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ABSTRACT

This work is motivated by the need for the Australian Defence Force to produce the right number of trained
aircrew in the right place at the right time. It is critical to understand the impact of structural/resourcing
policies on the ability to maintain squadron capability, both for individual squadrons and jointly across the
Force. By combining techniques in experimental design, simulation, data analysis and optimization, we have
created an automated system to efficiently identify significant relationships between simulation parameters
and squadron capability, as well as propose optimal parameter ranges for each individual squadron. The
interplay of competing demands between squadrons was then analysed in the context of the entire Force and
the stability of these extrapolations over sampling noise was also evaluated. Finally, we present compact
summaries and visualisations of the most important insights about the most significant contributors to the
“health” of the whole system.

1 INTRODUCTION

A workforce supply strategy refers to the recruitment and training of new staff/students along with the
scheduling of their training to deliver required qualifications within a specified time-frame. When these
skill-sets are highly specialized, the cost and length of training is high and the infrastructure required is
limited. The task therefore becomes quite complex.

Optimal recruitment and workforce supply strategies have been studied for a number of decades using
various approaches including Linear Programming models (Azimi et al. 2013), Integer Linear Programming
(ILP) (Akinyele 2007) and Markov Decision Processes (Udom 2013). Previous research by the authors
utilized Stochastic search (Pike et al. 2018), ILP, and heuristic methods (Hill et al. 2018), modelling the
objective as satisfying a risk tolerance while minimizing recruitment. The common challenge to all these
solutions is the large number of variables and design points to consider.

In this work we consider the training of Australian Defence Force (ADF) pilots, observers and aircrew.
This problem domain has a number of unique features, one of which being the requirement that some
graduated students be posted as instructors, creating a feedback loop in the supply network. While external
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instructors are sometimes available, they are costly, and their exclusive use has other drawbacks. In general
the courses have limited places, student numbers are relatively small, and failure rates are high with much
variability. These features necessitate the development of new ways of understanding how to optimize the
training continuum.

Previous work by the authors focused on optimization strategies within a fixed configuration of the
training program, providing insights and solutions into recruitment numbers and risk incurred by each
squadron. However, the lack of variation in the resourcing parameters have meant that these insights are of
limited value. There is a broader need to understand the effects of different resourcing policies on squadron
risk by considering variations of such policies, and determine alternative resourcing parameters which may
help to alleviate or mitigate risk.

In the field of Operations Research (OR), simulation has traditionally been perceived as a “method
of last resort”, and regarded as intrinsically inferior to analytic modelling methods (Lucas et al. 2015).
However, simulation optimisation (SO), being a “black box” approach to simulation (that is, a paradigm
involving only the observations of inputs and outputs), allows for arbitrarily complex models without the
need to sacrifice model fidelity for the sake of analytic tractability. What makes this approach increasingly
accessible is the rapid increase in cheap, fast and parallelizable computing resources.

Hence, in recent years, the integration of techniques from SO and the statistical design of experiments
(DoE) has lead to the emergence of data farming (DF). In general, SO alone is lacking in techniques for
experimenting with large numbers of factors with complex effects on response variables, addressed by
invoking a statistically rigorous experimental design. Conversely, the traditional application of DoE has
been to create design matrices for experiments which may be expensive to run in terms of time and cost.
However, in simulation, it is typically straightforward to run a large number of simulations for arbitrary
design points with sufficient parallelization. Data farming is then considered the application of designed
experiments to simulation and the subsequent analysis of the individual and joint effects of factors on one
or more response variables of interest within the simulation. A terminology mapping between the two fields
is as follows, and hereafter the terminology from DoE is adopted for consistency with existing literature:

Simulation Design of Experiments
Simulation Parameter ↔ Factor

Scenario/Vignette ↔ Design point
Set of scenarios/vignettes ↔ Design matrix / experiment

Simulation run ↔ Observation/sample
Set of simulation runs ↔ Resultant dataset

Simulation variable ↔ Response variable

Data farming has been successfully used in defence applications such as homeland security (Nannini
and Wan 2011), NATO support (Horne and Seichter 2014), aircraft fleet management policies (Marlow, D.O.
and Sanchez, S.M. and Sanchez, P.J. 2015), risk readiness (Kang et al. 2006) and other areas. In the pursuit
of rigorous experimental designs for simulation, much work has been done by the SEED Center for Data
Farming at the US Naval Postgraduate School in the development of near optimal design matrices (Kleijnen
et al. 2005). When a large number of factors are involved, factorial designs are intractable. Factor screening
techniques such as Sequential Bifurcation (Cheng 1997), and derivative methods (Bettonvil and Kleijnen
1997; Sanchez et al. 2005; Shen et al. 2010) can help identify significant factors for a single response
variable, but lack natural extensions for dealing with multiple response variables. A Latin hypercube design
can be applied to a large number of factors and can facilitate analysis of effects on multiple response
variables. A desirable property of a design matrix is that the factors are orthogonal, and work has been done
to produce and publish spreadsheets with nearly orthogonal Latin hypercube designs (NOLH) (Cioppa and
Lucas 2007; Hernandez et al. 2012).
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To our knowledge our research represents the first application of these methods to workforce planning
and capability risk analysis. Unique challenges in this domain involve the need to consider factor effects on
the short, medium and long term, and the need to balance the needs of multiple squadrons, which require
recruits of different types from different paths with shared resources. We have therefore developed methods
to identify individual and joint effects on response variables, and techniques to highlight potential conflicts in
the joint solution. The application of these techniques is within an automated data analytics module intended
to be presented to a non-technical audience. Therefore, we describe automated techniques to produce insights
in textual and graphical form. Also, we favor statistical techniques which produce parsimonious models
to highlight the most significant relationships and extract results with practical significance.

2 AIRCREW TRAINING PIPELINE SIMULATION

The ADF provides training for various aviation-related personnel including aircrew, engineers and tech-
nicians. Recruits enter the training program through agencies such as Australia Defence Force Academy
(ADFA), the Royal Naval College (RNC) or via direct entry. Pilots undergo initial flight screening to assess
aptitude, and successful applicants officially enrol in the pilot training stream. Modelled at a high level,
each individual recruit passes through a sequence of schools and courses from their initial intake point,
and if successful, they reach eventual deployment in a squadron.

The ADF training pipelines are susceptible to a great deal of variability in student intakes, changing
policies and aircraft types. Within the pipeline, the pass rates for individual courses can be highly variable,
and attrition rates within the squadrons can be unpredictable, and influenced by external factors such as
industry recruitment. Taking into account the dependencies between the various stages of training and
critical resourcing issues, planning over an extended horizon becomes quite a challenging process requiring
a robust formulation capable of adapting to such constraints. Consequently, we model the ADF training
pipeline as a directed acyclic graph comprised of intake points, courses C, schools K and squadrons Q.
The arcs define the prerequisites and possible paths for individual recruit types R through the program (see
Figure 1). We assume that an unlimited number of recruits are available at the intake points at any time.
Each course c ∈C is repeated on a fixed set of sessions Ec per year, and each school k ∈ K requires certain
instructor types allocated to specific recruit types r, Ik,r ⊆ I, the set of instructor types. Each squadron
q ∈ Q has a set of recruit types r ∈ Rq ⊆ R.

Figure 1: A subset of the full training pipeline with intake points (Pool*), courses (C*) and squadrons
(SQN*). Arrows indicate possible training progressions with a different color for each trainee type.

Each recruit type r ∈ Rq in squadron q ∈ Q has a predefined target number Oq,r. Staying at or above
this target defines operational capability. These targets are fixed, and not varied in our analysis. Resource
policies are represented in the model as resource constraints and targets. In particular, each course session
e ∈ Ec has a maximum capacity Me, as well as individual capacities per recruit type Me,r. In addition, each
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school k maintains a target number of instructors of each instructor type i ∈ Ik for each recruit type r ∈ Rk
denoted Ik,i,r, which the simulation attempts to satisfy by drawing sufficiently experienced recruits from
squadrons. These instructors are removed from the squadrons and placed in schools for extended periods,
so although increasing instructor targets may facilitate a large number of recruits in the long term, it may
affect squadron capability in the short term due to the workforce shortfall.

There are two stochastic elements in the simulation. Firstly, the random pass rates for each course/session
are sampled from Beta-Binomial distributions. This distribution allows us to parameterize the mean and
variance, which was done in alignment with historical estimates. Secondly, the random attrition rates
are sampled from Poisson distributions. This allows us to model random attrition at each time-step in
accordance with a parameterized yearly average, which was similarly aligned with historical estimates.

The model was implemented in an agent based discrete event simulation (DES) where resourcing
policies were parameterized. The DES followed a heuristic optimization strategy which computes expected
demand on each node of the graph as projected over time, with the objective of minimizing recruitment while
satisfying a capability risk target for each squadron. This strategy determined the main DES control actions
including initial recruitment numbers at each time step and movements of recruits through the pipeline.
The details of this strategy are provided in (Hill et al. 2018) and are outside the scope of this paper. Instead,
this strategy was simply taken to be an element of the dynamics of the simulation. Importantly, within a
given simulation run, the resourcing policies were not varied or used as control actions. For the purposes
of this analysis we simulated with a 15 year horizon with monthly time-steps for a total of 180 discrete
time-steps, denoted T = {1, . . . ,180}.

3 EXPERIMENTAL FRAMEWORK AND DESIGN

The challenge in DoE is to develop efficient methods for selecting design points such that the insights
resulting from the subsequent data analysis can be maximized. Our aim is to identify the most significant
practical relationships between policy parameters and squadron capability, as well as form a suggestion
for alternative parameter values which improve results over the horizon. We have approached this from
the perspective of statistical experimental design by varying the parameters in a principled manner, then
analyzing their collective effects on squadron capability, which forms the set of response variables.

3.1 Experimental Factors and Design Matrix

As an exploratory tool, we do not require on the prior definition of particular factors and ranges. Instead,
we take all resourcing parameters related to course capacities and instructor targets as the set of design
factors resulting in a total of 164 integer valued factors, denoted by:

F = {F1, . . . ,F164} ≡ {Me, . . . ,Me,r, . . . ,Ik,i,r, . . .}

For each factor f ∈ F in the design matrix, it is necessary to define a plausible range of variation. In
this model, student numbers and course capacities are typically in the range of 0—50. While in general
these ranges can be specified manually, for exploratory purposes we have defined ranges of variation
automatically relative to the baseline value in simulation. The lower bound LB f is simply the default value
in configuration. Then, the upper bound is double this value, or this value increased by at least some
minimum constant δ :

UB f = max{2 ·LB f ,LB f +δ}

This upper bound is determined on the assumption that reasonable increases to resourcing parameters
will be up to double the current value, thereby ensuring that a reasonable range is explored in the experimental
design relative to the default value. However in practice these ranges could be specified manually based
on domain knowledge. A value of δ = 5 was used in our work so that larger ranges were explored for
parameters with small default values, i.e. where LB f ≤ 4. The primary purpose of this work is to identify
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which resource constraints need to be relaxed, so we only consider upwards variation of these factors.
However, with the alternative goal of identifying which resource targets could be reduced without adversely
effecting the operationality of the ADF, downwards variation could be accommodated as well.

It is desirable, in general, for the design factors of the design matrix to be uncorrelated (Hernandez et al.
2012) in the system’s output so that inadvertent correlation between factors do not unduly bias the results.
In space filling terminology, if two design factors are highly correlated, then the off-diagonal “corners” of
their parameter subspace are underrepresented by the design points, so results around those regions may
be less accurately reflected in the output dataset. For example, high correlation in values of two course
capacity parameters across the design points may stifle the discovery that only one of them needs relaxing
in order to resolve a training bottleneck.

Consequently we adapted a design matrix from the “NOB mixed design worksheet” as published on
the SEED Data Farming website (SEED 2019), which provides a NOLH with 512 design points D and up
to 300 factors of varying ranges. Although this worksheet is presented for manual construction of design
matrices, we automated this process by selecting columns corresponding to the ranges defined for each
design factor and shifting the values accordingly. Hence, the end users of this exploratory tool need not
be exposed to the technical details of the design matrix. The value of the factor f in the d’th design point
is denoted X (d)

f such that:

LB f ≤ X (d)
f ≤UB f d ∈ D, f ∈ F

The choice of replication number N per design point is important for ensuring the stability of the
results. For this analysis we consider an experimental design with N = 10 replications of each design point,
and the stability is evaluated and discussed in section 4.3.

3.2 Definition of Response Variables

The simulation environment models the number of people at each stage of the training program at each
time-step, including recruits in training, waiting, in squadrons and in a larger sustainment pool. After
running a number of simulations, the resultant dataset forms a multi-sample, multivariate time series of
non-negative integer valued variables. The ultimate goal is to maintain capability of each squadron over
the horizon and as such it is necessary to introduce additional variables which reflect the state of being at
or above capability. Therefore, in post-processing we computed binary variables C(d,i)

q,r,t for each squadron
q, recruit type r, and time step t, indicating whether the squadron was at or above operational target in the
i’th replication of design point d:

C(d,i)
q,r,t =

{
1 if Q(d,i)

q,r,t ≥Oq,r

0 otherwise
d ∈ D,1≤ i≤ R,q ∈ Q,r ∈ Rq, t ∈ T

where Q(d,i)
q,r,t is the corresponding number of recruits observed for the given indices.

The simulation is populated with a realistic initial state representing current enrolments, numbers in
squadrons and instructor levels. This initial state is shared among all simulation runs regardless of the
factor values defined in each design point. Early analysis of the simulation suggested that the system has
an initial “correction” period with respect to its initial state and takes a number of years initially to reach
some steady state. Initial exploratory work confirmed that some factors have different effects on some
responses in different periods. Therefore it is informative to break up the 15 year horizon into three periods:
years 1-5, years 6-10, and years 11-15. So additional variables for each squadron q, recruit type r and
period p ∈ {0,1,2} were computed by averaging the binary capability variables within each period across
all replications of each design point d:
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Y (d)
q,r,p =

1
N

1
τ

R

∑
i=1

τ(p+1)

∑
t=τ p+1

C(d,i)
q,r,t ,

where τ = 60 = 5×12 months is the number of discrete timesteps per period.
These aggregate “health” variables then represent the expected proportion of time the squadron is at

or above capability during each period, which are taken to be the response variables. The analysis task is
then defined as identifying relationships between the set of factors X... and the set of responses Y..., across
the design points d ∈ D:{

X (d)
i : 1≤ i≤ 164

}
∼
{

Y (d)
q,r,p : q ∈ Q,r ∈ Rq, p ∈ {0,1,2}

}
4 DATA ANALYSIS AND VISUALIZATION

Having established the experimental design and performed the required simulations, the next step is to
extract the most relevant insights from the dataset and present them efficiently in an interpretable manner.
The trade-off between the granularity of this information and the stability of the information over sampling
error must be considered and carefully controlled to establish confidence in the results. We consider the
analysis, the visualization and the evaluation of stability as follows.

4.1 Data Analysis

4.1.1 Discovering Pairwise Monotonic Relationships

A reasonable expectation in this exploratory analysis is that significant relationships between factors and
responses will be monotonic. For example, squadrons which are frequently below capability due to a
training bottleneck earlier in the pipeline will typically resolve once that resource constraint is relaxed
above a certain level. Conversely, squadrons which are typically maintaining capability may be adversely
affected if instructor targets are raised too high, since more recruits will be withdrawn from the squadrons
to meet those targets. To identify such relationships, we adopted Spearman’s rank correlation coefficient
(Pirie 1988), which computes the Pearson correlation coefficient of the ranks of the observations. This was
computed pairwise between all factors and responses yielding a matrix of point estimates of the degree of
monotonicity present in each factor/response relationship. This can be interpreted as a quantification of
factor significance with regard to statistical significance, and visualizations are explored in section 4.2.1.

4.1.2 Discovering Relationships of Practical Significance with Regression

In addition to the pairwise monotonicity measure, it is possible to identify relationships which are of
practical significance with the fitting of a multiple regression model. We modelled each response variable
separately using multiple regression, in each case including all factors as the predictor variables. Then, the
magnitude of model coefficients can be interpreted as quantifications of factor significance with respect
to each response. (In the fitting of these regression models, we note a natural advantage of the NOLH
approach which guarantees the absence of collinearity among the predictors.)

To compare the relative significance of different factors, as well as apply a common significance
threshold, the resulting set of model coefficients must be comparable. Hence it is essential to scale the
factors to a common measure. Our experimental design involved sampling factor values between their
default baseline values and some upper bound. Hence, for regression purposes, we transformed the predictor
variables into the common measure of amount incremented above baseline value (e.g. see Figure 6 horizontal
axis).

The selection of an appropriate regression model is key to the success of this method. The response
variables are proportions, bounded on the unit interval, and expected to have monotonic relationships with
certain factors. In particular, as resourcing parameters reach critical values, we may expect bottlenecks in
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the pipeline to be cleared and proportion at capability within a period to increase significantly (an example
is given in Figure 2). Therefore we adopted a Fractional Logistic Regression Model (FRM) (Ramalho et al.
2011), the adaptation of the Logistic Regression model for fractional responses.

With the application of L1 regularisation, the factors with small effect are omitted, leaving a smaller
number of factors that have the most impact on the response variable. Once the model is estimated
for a given response variable Yi, the estimated coefficients β̂Yi are interpreted as quantifications of factor
significance with respect to response Yi, yielding both magnitude of significance, and direction of effect
(positive/negative). Visualizations of these results are developed in section 4.2.1.

Figure 2: Example of response variable
vs. factor with sigmoidal relationship.

Figure 3: Example of extraction of optimal factor ranges from
best leaf in decision tree.

4.1.3 Optimizing Factor Ranges for Individual Responses with Decision Trees

The analysis so far identifies significant relationships between factors and responses. In addition to this,
we wish to identify critical ranges for factors with respect to each response. To achieve this we introduces
an application of Decision Trees (DT) which efficiently identifies such ranges. The process is simply to
grow the decision tree using all factors (with some complexity constraints), identify the “best” leaf, then
extract the factors and ranges on the path from that leaf to the node as the best identified solution for a
particular response variable, e.g. see Figure 3.

The most common application of decision trees is to produce predictive models, typically in the context
of an ensemble method such as random forests. In that context, reducing the complexity of the tree is
important only insofar as it improves the generalizability of the model, so typically highly complex trees
are produced.

For parsimony and stability, therefore, it is essential to reduce the complexity of the tree such that only
significant factors and critical values are identified in the best branch. Common methods of constraining
tree complexity are to set a minimum numbers per split, set a maximum depth, or a minimum impurity
decrease per split. The choice of parameters and values must be determined manually by inspection of the
resulting trees, depending on the context and type of response values. For overly complex trees, the best
leaf will be highly variable and include factor ranges based on sampling noise, whereas overly simplistic
trees will miss important relationships, so tuning these complexity constraint parameters is critical, and
dependent on the dataset. We found that the minimum impurity decrease parameter had a strong effect
on the tree complexity, and a maximum depth was unnecessary. Performing a sweep on the minimum
impurity decrease parameter on the range [0, 0.1] found a sharp decrease in node count at around 0.001,
and this value was selected and fixed for subsequent analysis.

Concise and interpretable visualizations of the findings extracted from decision trees for responses both
individually and globally are presented in sections 4.2.2, 4.2.3.
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4.2 Visualization and Presentation of Insights

Key to the success of this method is the ability to present the most significant insights compactly and com-
prehensibly to a non-technical audience. We introduce two visualizations of factor/response relationships,
a textual summary of the results for each response, and a visualization of the optimal factor ranges as
discovered across all responses.

4.2.1 Direct Relationships as Heat-maps and Bipartite Graphs

Both the results of Spearman rank correlation, and regression model coefficients can be taken as a matrix
with factors as rows and responses as columns. An efficient way to identify relationships of statistical or
practical significance then is as as a heat-map with the neutral color centered at value 0, as shown in Figure
4. In this view, significant relationships are clearly highlighted along with their direction and strength.

Equivalently, the same information can be rendered as a bipartite graph, which depicts at a glance
the complexity of interdependencies between the factors and responses. The strength of relationships
determines the width of each edge, and the sign determines the color. An appropriate significant threshold
value must be selected to determine which arcs deserve inclusion in the graph.

Figure 4: Heat-map of FRM coefficients between factors and responses.

4.2.2 Textual Summary of Insights

For efficient summarization of a single response variable, a textual description of the findings is useful.
We developed the following transformation of the numeric findings into a natural language equivalent.

As with the bipartite graph, significant factors can be identified by thresholding the significant values
(either Spearman correlation or FRM regression coefficients). The best leaf solution from the decision
tree yields a set of factors and ranges. A baseline value for each the response variable is estimated by
running 100 simulations of the base scenario with no modifications to any parameters. These results are
summarized in text form given in Figure 5.
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Figure 5: Text based summary of insights.

4.2.3 Global Requirements and Potential Conflicts

Across the inferred optimal factor ranges for each squadron, there is the possibility that conflicting constraints
for a given factor will emerge. These reflect competing demands on resourcing requirements—for example,
the optimal range for one squadron may define a lower bound for the number of instructors at given a
school, but since this draws trained members from other squadrons, their optimal ranges may define upper
bounds. If this set of ranges has no mutually overlapping region, then there is a conflicting set of demands.

It is therefore informative to view all constraints placed on the factors across all response variables
simultaneously. For this purpose, we introduce the heat-map based visualization shown in Figure 6. The
vertical axis defines the bounded factors, and the horizontal axis represent shifts from the default value in
configuration. Each arrow represents a bound placed by a particular response variable. For each factor, for
each incremental value, we compute the proportion of constraints at each value rendered from red (0.0)
to green (1.0). Hence green means all constraints are satisfied by the given value, while red means no
constraints are satisfied, whereas orange indicates some intermediate proportion of constraints are satisfied.
For example, if one squadron places +2 lower bound on a factor and another squadron places +5 upper
bound on the same factor, then 100% of the constraints are satisfied within the range +2 to +5, and 50%
are satisfied at all other values.

This depicts at a glance the amount by which each factor must be increased to satisfy all bounds
specified by the individual responses. Furthermore, where no green region exists for a given factor, there
are conflicting constraints. This is an important discovery, potentially indicating a systemic problem in the
structure of the pipeline deserving special attention.

Figure 6: Optimal ranges for influential factors. Color indi-
cates proportion of constraints satisfied for each increment.

Figure 7: Average discrepancy rates as a
function of replication count.
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4.3 Evaluation of Stability of Insights over Sampling Error

The extraction of this discrete set of discoveries from the dataset is sensitive to sampling error, choice
of significance thresholds and tuning of decision trees. As these discoveries are presented as final results
it is important to understand their stability over different samples and select an appropriate number of
replications of each design point. To evaluate this we performed a sweep on replication number and present
discrepancy estimates for different elements of the results.

4.3.1 Stability Evaluation Method and Results

The stability evaluation was performed by producing a dataset with 100 replications per design point, and
considering replication counts N ranging from 1 to 25. For each N, this full set of 100 replications was
randomly partitioned into subsets of N replications each, and 4 of these partitions were selected at random.
The analysis was repeated in full for each replication subset and the insights were extracted independently.
The insights yielded by each independent partition were then compared. We consider the stability of three
different classes of information: 1) the identification of “significant” factors per response; 2) the choice of
factors to form recommendations on per response; and 3) the specification of lower and upper bounds for
the recommended factor ranges. For each response variable and each information element, the discrepancy
rate is taken to be the proportion of partitions in which that element of information differed from the mode.
The average discrepancy rate across all responses, for each discrepancy type, is shown in Figure 7.

The discrepancy rate in the identification of significant factors is low (≤ 1%) and does appear to improve
with greater replication counts. The information extracted from the decision trees becomes significantly
more stable as the replication count increases, with discrepancy rates reducing from ∼ 8% to around ∼ 2%
by around 15+ replications, demonstrating that stability can be improved with sufficient replications. Further
tuning of the complexity of the decision tree, more replications or alternative techniques may be required
to reduce the discrepancy rates further.

4.3.2 Discussion

The usage of decision trees to extract optimal factor ranges is efficient and the results are highly interpretable,
but achieving stability of these results is difficult, requiring a large number of replications, or a significant
reduction in tree complexity resulting in a loss of detail. Furthermore, manual inspection of the decision
trees reveals that the “best leaf” solution very often has an average value similar to some of the next best
leaf solutions. These alternative solutions indicate alternative ways to achieve desirable response values
and may be of comparable interest or value to the analyst; in particular their incorporation may assist in
the construction of a consistent global solution. Further work on the incorporation of decision trees is
required to control their stability without sacrificing the usefulness of the information.

We note that none of the optimal factor values identified were at the upper bounds of the parameter
space explored, hence the choice of factor upper bounds described in Section 3.1 did not result in any
binding constraints. However since many optimal factor values equalled the default values, it is possible
that the lower bounds defined are binding constraints. Downward variation of the factor values as described
earlier is necessary to determine whether this is the case or not.

5 SUMMARY

We have presented a design for a fully automated exploratory data analysis module for a simulation of
an aircrew training system, translating the raw simulation output into interpretable, non-technical insights
regarding the influences of each factor on the multiple responses of concern. These outputs range from
highlighting significant pairwise relations and suggesting alterations to parameters, to a global view of the
combined constraints and conflicts in the requirements of different squadrons on the resourcing parameters
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of the system. As an exploratory tool, this has the potential to rapidly speed up diagnostic analysis of the
aircrew training program, identify training bottlenecks and propose candidate solutions.

Although this project has focused on aircrew training, the techniques can in theory be applied to
any simulated environment, with appropriate selection of models and significance thresholds. The data
farming paradigm in general permits claims of causality to be made since the definition of each design
point represents an intervention at t = 0. Therefore the insights derived are powerful and extend beyond
mere correlation. However, an important qualification is that the acuity of these insights is limited by the
accuracy and fidelity of the underlying simulation.

The pipeline presented here performs a single iteration of the experimental design → simulate →
analyse → insight process. A future research direction will be the development of an iterative control
method using insights from previous iterations to determine the experimental design for the next (a.k.a.
adaptive design, or active learning). In this manner we may be able to converge on globally optimal sets
of parameters ranges. Regarding the information content in the insights, there is a significant trade-off
between the level of detail and the stability of the insights. While both can be improved by increasing the
replication count, the trade-off can be controlled by the selection of significance thresholds and decision
tree complexity parameters.

In conclusion, the framework presented is a collection of practical, scalable techniques for exploring
the dynamics and reactions of a simulated environment with a large number of parameters and response
variables of interest, automating the process of generating insights for a non-technical audience.
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