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ABSTRACT 

This paper studies a simultaneous scheduling of production and material transfer in a semiconductor 
manufacturing. The simultaneous scheduling approach has been recently adopted by warehouse operations, 
wherein transbots pick up jobs and deliver to pick-machines for processing that requires a simultaneous 
scheduling of jobs, transbots, and machines. However, both a large proportion of literature and real-world 
scheduling systems in semiconductor manufacturing consider only one side of the problem. We propose 

the most efficient solution for job shop scheduling problem (JSP) with transbots, significantly 
outperforming all other benchmark approaches in the literature. 

1 INTRODUCTION 

One of the urgent needs in a modern smart factory (Intel 2015) and warehouse (Amazon 2014; Alibaba 
2017; Ocado 2018) is to integrate the scheduling of production-machines with transfer-robots (transbot 
hereafter), wherein a job must be transferred by a transbot between operations. Intel and most 

semiconductor manufacturers use transbots for point-to-point delivery as pictured on Figure 1(a). Amazon 
and Alibaba have employed transbots to deliver shelves from staging areas to pick-machines as pictured on 
Figures 1(b) and 1(c). Similarly, Ocado utilizes transbots to grab a crate, pull it up into their interior, and 
deliver to pick-machine as pictured on Figure 1(d). A robotic mobile fulfillment system (RMFS) is a new 
type of automated storage and part-to-picker order picking system, where transfer-task by transbot and and 
pick-task by robotic-arm are synchronized. 
 

Figure 1: Transbots for pick-up and drop-off tasks. 

These two decisions (transbot-scheduling and machine-scheduling) are interrelated with each other and 
must be synchronized. However, the robotics community focuses on transbot-scheduling problems while 
the traditional operations research community studies on machine-scheduling problems as an independent 
effort. The effort of connecting these two isolated research streams has been started. One of the successful 

works has been noticed in a job shop scheduling with transbots (JSP+transbots). The classical JSP schedules a 
set of jobs on a set of machines with the objective to minimize a maximum completion time over all jobs 
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(Cmax), subjected to the constraint that each job has an ordered set of operations, each of which must be 
processed on a predefined machine. In this new integrated approach, transbots perform a delivery task 
between two operations. Figure 2 shows the Gantt chart of the simultaneous scheduling of machine and 

transbot. For instance, J1 is transferred from stocker to M1 by V2. Then the same transbot V2 returns to 
stocker to pick up J5 and drops it off to M1. The contribution of this paper is to propose the most efficient 
solution for JSP+transbots, significantly outperforming all other benchmark attempts in the literature. 

 

Figure 2. Gantt chart of the optimal solution for JSP EX104 instance (Bilge and Ulusoy, 1995). 

2 LITERATURE REVIEW 

Sawik (1996) noticed that neglecting transportation times at the tactical planning level, as well as lack of 
appropriate coordination between a schedule for transbots and machines, can have severe consequences. 
This can easily lead to bottlenecks in the system and its underutilization. Transportation times can also 
contribute to machine idle time if machines must wait for the delivery of the next part for processing. To 
bridge the gap, several researchers have demonstrated the benefits of coordinating transbot-schedule with 

machine-schedule called simultaneous scheduling (SS) as summarized in Table 1. 

Table 1: The articles related JSP with transbots. 

Year Author Approach nMachine nTransbot Publisher 

1995 Bilge and Ulusoy Heuristic 4 2 OR 

1996 Sawik Heuristic 6 1 MCM 

2004 Sankar and Ponnambalam GA 4 1 IEEE 

2006 Khayat, Langevin, and Riopel MIP/CP 8 2 EJOR 

2006 Reddy and Rao GA 6 2 IJAMT 

2008 Deroussi, Gourgand, and Tchernev SA 4 2 IJPR 

2009 Caumond, Lacomme, Moukrim, and Tchernev MIP 4 1 EJOR 

2009 Yung, Ponnambalam, and Yogeswaran ACO 6 2 IEEE 

2010 Badr, Schmitt, and Göhner Agent 16 2 IEEE 

2012 Erol, Sahin, Baykasoglu, and Kaplanoglu Agent 8 2 ASC 

2014 Zeng, Tang, and Yan NLP 15 2 ASC 

2016 Baruwa and Piera PN 4 2 IJPR 

2019 This paper CP 4 2 — 
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Bilge and Ulusoy (1995) propose the most relevant benchmark instances on the JSP+transbots which have been 

used by several publications (Sankar and Ponnambalam 2004; Khayat et al.2006; Reddy and Rao 2006; 

Deroussi et al.2008; Erol et al. 2012; Zeng et al. 2014; Baruwa and Piera 2016). We use the same test 

instances to estimate the performance of the proposed model.  

3 PROBLEM DESCRIPTION 

Consider a job shop environment with transbots that consists of a set of machines (m, M), the load/unload 

(L/U) stocker where parts enter and leave the system, and a set of identical transbots (v, V) used for 

transportation of parts between two machines. There is a set of jobs (j, J) to be processed on one or more 

machines. Each job j consists of an ordered sequence of steps s. We refer the combination of job and step as 

an operation (Ojs). Each operation Ojs must be processed on a dedicated machine μjs ∈ M without preemption 

in JSP environment. A machine can perform at most one operation at a time. Each machine has input and 

output (I/O) buffers in which parts are stored before and after processing. The buffers serve as pickup and 

delivery (P/D) points for the transbots. Parts visit different machines in the system for different operations 

which in turn generate P/D requests for the transbots. A transbot performs a transportation operation between 

any two operations Ojs and Oj,s+1, to move a job from the source machine μjs to the destination machine μj,s+1 

for the next processing. Transbots perform two types of trips: a loaded trip and an empty trip (ET). A loaded 

trip is a delivery operation where the transbot moves a part from the output buffer of a machine μjs to the 

input buffer of another machine μj,s+1. In an empty trip, the transbot moves from an idle position at a machine 

m without carrying a job in order to pick up a job waiting to be transferred from μjs to μj,s+1, where m ≠ μjs. 

Let 𝑡𝑚,𝑚̂ represents the travel time between any two machines m and 𝑚̂. The travel times are job independent 

and machine dependent (Baruwa and Piera 2015). Figure 3 shows the four different layout configurations 

for the JSP+transbots proposed by Bilge and Ulusoy (1995). Each layout is composed of four machines, one 

L/U station (stocker), and two transbots. 

 

 

Figure 3. Layout configurations used in the test example (Bilge and Ulusoy 1995). 
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 The simultaneous scheduling of machine and transbot (SSMT) problem is formulated as follows: Given 

the JSP+transbots environment described, determine the sequence of operations and the starting and completion 

times of each job on each machine, and the trips between machines together with the assignment of 

transportation tasks to vehicles according to the makespan minimization. The problem is formulated under 

the following assumptions given in Bilge and Ulusoy (1995): 

 

• Machine operations and transbot trips are non-preemptive and there is sufficient I/O buffer space at 

each machine and L/U stocker to avoid deadlocks. 

• Processing, loading and unloading times are deterministic and known. 

• The number of transbots is known and they initially start from the stocker. 

• Transbots have unit-capacity and they move along predetermined shortest paths, with the 

assumption of no delay due to congestion and travel times on each segment of the path are known. 

 

4 METHODOLOGY 

CP is an optimization paradigm that can handle a large number of constraint types that go beyond MIP-
style linear constraints. While MIP focuses on the objective function and its optimality, CP focuses on 

satisfying the constraints and it is designed to find feasible solutions faster. CP is a suitable technique for 
solving sequencing and scheduling applications, feasibility problems, and highly constrained problems 
(Edis and Ozkarahan, 2011), outperforming MIP far exceedingly (Ham and Cakici 2016). The search within 
IBM ILOG CP Optimizer is equipped with the presolve functionality, some constraint propagation 
algorithms, the temporal linear relaxation used to guide the search and the two search space exploration 
strategies that are used concurrently: the Large Neighborhood Search (for producing good quality solutions) 

and Failure-Directed Search (for proving infeasibility or optimality). Large Neighborhood Search (LNS) is 
a component of CP Optimizer automatic search for scheduling consisting of successive relaxation and re-
optimization phases. It operates by first finding an initial feasible solution. Then, a number of iterations are 
carried out, each iteration comprising a relaxation step followed by a re-optimization of the relaxed solution. 
This process continues until some condition is satisfied, typically, when the solution can be proved to be 
optimal or when a time limit is reached (Laborie, Rogerie, Shaw, and Vilím 2018). Because of space 

limitations, we recommend readers review Laborie and Rogerie (2008), Laborie, Rogerie, Shaw, and Vilím 
(2009), and IBM Software (2015). 
 In this SSMT problem, we need to explicitly model the transbot’s task as well as the machine’s task. 
We characterize each operation o by j (associated job id), p (order of operation o of job j), pt (processing 
time), m (machine ID at the current operation), pm (machine ID at the very preceding operation, stocker ID: 
if o is the first operation), and isLast (1: if step o is the last sequenced operation of job j, 0: o/w). 

We model the SSMT problem with the following decision variables:  
 
• 𝑃𝑘𝑢𝑝𝑜∈𝑂 : interval variable representing pick-up task for operation o (interval for transbot to 

approach to a source where a job is completed at the preceding operation) 
• 𝐷𝑟𝑜𝑝𝑜∈𝑂: interval variable representing drop-off task for operation o (interval for transbot to move 

to a destination where a job will be processed) 

• 𝐽𝑜𝑏𝑂𝑛𝑀𝑐ℎ𝑜∈𝑂: interval variable representing actual processing time of operation o on machine 
• 𝑀𝑜𝑣𝑒4𝑃𝑘𝑢𝑝𝑜∈𝑂,𝑣∈𝑉: interval variable representing the assignment of each operation to one of the 

transbots for pick-up task 
• 𝑀𝑜𝑣𝑒4𝐷𝑟𝑜𝑝𝑜∈𝑂,𝑣∈𝑉: interval variable representing the assignment of each operation to one of the 

transbots for drop-off task 
• 𝑆𝑒𝑞𝑀𝑐ℎ𝑚∈𝑀  ←  [𝐽𝑜𝑏𝑂𝑛𝑀𝑐ℎ𝑜∈𝑂: 𝑜.𝑚𝑐ℎ=𝑚] : sequence variable representing all permutation 

sequences of the interval variables assigned to the sequence on each machine 
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• 𝑆𝑒𝑞𝑉𝑒ℎ𝑣∈𝑉 ← [𝑀𝑜𝑣𝑒4𝑃𝑘𝑢𝑝𝑜∈𝑂,𝑣∈𝑉  ⋃ 𝑀𝑜𝑣𝑒4𝐷𝑟𝑜𝑝𝑜∈𝑂,𝑣∈𝑉]  sequence variable representing all 
permutation sequences of the interval variables assigned to the sequence on each transbot 

 

Then, the JSP+transbots can be formulated into CP as it follows:  
  

CP1 formulation for JSP+transbots (Ham 2019) 

𝑀𝑖𝑛 𝑀𝑎𝑥𝑜∈𝑂{𝑒𝑛𝑑𝑂𝑓(𝐽𝑜𝑏𝑂𝑛𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑜)} (1) 

𝑒𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝐽𝑜𝑏𝑂𝑛𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑜 , 𝐽𝑜𝑏𝑂𝑛𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑜̂)       ∀(𝑜, 𝑜̂) ∈ 𝑂: 𝑗(𝑜) = 𝑗(𝑜̂) ⋀ 𝑝(𝑜̂) = 𝑝(𝑜) + 1 (2) 

𝑒𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝐽𝑜𝑏𝑂𝑛𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑜 , 𝑃𝑘𝑢𝑝𝑜̂)       ∀(𝑜, 𝑜̂) ∈ 𝑂: 𝑗(𝑜) = 𝑗(𝑜̂) ⋀ 𝑝(𝑜̂) = 𝑝(𝑜) + 1 (3) 

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒(𝑃𝑘𝑢𝑝𝑜 , [𝑀𝑜𝑣𝑒4𝑃𝑘𝑢𝑝𝑜𝑣]𝑣∈𝑉)  ∀𝑜 ∈ 𝑂 (4) 

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒(𝐷𝑟𝑜𝑝𝑜 , [𝑀𝑜𝑣𝑒4𝐷𝑟𝑜𝑝𝑜𝑣]𝑣∈𝑉)  ∀𝑜 ∈ 𝑂 (5) 

𝑒𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝑃𝑘𝑢𝑝𝑜 , 𝐷𝑟𝑜𝑝𝑜,𝑡𝑝𝑚(𝑜),𝑚(𝑜))       ∀𝑜 ∈ 𝑂 (6) 

𝑒𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝐷𝑟𝑜𝑝𝑜 , 𝐽𝑜𝑏𝑂𝑛𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑜)       ∀𝑜 ∈ 𝑂 (7) 

𝑒𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝑀𝑜𝑣𝑒4𝑃𝑘𝑢𝑝𝑜𝑣 , 𝑀𝑜𝑣𝑒4𝐷𝑟𝑜𝑝𝑜𝑣)       ∀𝑜 ∈ 𝑂, 𝑣 ∈ 𝑉 (8) 

𝑒𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝑀𝑜𝑣𝑒4𝐷𝑟𝑜𝑝𝑜𝑣 , 𝐽𝑜𝑏𝑂𝑛𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑜)       ∀𝑜 ∈ 𝑂, 𝑣 ∈ 𝑉 (9) 

𝑝𝑟𝑒𝑣(𝑠𝑒𝑞𝑉𝑒ℎ𝑣 , 𝑀𝑜𝑣𝑒4𝑃𝑘𝑢𝑝𝑜𝑣 , 𝑀𝑜𝑣𝑒4𝐷𝑟𝑜𝑝𝑜𝑣)       ∀𝑜 ∈ 𝑂, 𝑣 ∈ 𝑉 (10) 

𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝑀𝑜𝑣𝑒4𝑃𝑘𝑢𝑝𝑜𝑣) = 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝑀𝑜𝑣𝑒4𝐷𝑟𝑜𝑝𝑜𝑣) ∀𝑜 ∈ 𝑂, 𝑣 ∈ 𝑉 (11) 

𝑛𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑆𝑒𝑞𝑉𝑒ℎ𝑣 , 𝑇)        ∀𝑣 ∈ 𝑉 (12) 

𝑛𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑆𝑒𝑞𝑀𝑐ℎ𝑚)        ∀𝑚 ∈ 𝑀 (13) 

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝐽𝑜𝑏𝑂𝑛𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑜  𝑠𝑖𝑧𝑒 𝑝𝑡(𝑜), 𝑃𝑘𝑢𝑝𝑜, 𝐷𝑟𝑜𝑝𝑜   ∀𝑜 ∈ 𝑂 (14) 

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑀𝑜𝑣𝑒4𝑃𝑘𝑢𝑝𝑜𝑣  𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙, 𝑀𝑜𝑣𝑒4𝐷𝑟𝑜𝑝𝑜𝑣  𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙  ∀𝑜 ∈ 𝑂, 𝑣 ∈ 𝑉 (15) 

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑆𝑒𝑞𝑉𝑒ℎ𝑣 , 𝑆𝑒𝑞𝑀𝑐ℎ𝑚       ∀𝑣 ∈ 𝑉, 𝑚 ∈ 𝑀 (16) 
 

Objective (1) minimizes the time required to complete all operations (makespan). The expression endOf(i) 
represents the end of interval variable i whenever the interval variable is present (otherwise, its value is 0 
by default). Constraints (2–3) ensure the precedence relation between the operations associated with each 
job. In particular, Constraint (3) enforces to complete a preceding operation (o) at a machine before starting 

pick-up task for the subsequent operation (𝑜̂) by transbot. Constraint (4) assigns each pick-up task to exactly 
one of transbots. Both intervals of 𝑃𝑘𝑢𝑝𝑜∈𝑂  and 𝑀𝑜𝑣𝑒4𝑃𝑘𝑢𝑝𝑜∈𝑂,𝑣∈𝑉 start and end together with this chosen 
one. Similarly, Constraint (5) assigns each drop-off task to exactly one of transbots. Both intervals of 
𝐷𝑟𝑜𝑝𝑜∈𝑂  and 𝑀𝑜𝑣𝑒4𝐷𝑟𝑜𝑝𝑜∈𝑂,𝑣∈𝑉  start and end together. Constraint (6) ensures the precedence relation 
between pick-up and drop-off tasks associated with each operation. Constraint (7) makes sure to first 
complete a drop-off task by a transbot before being processed by a machine at each operation. Constraints 

(8–9) are redundant with Constraints (6–7). However, they help CP engine to escalate the search. Constraint 
(10) ensures that no other job can be ordered between consecutive pick-up and drop-off tasks on a given 
transbot at the same operation. Constraint (11) forces to employ the same transbot for pick-up and drop-off 
tasks at the same operation. Constraint (12) forces a transbot to perform at most one task at a time.  The 
expression noOverlap (s, T) defines a chain of non-overlapping intervals, and any interval in the chain is 
constrained to end before the start of the next interval in the chain. This expression is typically useful for 

modeling disjunctive resources. If a transition distance matrix T is specified, it defines the minimal distance 
that must separate two consecutive intervals in the sequence. The matrix T is used herein to represent the 
location-dependent job transfer-time by transbot.  Similarly, Constraint (13) forces a machine to perform at 
most one operation at a time. Finally, Constraints (14–16) define the CP decision variables. The specialized 
keywords of CP enable modelers to develop a concise code, compared to the MIP formulation, although a 
certain degree of ingenuity and insight into the problem is required to recognize how a problem can be 

formulated by CP. 
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5 COMPUTATIONAL STUDY 

In this section, the effectiveness of the proposed model is examined. The CP and flow control models are 
all coded in IBM OPL 12.8.0 on a personal computer with an Intel® Core i7-4770 CPU with 16 GB of 

RAM. The Gantt-chart is created by CSPI ezDFS (2019). 
 The 82 test problems proposed by Bilge and Ulusoy (1995) are grouped into two sets. The first set 
contains 40 instances whose 𝑡𝑚,𝑚̂/pt ratios are greater than 0.25, and the other set contains 42 instances 
with 𝑡𝑚,𝑚̂ /pt lower than 0.25. We adopted the first 40 instances in this study. Each instance code is 
designated with prefix EX followed by two digits that indicate the job set and the layout. Table 5 shows the 
performance comparison of CP with five off-line and two on-line scheduling algorithms for test problems 

with t/p > 0.25. The off-line approaches are: sliding time window heuristic (STW) (Bilge and Ulusoy 1995), 
two hybrid genetic algorithms, AGA (Abdelmaguid and Nassef 2010) and PGA (Reddy and Rao 2006), a 
hybrid local search with simulated annealing (SALS) (Deroussi, Gourgand, and Tchernev 2008), and 
anytime layered search (ALS) (Baruwa and Piera 2015). They reported that ALS found two new best known 
solutions and outperforms the other algorithms with the exception of EX103. The on-line algorithms are 
taken from Erol, Sahin, Baykasoglu, and Kaplanoglu (2012): a multi-agent system (MAS) and the shortest 

travelling distance (STD) rule. The CPU time is recorded in second. 
 Here the results are quite astounding. For instance, both CP1 and CP2 find an optimal of EX22 instantly 
while ALS takes 100 s. In summary, CP2 converges to optimal for all 40 problem instances very quickly. 
Most of them converge to optimal in a less than a second. The CP1 also finds optimal for all 40 problem 
instances, but it fails to converge to optimal except six instances. Furthermore, both CP models obtain the 
optimal solution for EX103 instance which has been failed by all other attempts in the literature. Lastly, 

when the simultaneous scheduling is compared to the traditional machine-only scheduling, the makespan 
is reduced by 10.69% in average. 

Table 2. Performance comparison of CP with existing approaches for problems with t/p > 0.25. 

 STW AGA PGA SALS MAS STD  ALS  CP1  CP2 (Ham 2019) 

Instance Obj Obj Obj Obj Obj Obj   Obj CPU Converge   Obj CPU Converge   Obj CPU Converge 

EX11 96 96 96 96 130 126  96 138.50 800.80  96 0.05 —  96 0.14 0.83 

EX12 82 82 82 82 98 104  82 39.20 800.60  82 0.03 —  82 0.04 0.44 

EX13 84 84 84 84 109 110  84 145.10 762.50  84 0.03 —  84 0.07 0.39 

EX14 108 103 103 103 168 164  103 510.20 832.80  103 0.38 —  103 0.92 1.26 

EX21 105 102 100 100 143 147  100 282.40 —  103 1.47 —  100 0.94 2.21 

EX22 80 76 76 76 86 104  76 100.50 666.20  76 0.05 0.06  76 0.16 0.17 

EX23 86 86 86 86 98 118  86 96.60 —  86 0.06 —  86 0.08 1.59 

EX24 116 108 108 108 169 172  108 475.90 —  108 0.79 —  108 2.22 5.02 

EX31 105 99 99 99 142 138  99 27.70 —  99 1.42 —  99 0.48 1.26 

EX32 88 85 85 85 114 116  85 44.90 —  85 0.03 —  85 0.31 0.49 

EX33 86 86 86 86 103 126  86 617.30 —  86 0.11 —  86 0.26 0.26 

EX34 116 111 111 111 167 182  111 414.90 —  111 4.59 —  111 1.23 2.08 

EX41 118 112 112 112 198 220  112 255.40 —  113 236.2 —  112 17.84 22.42 

EX42 93 88 87 87 129 151  87 268.70 —  87 3.85 —  87 1.61 3.88 

EX43 95 89 89 89 155 143  89 216.50 —  89 15.81 —  89 0.29 2.37 

EX44 126 126 126 121 242 247  121 452.00 —  126 6.69 —  121 2.98 7.60 

EX51 89 87 87 87 130 124  87 18.40 857.10  87 2.72 —  87 0.37 1.39 

EX52 69 69 69 69 98 101  69 98.70 869.70  69 2.48 —  69 0.46 0.46 

EX53 76 74 74 74 109 103  74 139.40 821.70  74 0.66 —  74 0.08 1.23 

EX54 99 96 96 96 168 168  96 223.20 885.00  96 0.1 —  96 1.29 2.18 

EX61 120 118 118 118 153 162  118 74.70 —  118 2.8 —  118 1.42 4.40 
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EX62 100 98 98 98 123 135  98 66.60 —  98 0.16 0.24  98 0.35 0.39 

EX63 104 104 103 103 128 143  103 902.60 —  103 0.27 —  103 0.65 0.66 

EX64 120 120 120 120 189 190  120 370.20 —  126 2.69 —  120 2.31 3.72 

EX71 119 115 111 111 129 143  111 549.30 —  114 0.88 —  111 54.82 406.28 

EX72 90 79 79 79 92 109  79 2303.30 —  79 2.61 —  79 0.57 1.22 

EX73 91 86 83 83 93 109  83 2403.30 —  83 5.59 —  83 1.77 2.58 

EX74 136 127 126 126 156 173  126 3598.00 —  126 254.99 —  126 125.53 792.88 

EX81 161 161 161 161 196 217  161 1300.60 —  161 0.1 0.11  161 0.06 0.07 

EX82 151 151 151 151 172 180  151 2.70 —  151 0.03 0.03  151 0.01 0.02 

EX83 153 153 153 153 172 182  153 9.30 —  153 0.03 0.04  153 0.01 0.01 

EX84 163 163 163 163 251 246  163 295.80 —  163 0.66 0.66  163 0.13 0.14 

EX91 120 118 116 116 178 163  116 57.00 2721.40  116 0.28 —  116 0.48 0.95 

EX92 104 104 102 102 123 128  102 284.00 2643.00  102 0.15 —  102 0.07 0.27 

EX93 110 106 105 105 119 132  105 54.10 2602.30  105 0.09 —  105 0.15 0.38 

EX94 125 122 122 120 181 190  120 1266.50 2867.30  120 4.53 —  120 0.58 1.30 

EX101 153 147 147 147 188 193  146 115.50 —  146 2.77 —  146 1.38 2.35 

EX102 139 136 135 135 154 164  135 3252.90 —  135 4.23 —  135 0.43 0.67 

EX103 143 141 139 138 158 180  139 66.60 —  137 8.19 —  137 1.05 1.30 

EX104 171 159 158 159 246 249   157 822.20 —   157 26.16 —   157 4.29 12.80 

Notes: Bold – Solution converged to optimal 559.02    14.87    5.70  

 

6 CONCLUSION 

A simultaneous scheduling of production machine and material transfer robot in a job shop was studied, as 
factories and warehouses are predicted to soon adopt an automatic material transfer system powered by 
transbots. Here we propose a CP modeling for JSP+transbots, significantly outperforming all other benchmark 
approaches in the literature. The success can be attributed to IBM CP Optimizer’s recent application of 

machine learning techniques to portfolios of large neighborhoods and completion strategies in order to find 
the best combined method for the problem being solved. Two different CP models are proposed. The first 
model defines pick-up and drop-off as separate tasks, whereas the second merges these two transfer tasks 
into one by utilizing a customized transition distance matrix.  
 The future study can consider a fleet of transbots and a set of pick-stations in a warehouse. The most 
difficult challenge in this problem would be scalability. For instance, Ocado (2018) employs hundreds of 

transbots to fulfil 65,000 orders per week. In addition, synchronization of drop-off tasks by multiple 
transbots to arrive at the same pick-station with a minimum time gap for a given order is an additional 
complexity. As far as this author understands, Amazon (2014), Alibaba (2017), and Ocado (2018) are 
currently utilizing a rule-based approach to dispatch transbots to handle dynamic orders. The rule-based 
approach has a tunnel vision (Dabbas and Fowler 2003), lacking comprehensive view. Therefore, a near 
real-time scheduling approach can be a very interesting work for these companies. 
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