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ABSTRACT 

Utilizing the Dynamic Data Driven Applications Systems (DDDAS) framework for Smart Cities, a Smart 
Public Safety (SPS) system has become feasible by integrating heterogeneous computing devices to 
collaboratively provide public safety services. However, a service oriented architecture (SOA) is difficult 
to provide scalable and extensible services in a city-wide distributed Internet of Things (IoT)-based SPS 
system. Furthermore, traditional management and security solutions rely on a centralized authority, which 
can be the performance bottleneck or single point of failure. Inspired by the microservices architecture 
and blockchain technology, a Lightweight IoT based Smart Public Safety (LISPS) framework is proposed 
on top of a permissioned blockchain network. Through decoupling a monolithic complex system into 
independent sub-tasks, the LISPS system possesses high flexibility in the design process and online 
maintenance. The experimental results demonstrate the feasibility of the approach to provide a secured 
data sharing and access control mechanism. 

1 INTRODUCTION 

The Dynamic Data Driven Applications Systems (DDDAS) paradigm dynamically integrates modeling, 
instrumentation, and computation in a feedback control loop by combing data from simulations with that 
of real-time measurements (Fujimoto et al. 2018). DDDAS has shown promise in many areas 
(Blasch2018b)such as (1) engineering: aerospace, biomedical, civil, electrical and mechanical 
engineering, (2) systems: manufacturing, transportation, and energy design, (3) science: environmental, 
weather, and climate science, as well as (4) decision support: medical diagnosis and treatment, 
multimedia analysis, and cyber security evaluation.  

The methods of generating simulated data from physical models (Fishwick 2016) with measurement 
models brings together conceptual and computer models using hybrid simulation to meet real-world 
challenges (Eldabi et al. 2016; Mustafee and Powell 2018). Methods for hybrid simulation include: Monte 
Carlo Simulation (MCS), Discrete-Event Simulation (DES), System Dynamics (SD) and Agent-based 
Simulation (ABS) (Brailsford et al. 2009; Katsaliaki and Mustafee 2011). Hybrid benefits (Mustafee et al. 
2017) include the ability to process qualitative and quantitative analysis such as for image fusion (Zheng 
et al. 2012) and physics-based and human-derived information fusion (Hammoud et al. 2014). Current 
needs of hybrid simulation methods require verification and validation as well as systems understanding 
of the life cycle (Eldabi et al. 2018), especially in the age of cyber networking needs (Do et al. 2017) and 
big data (Onggo et al. 2018). Recent design choices in video application layer protocols (Sultana et al. 
2019), IoT, and blockchain can benefit from hybrid simulations over numerous scenarios. 
 With the proliferation of Internet of Things (IoT) technology and DDDAS Smart City applications, a 
Smart Public Safety (SPS) system has become feasible by integrating heterogeneous computing devices to 
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collaboratively provide public safety services. Normally, surveillance cameras are connected to the 
network to deliver the video to a central location or a server for further analysis. Although the internet 
infrastructure is getting more robust, the workload is getting more burdensome. Being aware of the 
growing demand for resources due to the ubiquitous deployment of networked static and mobile cameras, 
the surveillance community has made many efforts to offload the centralized cloud computing based 
system. Through processing video on-site or near-site at the edge computing devices, unnecessary latency 
and overhead on communication network can be significantly reduced. While the fog/edge computing 
paradigm promises solutions to address the shortcomings of cloud computing, such as communication 
delays and network security issues, it also introduces new challenges. It is not suitable to enforce 
management and security policies on a centralized authority basis, which suffers from the performance 
bottlenecks or single point of failures. 
 Instead of deploying the system as a monolithic unit as a traditional service oriented architecture 
(SOA), a microservices architecture divides a complex system into multiple atomic microservices that 
run independently on distributed computing platforms. Compared with a monolithic framework, the 
microservices architecture possesses many attractive features, such as good scalability, fine granularity, 
loose coupling, continuous development, low maintenance cost, and so on. These beneficial features 
allow microservices to be a prospective architecture to enhance SPS systems based on the edge 
computing paradigm. Blockchain, which acts as the fundamental protocol of Bitcoin (Nakamoto 2008), 
has demonstrated great potential to revolutionize the fundamentals of information technology (IT) due to 
many attractive properties, such as decentralization and transparency. A Decentralized Application 
(DApp), which is built on smart contract and deployed on blockchain network, performs pre-defined 
algorithms and agreement without relying on a third-party intermediary. Blockchain and a smart contract 
together are promising to provide a decentralized solution to enable a secured data sharing and access 
control in a SPS system. 
 Inspired by the microservices architecture and blockchain technology, a DDDAS hybrid-simulation 
inspired Lightweight IoT (Internet of Things) based Smart Public Safety (LISPS) framework is proposed 
on top of the permissioned blockchain network. By decoupling a monolithic complex system into 
independent sub-tasks, the LISPS system possesses high flexibility in the design process and online 
maintenance. Likewise, the blockchain-enabled decentralized security services provide a secured data 
sharing and access control mechanism. 
 The remainder of this paper is organized as follows: Section 2 discusses DDDAS control loops. 
Section 3 reviews the related works in microservices and blockchain. Section 4 overviews the high-level 
LISPS architecture and details of each part are described. Section 5 provides experimental results on real 
life scenarios, and Section 6 concludes the paper. 

2 DYNAMIC DATA DRIVEN APPLICATIONS SYSTEMS (DDDAS)  

Consider a public safety system. An environment model of a city can be constructed, but this has limited 
predictive value without knowledge of initial values, boundary conditions, inputs, parameters, and states 
(such as temperature and power). In order to make predictions, data is needed to estimate the unknown 
quantities. Although the city can be imaged at low resolution by a satellite, measurements by cameras 
with high resolution are expensive and limited in range, and image fusion results are subject to lighting 
conditions (Zheng et al. 2018).Therefore, the complete health of a city is difficult to obtain from detailed 
measurements over a large area. 
 In such a networked city scenario, it may be possible to use a model to guide and reconfigure the 
sensors so that the information content of the data is enhanced for the ultimate objective of predicting the 
power and service needs in a city (Liu et al. 2016). At the same time, the data collected by the sensors 
enhances the accuracy of the model by providing estimates of inputs, parameters, and states. The 
integration of on-line data with the off-line model creates a positive feedback loop, where the model 
judiciously guides the sensor selection and data collection, from which the sensor data improves the 
accuracy of the model. 
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2.1  DDDAS Concept for Simulation 

DDDAS is a conceptual framework that synergistically combines models and data in order to facilitate 
the analysis and prediction of physical phenomena. In a broader context, DDDAS is a variation of 
adaptive state estimation that uses a sensor reconfiguration loop as shown in Figure 1 (Blasch 2018a). 
This loop seeks to reconfigure the sensors in order to enhance the information content of the 
measurements. The sensor reconfiguration is guided by the simulation of the physical process. 
Consequently, the sensor reconfiguration is dynamic, and the overall process is data driven. 
 The core of DDDAS is the data assimilation loop, which uses sensor data error to drive the physical 
system simulation so that the trajectory of the simulation more closely follows the trajectory of the 
physical system. The data assimilation loop uses input data if input sensors are available. The innovative 
feature of DDDAS paradigm is the additional sensor reconfiguration loop, which guides the physical 
sensors in order to enhance the information content of the collected data. The data assimilation and sensor 
reconfiguration feedback loops are computational rather than physical feedback loops. The simulation 
guides the sensor reconfiguration and the collected data, and in turn, improves the accuracy of the 
physical system simulation. The “model-based simulated data” positive feedback loop is the essence of 
DDDAS. Key aspects of DDDAS include the algorithmic and statistical methods that incorporate the 
measurement data with that of the high-dimensional modeling and simulation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.2 DDDAS Developments 

The DDDAS concepts developed over two decades with the simulation methods (Blasch 2018a): 

• Scientific Theory – Modeling and Analysis: enhancing the phenomenology of science models using 
measurement information and adaptive sampling incorporated into multiphysics, for example 
avionics (Imai et al. 2017) and smart cities (Fujimoto, et al. 2016).The use of simulation utilizes 
sensor measurements to confirm modeling, analysis, and usability of multi-physics techniques (de 
Villiers et al. 2015; Van Eeden et al. 2018). 

• Domain Methods –Applications: utilizing data assimilation and multimodal analysis to that of control 
and filtering for methods of tracking (Dunik et al. 2015; Jia et al. 2016), situation awareness 
(Blasch et al. 2012b), and context-enhanced information fusion (Snidaro et al. 2016).  

• Architecture Design – Systems and Software: designing scalable systems architectures and cyber 
network analysis, with recent efforts in cloud computing (Liu et al. 2014a). For example, the energy 
consumption of ground vehicles can be improved both locally for a car and globally for traffic 
(Neal et al. 2016). Another example of a systems and software solutions is a cloud-based system for 
real-time tracking of objects from Wide Area Motion Imagery (WAMI) streaming data (Wu et al. 
2016). Finally, cloud computing for cyber physical systems (CPS) can manage the data streams 

 

Figure 1: Dynamic data-driven application systems (DDDAS) feedback loop. 
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between CPS networked devices and those of sensors at the edge (Shekar et al. 2016). Li, Darema, 
and Chang (2017)combined these methods in a review of DDDAS support to a variety of 
applications such as distributed behavior model orchestration for cognitive internet of things (IoT). 

3 MICROSERVICES AND BLOCKCHAIN FOR SMART PUBLIC SAFETY 

There is a growing demand for human resources to interpret the live data streams from security cameras 
(Blasch et al. 2012a; Liu et al. 2014b; Chakravarthy et al. 2015). Numerous automated object detection 
algorithms have been investigated to atomize this process using statistical analysis (Fuse et al. 2017) or 
machine learning (ML) (Ribeiro et al. 2018) approaches. The ML methods are computationally expensive 
that are normally implemented for powerful cloud servers. For example, Wide Area Motion Imagery 
(WAMI) streams video from sensors back to the cloud for processing, which puts a heavy burden on the 
communication network (Wu et al. 2015; Wu et al. 2017). To reduce data transmission, it has been 
suggested to promote operators’ awareness by using context (Blasch et al. 2014) or providing query 
languages (Aved et al. 2015). Further, approaches such as re-configuring the networked cameras 
(Piciarelli et al. 2016), utilizing event-driven visualization (Fan et al. 2017), and mapping conventional 
real-time images to 3D camera images (Wu 2015) improve the efficiency and throughput of the 
communication networks along with better detection rates. 

Decentralized surveillance systems are more suitable in many mission-critical, delay sensitive tasks 
(Nikouei et al. 2018a). Recent developments of the edge hierarchy architecture enables real-time 
surveillance based on the fog computing paradigm (Mahmud et al. 2018).Many on-line and uninterrupted 
target tracking systems are proposed to meet the requirements of real-time video processing and instant 
decision making deployed at the edge (Mukherjee et al. 2018). Researchers also merged raw video 
streams from drones on near-site fog computing devices to reduce the amount of data to be outsourced to 
the cloud center (Chen et al. 2018). 

A safety system focusing on object assessment can be constructed following the edge-fog-cloud 
hierarchy (Mouradian et al. 2017).The input surveillance video frame is given to an edge unit where low-
level processing is performed, such as feature detection and object tracking(Blasch et al. 1998; Howard et 
al. 2017; Nikouei et al. 2018b; Xu et al. 2018d).The intermediate-level is in charge of action recognition, 
behavior understanding, and decision making like abnormal event detection, which is implemented at the 
fog stratum (Nikouei et al. 2018c; Nikouei et al. 2018d). Finally, the high-level is focused on historical 
pattern analysis, algorithm fine tuning, and global statistical analysis. 

3.1 Microservices in IoT 

A Service Oriented Architecture (SOA) is widely adopted in the development of application software in 
IoT and CPS environments (Butzin et al. 2017). The traditional monolithic architecture constitutes 
different software features in a single interconnected and interdependent application database. Owing to 
the tightly coupled dependence among functions and components, such a monolithic framework is 
difficult to adapt to new requirements for IoT-enabled systems, such as scalability, service extensibility, 
data privacy, and cross-platform interoperability (Du et al. 2014; Datta and Bonnet 2018). The 
microservices architecture allows functional units of an application to work independently with a loose 
coupling by encapsulating a minimal functional software module as a microservice, which can be 
individually developed and deployed. The individual microservices communicate with each other through 
a lightweight mechanism, such as an HTTP RESTful API or a message bus; asynchronously (Lu et al. 
2017). Finally, multiple decentralized individual microservices cooperate with each other to perform the 
functions of complex systems. The flexibility of microservices enables continuous, efficient, and 
independent deployment of application functional units. 
 Because of fine granularity and loose coupling, the microservices architecture has been investigated 
in many smart solutions to enhance the scalability and security of IoT-based applications. Current IoT 
systems are advancing from “things”-oriented ecosystems to a widely and finely distributed 
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microservices-oriented ecosystems (Datta and Bonnet 2018). An Intelligent Transportation Systems (ITS) 
that incorporates and combines the IoT approaches using the serverless microservices architecture has 
been designed and implemented to help the transportation planning for the Bus Rapid Transit (BRT) 
system (Herrera-Quintero et al. 2018). To enable a more scalable and decentralized solution for advanced 
video stream analysis for large volumes of distributed edge devices, a conceptual design of a robust smart 
surveillance system was proposed based on microservices architecture and blockchain technology 
(Nikouei et al. 2019). It aims at a scalable, decentralized and fine-grained access control solution. 

3.2 Blockchain-enabled Security 

Blockchain initially was used for new cryptocurrencies that perform commercial transactions among 
independent entities without relying on a centralized authority. Essentially, the blockchain is a public 
ledger based on consensus rules to provide a verifiable, append-only chained data structure of 
transactions. Due to the decentralized architecture, blockchain allows the data to be stored and updated 
distributively, which makes blockchain an ideal architecture to ensure distributed transactions among all 
participants in a trustless environment, like edge-based IoT networks. 

Emerging from the intelligent property, a smart contract allows users to achieve agreements among 
parties through a blockchain network. By using cryptographic and security mechanisms, a smart contract 
combines protocols with user interfaces to formalize and secure relationships over computer networks 
(Szabo 1997). A smart contract includes a collection of pre-defined instructions and data that have been 
saved at a specific address of blockchain as a Merkle hash tree, which is a constructed bottom-to-up 
binary tree data structure. Through exposing public functions or application binary interfaces (ABI), a 
smart contract interacts with users to offer the predefined business logic or contract agreement. 

The blockchain and smart contract enabled security mechanism for applications have been reported 
recently, for example, smart surveillance system (Nagothu et al. 2018),identification authentication 
(Hammi et al. 2018), access control (Xu et al. 2018a; Xu et al. 2018b),social credit system (Xu et al. 
2018c), biomedical imaging data processing (Xu et al. 2019a), and space situation awareness (Xu et al. 
2019b). Thus, blockchain and smart contract together are promising to provide a solution to enable a 
secured data sharing and access authorization in decentralized public safety systems. 

4 SYSTEM ARCHITECTURE OF HYBRID SIMULATIONS FOR SPS 

The proposed hybrid simulation for SPS framework follows the divide-and-conquer principle to 
functionally decouple the processes for public safety and system security. The computationally expensive 
processes are divided into multiple sub-tasks. Based on the microservices architecture, the proposed SPS 
system offers a completely decentralized solution where sub-tasks of a function are hosted by different 
hardware devices. An update or change of one service does not affect the operation of the entire system as 
long as it follows the same input and output relations. In the system design, a Docker container is adopted 
for the microservices architecture and the multi-layer SPS platform is implemented following the edge-
fog-cloud computing paradigm. Figure 2 illustrates the proposed LISPS system architecture, which 
utilizes microservices-enabled private blockchain network to secure video stream services while 
providing secured data sharing. According to functionality and task completion, all containerized 
microservices are divided into four types and are deployed both at the edge and fog layer. 

4.1 Smart Safety Applications Services 

These microservices provide smart surveillance application functions, such as video stream processing, 
object detection and tracking, movement features extraction, anomalous behavior recognition, and safety 
alert actions. Real-time video streams are generated by cameras and transmitted to edge microservices for 
feature extraction. Lower level features are transferred to fog nodes for data aggregation and higher level 
analytic services, such as pattern recognition, behavior analysis and anomalous event detection (Wei et al. 
2007). The light-weight Hyper Text Transfer Protocol (HTTP) webservice is deployed at the host and is 
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responsible for data transfer between the edge and fog. Given different capacities of the host platform, the 
smart safety application services consist of edge services and fog services. 

Smart Safety Application Services on the Edge: To reduce network communication latency and 
overload, raw video frames captured by cameras are processed by edge devices that conduct low-level 
feature extraction tasks, such as object detection and tracking. The key function of the features extraction 
task can be decoupled into multiple microservices that are deployed on a single or multiple edge devices 
and work cooperatively, as shown by Figure 2. In the object tracking and identification (Blasch et al. 2004) 
microservice, multiple frames are checked every second for pedestrian detection and feature extraction 
through a lightweight convolutional neural network (L-CNN) algorithm (Nikouei et al. 2018b;Nikouei et 
al. 2018e). Then, a tracker queue is maintained to track the detected objects within a bounding box, based 
on a lightweight, hybrid Kerman algorithm(Nikouei et al. 2018c). The Kerman tracker is optimized to 
have high accuracy in a restricted environment. Finally, movement-based features, such as the speed and 
direction changes, are extracted from the bounding box that the tracker gives for each object in each 
frame. The features for each object of interest are put into a dictionary format where the key is the object 
first detection time and the value consists of all the features. The extracted lower level feature is 
converted to a JSON string and transferred to the fog layer using HTTP protocol communication channel. 

Smart Safety Application Services on the Fog: After extracted feature data have been merged by the 
fog platform through data streaming services, the higher-level feature contextualization and smart 
decision making for a surveillance system are available to support intelligent analytic functions. Prior to 
the decision making process, the data should be contextualized given significant factors, like the time of 
the day, the location of the camera, and the security level of the building which the camera is located in. 

After the contextualization, the features of each detected human object in the frame are divided and 
separately processed by fuzzy logic microservices including fuzzification, applying fuzzy rules and 
defuzzification. Given pre-defined fuzzy logic rules, the suspicious activity level regarding a person 
anomaly is returned after defuzzification. According to a threshold defined by the system administrator 
based on the past experiences, the decision making is performed using a suspicious activity level (e.g., 
80%) to output suspicious behavior recognition results. An email or a text massage is sent to the operator 
if suspicion level of an individual object is beyond the pre-set threshold. 

 

Figure 2: Systems architecture of hybrid simulations for SPS. 
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4.2 Blockchain-enabled Security Services 

In the LISPS system, security policy covers two main aspects: identity management and secured data 
accessing. An identity management mechanism ensures a new node enrollment process in the 
permissioned blockchain network. Only authorized participants could be recognized by entities of the 
network and perform blockchain services, such as mining blocks, sending transactions and deploying 
smart contracts. Compared to a public blockchain network, the permissioned blockchain network achieves 
higher efficiency in consensus operation, and more secure by limiting participants and clearly defining 
security policies. The secured data accessing service acts as a fundamental service pool, which  includes 
three main clusters: access control services, security policies services and mining services. All the entities 
on the permissioned blockchain network are implemented as containers, which perform blockchain 
services independently on the host devices. The containerized microservices could be categorized as 
miners or non-mining nodes given the computation power of the host devices. 

Utilizing the microservices architecture, the security policy functions are decoupled into multiple 
microservices and deployed on distributed computing devices. These decentralized security microservices 
work as a service cluster to offer a scalable, flexible, and lightweight data sharing and access control 
mechanisms for the LISPS system (Xu et al. 2019a). An entity registration process is performed by the 
registration microservices that associate entity’s unique blockchain account address with a Virtual ID 
(VID). The identity authentication microservices expose RESTful APIs to other microservices-enabled 
providers for referring identity verification results. 

The security microservices act as data and security service managers who deploy the smart contracts 
that encapsulate identity authentication and the access control policies. After the smart contracts have 
been deployed successfully on the blockchain network, they become visible to the entire network. The 
authorized participants could interact with smart contract through the Remote Procedure Call (RPC) 
interfaces. The access control microservices encapsulate access control model and perform access right 
validation during service granting process on smart surveillance service providers. 

4.3 Hybrid Simulation Services 

The hybrid simulation services combine multiple individual simulations models and techniques to 
implementation/model development stages of the simulation. The hybrid simulation offers an enhanced 
representation of the system including: 

� System dynamics simulation is implemented as two microservices: sensor dynamics and system 
dynamics. The sensor dynamics simulation service could evaluate behavior of edge applications 
services and output estimates for sensor measurements and access control change. The system 
dynamics simulation services analyze the nonlinear behaviors of fog computing system to perform 
reconfiguration of the simulation models and system services.  

� Agent-based simulation (ABS) controls the interactions of autonomous-given behavior recognition 
results from smart surveillance. Behavior recognition based on extracted lower features allows the 
assessment of individual objects in the video stream, and those individual agents will be analyzed 
by agent-based simulation to generate estimate for discrete event simulation. 

� Discrete-event simulation(DES) combines estimates from agent-based model and a discrete sequence 
of events in time to model the operation of system. The event algorithm analyzes those multiple 
objects and assesses an event scenario during a certain period of time. In a discrete-event 
simulation, the event could refer to actions of a sensor or behaviors of object in video. The 
discrete-event simulation estimates coordinate agent-based services for improving accuracy. 

5 HYBRID SIMULATION SERVICES RESULTS 

A concept-of-proof prototype system has been implemented on a real physical network environment 
including a smart safety application and blockchain-enabled security services. The DES and ABS 
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microservices cooperate with each other under close feedback loop to assistant system services. The smart 
safety applications are decoupled as multiple microservices that are developed as Docker images, and are 
deployed both on fog and edge computing platform. Two types of SBCs: a TinkerBoard and a Raspberry 
PI 3 model B+, act as edge computing in test system. The Tinker Board has 1.8 GHz ARM-based 
RK3288 SoC and 2 GB LPDDR3 dual-channels. The Raspberry PI 3 carries a 1.4 GHz CPU, which is a 
Cortex-A53 (ARMv8) 64-bit SoC, and a 1 GB of LPDDR2 memory. Both have an ARM-based CPU that 
makes it easier to deploy a Docker image based on the CPU architecture on both. The characteristic of 
low power consumption along with the small size and portability makes the SBCs the major candidates 
for edge processing. A laptop is adopted as the fog node, which has a 8-th generation Intel core i7 
processor @3.1GHz with 4 physical cores and 16 GB of DDR4 memory. 
 Using the video processing, blockchain, and container-based systems; we augment the 
contextualization models of both the quantitative (processing needs) and the qualitative (social needs) for 
the system. Preliminary results of using the hybrid simulation within the LISPS framework demonstrate 
that the system performs in real time. Figure 3 shows that the processing on the edge units is utilized at 
80%. Figure 4 shows the advantage of the hybrid simulation as the dynamic prediction models, agent-
based approach to container use, and simulations results direct the fog services which reduces the 
processing time for the video analytics between video frames 10-25.   
 

               

 Figure 3: CPU usage percentage in the edge units.      Figure 4: Process time on the fog node. 

The permissioned blockchain-enabled security services network includes two miners deployed on a 
laptop and four miners distributed on four desktops. Each miner uses one CPU core. Two desktop and 
four Raspberry PIs are non-miners to run security microservices. The security microservices are 
developed as Docker containers providing both Go-Ethereum as a client application to interact with 
blockchain network and Flask-based webservice to handle security service request from user. To evaluate 
the performance, a service access experiment is carried out on a physical network environment which 
includes 3 Raspberry PIs and 2 desktops. One Raspberry PI works as a client to send service request, 
while server side is SPS service provider, which has been both hosted on edge (Raspberry PI) and fog 
(desktop) nodes. A blockchain enabled capability based access control (BlenCAC) scheme (Xu et al. 
2018a; Xu et al. 2018b) is selected to enforce the access control policies. Figure 5 shows the 
computational overhead introduced by BlendCAC process. The entire executing time of the access control 
process is 42.4 ms (41.8 ms + 0.1 ms + 0.5 ms) on the edge device and 14.5 ms (14.2 ms + 0.1 ms + 0.2 
ms) on the fog node. 

To evaluate the overall network latency incurred by the microservices architecture, a comprehensive 
test has been performed on two service architectures: the microservices architecture (Micro App) and the 
monolithic framework (Mono App). Figure 6 shows the overall network latency incurred and compares 
the execution time of the BlendCAC and a benchmark without any access control enforcement on two 
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service architecture. Considering the scenarios without access control enforcement, microservices and the 
monolithic framework have almost the same performance both on edge (51.3 ms vs. 55.4 ms) and fog 
platform (43.8 ms vs. 50.4 ms). However, when it comes to BlendCAC scenario, the experiments on two 
architectures show different communication latencies between the fog and edge platforms. Although 
microservices incurs more network latency, which is 73.6 ms (133.5 ms - 59.9 ms) on the fog side and 6.8 
ms (147.1 ms - 140.3 ms) on edge side, it still brings benefits to the distributed IoT-based system, such as 
loosely coupled dependence, easy service deployment, and cross-platform interoperability. 

 

 

Figure 5: Process time of BlendCAC.         Figure 6: Network latency of BlendCAC. 

6 CONCLUSIONS 

Fundamental basic research in DDDAS is gathered from, and contributes to scientific applications, 
mathematical foundations, and infrastructure architectures. Specifically, DDDAS includes: (1)theory(e.g., 
estimation); (2)methods(e.g., image computing for situation evaluation); and (3)design (situation 
awareness through contextual assessment). Likewise, to bring together these services, a hybrid simulation 
approach was developed to enhance the Lightweight Internet of Things (IoT) based Smart Public Safety 
(LISPS) framework. Preliminary results show promise. Future work includes enhancing the discrete event 
and agent-based simulations to reflect the safety scenarios. The simulation enhancements with the real-
world testing would afford methods to detect a more diverse set of behaviors, develop normalcy models 
for anomaly detection, and enhance user interaction through a user defined operating picture (UDOP) 
interface (Blasch 2013) for decision making (Blasch et al. 2011). 
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