering (Carleton University). Currently, he is a Software Developer Engineer at Amazon working in Alexa
product. His email address is damianvicino@cmail.carleton.ca. Note: this research was done prior to joining Amazon.

GABRIEL WAINER is Professor at the Department of Systems and Computer Engineering at Carleton University. He is a
Fellow of the Society for Modeling and Simulation International (SCS). His email address is gwainer(@sce.carleton.ca.

GUILLERMO TRABES is a Ph.D. student in Electrical and Computer Engineering (Carleton University) and Computer Science
(Universidad Nacional de San Luis). His email address is guillermotrabes@sce.carleton.ca.

2712

http://odevspp.sourceforge.net/
mailto:damianvicino@cmail.carleton.ca
mailto:gwainer@sce.carleton.ca

