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ABSTRACT 

Clustered photography tools (CPTs) are very complex and can substantially influence the throughput of 
wafer fabrication facilities. Therefore, efficient lot scheduling for CPTs can directly improve fab 
performance. In this paper, we develop mixed integer linear programs for linear, affine, exit recursion, and 
flow line models of CPTs to optimize schedules with respect to mean cycle time, makespan, and tardiness. 
We simulate a true CPT using a flow line and solve the MILPs for other above mentioned, reduced models. 
Schedules from reduced models are then input into the flow line optimization model in order to evaluate 
the loss. Using numerical experiments, we show that exit recursion models outperform other models. Under 
time limits, exit recursion models exhibit at least 6% better performance than flow lines for large problems 
on cycle time. 

1 INTRODUCTION 

Clustered photolithography tools (CPTs) are one of the most expensive and complex tools in semiconductor 
manufacturing, and significantly impact the throughput of wafer fabrication facilities, cf. Morrison and 
Martin (2007). As such, CPTs should be operated effectively and wafers should be scheduled optimally in 
order to decrease inefficiencies at the tool.  

There are several ways to model a CPT, ranging from simple to complex. Simpler models are easier to 
construct and require less computation time, while complex models can more accurately describe the 
dynamics of the system. We consider several equipment models of CPTs and evaluate the impact of the un-
modeled dynamics on the optimality of lot schedules. 

1.1 Lot Sequence Scheduling in Fab 

Semiconductor fabs process multiple types of wafers, depending on the product. As every class of wafer 
has its own process flows, even within a CPT, it is important to efficiently schedule lots so as to improve 
the overall throughput. Traditionally, rule based and mathematical approaches have been used for sequence 
scheduling and are still often applied in the industry. Monch et al. (2011) provides an overview of 
scheduling and example problems of the scheduling in the fab.  Wein (1988) focuses on lot sequence rules, 
and varies the inputs to compare the results. Cakici and Mason (2007) proposes heuristics based on a 
network mathematical model for scheduling photolithography machines. Recently, learning approaches 
have been employed for lot sequence scheduling. Riedmiller and Riedmiller (1999) uses reinforcement 
learning techniques to learn dispatching policies under uncertainty in semiconductor manufacturing 
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production. Ramirez-Hernandez and Fernandez (2009) uses an actor-critic architecture for the dispatching 
of lots in Intel mini-fab benchmark models. 

1.2 Equipment Models for CPT 

Many different types of equipment models have been applied to CPTs for optimization and simulation, and 
simpler models such as linear or affine are still often used in the industry. Linear models assume that the 
wafer throughput for a wafer class is constant; the production rate may be different for each class. Kabak 
et al. (2013) and Yan et al. (2013) used linear models of CPTs for ASIC fab models and litho machine 
scheduling. Affine models extend linear models by adding a first wafer delay, where the production rate of 
the first wafer can be different than other wafers in a lot. They have been used to explore the optimality of 
scheduling for photolithography tools in Bitar et al. (2014). Flow line models have been used to model 
CPTs in (Wu and Chiou 2010; Chiou and Wu  2014; Park and Morrison 2015; Park and Hwang 2013); they 
consider process modules within a CPT but ignore wafer handling robots. Park et al. (2017a) explores the 
tradeoff between accuracy and computation time between affine and flow line models of CPTs, using a 
detailed petri-net model as the baseline. It was shown in Park et al. (2017a) and Morrison (2010) that flow 
line models are expressive and accurate enough to replace detailed models for modeling CPTs. Park et al. 
(2017b) proposes a new class of models called exit recursion models, which were shown to be close in 
accuracy to flow lines, while requiring much less computation time. 

In this paper, we focus on the following equipment models: linear, affine, flow line and exit recursion 
models (ERMs). Similarly to Park et al. (2017b), we compare simpler models to more complex models and 
compare their performance in lot scheduling for CPTs. 

1.3 Contribution and Organization 

Park et al. (2017b) use simple FIFO heuristics to evaluate the prediction error.  In this paper, we optimize 
lot sequence scheduling for CPT using various equipment models. We assume that flow line models of 
CPTs are exact and use them as our baseline. We construct mixed integer linear programs (MILPs) for 
linear, affine, exit recursion models and calculate the optimal sequence schedules for these reduced models. 
The optimal schedules are then compared to the optimal schedules obtained from the flow line model and 
used to evaluate the loss occurred when using a reduced model.  

This paper is organized as follows. In Section Ⅱ, we describe the CPT system, and describe how to 
apply flow lines to CPTs. In Section Ⅲ, we develop how to derive optimal lot sequences for each of the 
equipment models and detail the exact mathematical equations of each MILP. Section Ⅳ shows the full 
simulation conditions used and compare the schedules obtained from other equipment models to those of 
flow lines. We discuss the experiment results here. In section Ⅴ, we make concluding remarks and consider 
directions for future research. 

2 SYSTEM DESCRIPTION 

2.1 Clustered Photolithography Tools 

A clustered photolithography tool transfers patterns onto wafers using a mask called the reticle. Figure 1 
illustrates the layout of an actual CPT used in the semiconductor industry in Yoon and Lee (2004). Each 
load ports can hold a lot of wafers which enter and exit the CPT. It consists of four clusters of modules, 
where each cluster contains a robot arm that can move a single wafer at a time between the modules. There 
are processes: hot plates (HP/HHP), low-pressure adhesions (LPAH), cold plate (CP), spin coaters (SC), 
post exposure bake hot plate (PEB), edge exposures (EE), and spin developers (SD). There may exist 
redundant chambers in a process module for batch processing of wafers. Groups of wafers called lots arrive 
at the CPT at the indexer, are processed according to their recipe, and exit the tool via the indexer. There 
may be several classes of lots according to their recipe. Modules are restricted to processing only one wafer 
class at a time, regardless if the module would allow parallel identical steps, to prevent overtaking and 
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contamination. While many different types of setups may occur within the tool. we only consider the reticle 
alignment setup in this paper. A reticle alignment setup is performed for the first wafer of every lot just 
before the stepper process. In this paper, we assume that reticle alignment setups are uniformly distributed. 
For a more detailed explanation of this CPT, see Park et al. (2017a)  and Yoon and Lee (2004). 

 

2.2 Applications of Equipment Models to CPT 

Table 1: Process time for parametric flow line. 

Proc 
# 

TARC #1 TARC #2 BARC 
Proc R PT Proc R PT Proc R PT 

1 Dummy 1 0 Dummy 1 0 Op 1 1 5 
2 Dummy 1 0 Dummy 1 0 Op 2 2 85 
3 Dummy 1 0 Dummy 1 0 Op 3 2 95 
4 Dummy 1 0 Dummy 1 0 Op 4 2 65 
5 Op 1 1 5 Op 1 1 5 IF 1 5 
6 Op 2 2 85 Op 2 2 85 Op 5 1 63 
7 Op 3 2 95 Op 3 2 95 Op 6 2 95 
8 Op 4 2 65 Op 4 2 65 Op 7 2 65 
9 Op 5 2 70 Op 5 2 70 IF 1 5 
10 IF 1 5 Op 6 2 95 Op 8 2 70 
11 Op 6 1 63 IF 1 5 IF 1 5 
12 Op 7 2 95 Op 7 2 65 Op 9 2 95 
13 IF 1 5 Op 8 1 63 IF 1 5 
14 Op 8 2 65 IF 1 5 Op 10 2 65 
15 STK 15 5 STK 15 5 STK 15 5 
16 Op 9 1 110 Op 9 1 110 Op 11 1 110 
17 STK 1 5 STK 1 5 STK 1 5 
18 Op 10 2 95 Op 10 2 95 Op 12 2 95 
19 Op 11 2 65 Op 11 2 65 Op 13 2 65 
20 Op 12 2 95 Op 12 2 95 Op 14 2 95 
21 Op 13 3 135 Op 13 3 135 Op 15 3 135 
22 IF 1 5 IF 1 5 IF 1 5 
23 Op 14 2 95 Op 14 2 95 Op 16 2 95 
24 Op 15 2 65 Op 15 2 65 Op 17 2 65 
25 IF 1 5 IF 1 5 IF 1 5 
26 Op 16 1 0 Op 16 1 0 Op 18 1 0 

Figure 1: Example CPT layout. 
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We use the procedure described in Park et al. (2017a) and Park et al. (2017b) in order to apply linear, affine, 
exit recursion, and flow line models to CPTs. Their detailed equations will not be listed here. As all of the 
models use historical data to calculate parameters, we use the parametric flow line model from Park et al. 
(2017a) to generate tool log data of the CPT and assume that it is exact. The flow line must be modified in 
order to be applied to a CPT; see Table 1. R is the number of redundant chambers in a process module, and 
PT is the process time in seconds. 

The parameters for each of the linear, affine, and exit recursion models are then calculated from the 
tool log data generated by the flow line model. 

2.3 Procedure to Evaluate Optimal Schedules 

The overall research procedure is shown in Figure 2. After defining system information such as process 
flow, process times, module redundancy and other configuration information, we generate historical data 
using the parametric flow line model and extract parameters from generated data for each equipment model. 
Note that this generated historical data is only used to calculate the model parameters, and is not used for 
the optimization models. After the model parameters are calculated, we construct mixed integer linear 
programs (MILPs) for each equipment model (linear, affine, ERM, and flow line) in order to determine the 
optimal lot sequence schedule and solve them. After the optimal schedules have been obtained from the 
reduced models (linear, affine, and ERM), the flow line MILP is solved once more where it is constrained 
to be equal to the each of the reduced model schedules. The optimal values obtained from these reduced 
models are then compared to the optimal value of the true system found previously. Here, the optimal 
schedule from the flow line MILP is assumed to be the true solution. This allows us to explore the 
consequences of using a simpler model in place of a more detailed model for lot sequence scheduling. 

3 MATHEMATICAL MODELS FOR SEQUENCE SCHEDULING 

3.1 Objective Functions and Notations 

We consider three objective functions to minimize: average lot cycle time (CT), makespan, and tardiness. 
To calculate cycle time, we define 𝐶" and 𝑎" as completion and arrival time of lot l. L is the total number of 
lots to be scheduled. Average cycle time is calculated as: 
 
 𝑂% ∶ 		∑ (𝐶"*

"+% − 𝑎")/𝐿 (1) 
 

To minimize makespan, we define 𝐶012, the maximum completion time, as the total make span of a 
schedule, and add constraint (3).  It ensures that 𝐶012 is the completion time of the last lot.  
 
 𝑂3 ∶ 	𝐶012 (2) 

Figure 2: Schedule evaluation procedures. 
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 𝐶012 > 𝐶",			𝑙 = 1,… , L (3) 
 

The last objective function is tardiness. To minimize the total tardiness, 𝐷" is defined as the due date 
for lot l and 𝑇" is a decision variable for the tardiness of lot l. 𝑇" will be minimized when minimizing 𝑂=. 
Constraints (5) and (6) are added to define the lower and upper bounds of 𝑇". The total tardiness is calculated 
as:  
 
 𝑂= ∶ 	∑ 𝑇"*

"+%  (4) 
 𝐶" − 𝐷" ≤ 𝑇",			𝑙 = 1,… , 𝐿 (5) 
 𝑇" ≥ 0,			𝑙 = 1,… , 𝐿 (6) 
 

As described in the previous section, model parameters are extracted using the generated data, which 
is then used as values in each MILP for linear, affine, exit recursion, and flow line models. Table 2 describes 
some notation. As reticle setups are uniformly distributed, we use the expected values. Note that 3 types of 
objective function do not mean multi-objective problems. 

Each equipment model is a function of input parameters and model parameters, and outputs the start 
and completion times of lot l. Thus the decision variables are: 

𝑆" : Start time of lot l, 
𝐶" : Completion time of lot l, 

𝑦C," : D1,			𝑖𝑓	𝑙𝑜𝑡	𝑘	𝑖𝑠	𝑑𝑖𝑟𝑒𝑐𝑡	𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟	𝑜𝑓	𝑙𝑜𝑡	𝑙0,			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.																																																					 

𝑆" and 𝐶" are continuous variables, and 𝑦C," is binary. Note that 𝑦C," is the lot sequence. 

Table 2: Notations. 

Parameters Description 
L Total number of lots 
𝑊" Number of wafers in lot l 
𝑎" Arrival time of lot l 
𝐺" Class of lot l 
𝐷" Due date of lot l 
𝐴VW Bottleneck process time value of lot class 𝐺"  
𝐵VY,VW First wafer delay when lot class 𝐺C is direct predecessor 𝐺" 
𝐵VW
Z  First wafer delay of lot class 𝐺" for the first lot 

𝐴VW
%  Bottleneck process time with non-bottleneck contention of lot class 𝐺" 
𝐴VW
3  Bottleneck process time with bottleneck contention of lot class 𝐺" 
𝐷VW
%  Vacating time related parameters without class change 

𝐷VW
3  Vacating time related parameters with class change 

𝐹𝑊𝐷VW First wafer delay of lot class 𝐺" 
MS Total number of module stages 
B Index of scanner module in flow line 
𝐷VW Number of dummy modules for lot class 𝐺" 
𝑅VW,0 Number of redundant chambers at module m for lot class 𝐺" 
𝜏VW,0
^_  Deterministic process time per wafer of lot class 𝐺" at module m 

𝜏VY,VW
`a  Reticle alignment setup time for first wafer of lot l at reticle stage when lot class 𝐺C is 

predecessor of lot class 𝐺" 

𝜏VW
bcd Reticle alignment setup time for first wafer of lot l at reticle stage when the first lot 

class is 𝐺" and there is no predecessor  
𝑦C,"bef Solution schedule from reduced models 
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3.2 Linear and Affine Models 

We describe constraints used for linear and affine models.  
 
 𝑆" ≥ 𝑎",			𝑙 = 1,… , 𝐿 (7) 
 𝑆" ≥ 𝐶C −𝑀h1 − 𝑦C,"i,			𝑘, 𝑙 = 1,… , 𝐿 (8) 
 

Constraints (7) and (8) are start time constraints for each lot, for both linear and affine models. 
Constraint (7) enforces the start time to be greater or equal to the arrive time of lot l. (8) enforces that the 
start time of lot l be greater or equal to the completion time of lot k if lot k is the predecessor of lot l. Here 
M is Big M, an arbitrarily large number. If lot k is not the predecessor of lot l, then constraint (8) will 
automatically be satisfied. 
 
 𝐶" = 𝑆" + 𝐴VW𝑊",			𝑙 = 1,… , 𝐿 (9) 
 𝐶" = 𝑆" + 𝐴VW(𝑊" − 1) + ∑ 𝐵VYVW𝑦C,"

*
C+% + 𝐵VW

Z (1 − ∑ 𝑦C,"*
C+% ),			𝑙 = 1,… , 𝐿 (10) 

 
The completion time constraint for linear models is shown in (9).  The completion time for lot l is 

calculated as 𝐴VW𝑊", where 𝐴VW is the model parameter and 𝑊" is the number of wafers in lot l. Equation 
(10) is the completion time constraint for affine models. In this case, the time from start to completion is 
calculated in the form of 𝐴VW(𝑊" − 1) + 𝐵, where the first wafer delay is taken into account. This first 
wafer delay can depend on the current and previous lot class. Using the binary variable 𝑦C,", the value 𝐵VYVW 
is only used when the predecessor of lot l is lot k. If there is no predecessor of lot l (i.e. l = 1, the first lot), 
the value of 	∑ 𝐵VYVW𝑦C,"

*
C+% 	 is 0, and the 𝐵VW

Z  value is used.  
 
 ∑ ∑ 𝑦C,"*

"+%
*
C+% = 𝐿 − 1 (11) 

 ∑ 𝑦C," ≤ 1*
C+% ,			𝑙 = 1,… , 𝐿 (12) 

 ∑ 𝑦C,"*
"+% ≤ 1,			𝑘 = 1,… , 𝐿 (13) 

 𝑦C," = 0,				𝑘, 𝑙 = 1,… , 𝐿, 𝑘 = 𝑙 (14) 
 𝑆", 𝐶" ≥ 0, 𝑦C,"	𝑖𝑠	𝑏𝑖𝑛𝑎𝑟𝑦,				𝑘, 𝑙 = 1,… , 𝐿 (15) 
 

Equations (11)-(14) are predecessor constraints for ensuring a correct sequence of lots. (15) are non-
negativity and binary constraints. Equations (11)-(15) are common constraints that are also used for ERMs 
and flow line models. 

The MILPs to obtain optimal lot sequence schedules for each of the objective functions when a linear 
model is used is: 

 
Minimize	(1)	or	(2)	or	(4) 

Subject	to	(7) − (9), (11) − (15)	𝑜𝑟	𝑎𝑑𝑑	(3)	or	add	(5) − (6).  

 
The affine model MILPs are similar. 
 

Minimize	(1)	or	(2)	or	(4) 
Subject	to	(7) − (8),			(10) − (15)	𝑜𝑟	𝑎𝑑𝑑	(3)	or	add	(5) − (6).		 

3.3 Exit Recursion Models 

For ERMs, two more decision variables are required. 
V"% : Vacating time of lot l without class change 
V"3 : Vacating time of lot l with class change 
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V"% and V"3 are both decision variables for the vacating time, which is defined as the time that lot l has 
vacated the modules required for lot k to start processing with 𝑦C," = 1. As a process module may only 
process one class at a time, two variables are required. V"% is the time when the last wafer of lot l has vacated 
at least one chamber from the first module so that the next lot (which must be of the same class as lot l) can 
start processing.  V"3 is the time when the last wafer of lot l has vacated all chambers of the first module so 
that the next lot (which must be of a different class as lot l) can start processing. These variables are mutually 
exclusive; one of either V"% or V"3 is used in the constraints for each lot, depending on whether a class change 
occurs. Due to the vacating time parameters, there are additional constraints for the start and completion 
times; they are listed below.  
 
 𝑆" ≥ VC% − Mh1 − 𝑦C,"i,			𝑘, 𝑙 = 1,… , 𝐿 (16) 
 𝑆" ≥ 𝑉C3 − 𝑀h1 − 𝑦C,"i,			𝑘, 𝑙 = 1,… , 𝐿 (17) 
 V"% = 𝐶" − DVW

% ,			𝑙 = 1,… , 𝐿 (18) 
 𝑉"3 = 𝐶" − 𝐷VW

3 ,			𝑙 = 1,… , 𝐿 (19) 
 

Constraints (16) and (17) are for the start times of each lot. If a class change does not occur between 
lots k and l, constraints (16) is used, and (17) otherwise. Constraints (18) and (19) define the vacating times 
for each case.  
 
 𝐶" ≥ 𝑆" + 𝐴VW

% (𝑊" − 1) + 𝐹𝑊𝐷VW,			𝑙 = 1,… , 𝐿 (20) 
 𝐶" ≥ 𝐶C + 𝐴VW

3 (𝑊" − 1) + ∑ 𝐵VYVW𝑦C,"
*
C+% + 𝐵VW

Z h1 − ∑ 𝑦C,"*
C+% i − 𝑀(1 − 𝑦C,"),			𝑘, 𝑙 = 1,… , 𝐿 (21) 

 
The completion time constraints take a similar form to those of the affine model. However, as the ERM 

equations use a max function to determine completion time, a total of two constraints are required: one for 
each argument of the max function. As the completion time must be greater than both of these constraints, 
the max function is satisfied.  
 
 𝑉"%, 𝑉"3 ≥ 0,				𝑙 = 1,… , 𝐿 (22) 
 

Lastly, we add non-negativity constraints (22) for the new decision variables. The lot sequence 
constraints are the same as those of linear and affine models. 

The MILPs to solve lot sequence scheduling using ERMs are expressed as: 
 

Minimize	(1)	or	(2)	or	(4) 

Subject	to	(11) − (15),			(16) − (22)		𝑜𝑟	𝑎𝑑𝑑	(3)	or	add	(5) − (6).	 

3.4 Flow Line Models 

Flow line models consider the individual process modules within a CPT. As these modules use the module 
entry times of each wafer in a lot to calculate start and completion times of the lot, more decision variables 
are required.  
 

𝑋",�,0 : Entry time of lot l of wafer w into stage m 
 
 𝑋",%,% 	≥ 	𝑎",			𝑙 = 1,… , 𝐿 (23) 
 𝑋",�,% 	≥ 	𝑋",����W,�,3,			𝑙 = 1,… , 𝐿, 𝑅VW,% < 𝑤 ≤ 𝑊" (24) 
 𝑋",�,% 	≥ 	𝑋",��%,%,			𝑙 = 1,… , 𝐿, 𝑤 = 2,… ,𝑊" (25) 
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Constraints (23)-(25) are for the entry times of the first process module in a CPT. (23) ensures that the 
entry time of the first module for the first wafer of lot l is greater or equal to the lot arrival time. (24) 
considers redundancy of the first module and allows the appropriate wafer to enter the first module once a 
single chamber is emptied. Constraint (25) prevents the overtaking of wafers.  
 
 		𝑋",�,0 	≥ 	𝑋",�,0�% + 𝜏VW,0�%

^_ ,			𝑙 = 1,… , 𝐿, 𝑤 = 1,… ,𝑊" (26) 
 𝑋",�,0 	≥ 	𝑋",����W,�,0�%,			𝑙 = 1,… , 𝐿,			𝑅VW,0 < 𝑤 ≤ 𝑊",𝑚 = 2,… ,𝑀𝑆 − 1 (27) 
 𝑋",�,0 	≥ 	𝑋",��%,0,			𝑙 = 1,… , 𝐿, 𝑤 = 2,… ,𝑊",𝑚 = 2,… ,𝑀𝑆 − 1 (28) 
 𝑋",�,�� 	≥ 	𝑋",�,���% + 𝜏VW,���%

^_ , 𝑙 = 1,… , 𝐿, 𝑤 = 1,… ,𝑊" (29) 
 𝑋",�,�� 	≥ 	𝑋",�,�� + 𝜏VW,��

^_ , 𝑙 = 1,… , 𝐿, 𝑅VW,�� < 𝑤 ≤ 𝑊" (30) 
 𝑋",�,�� 	≥ 	𝑋",��%,��,			𝑙 = 1,… , 𝐿, 𝑤 = 2,… ,𝑊" (31) 
 

(26)-(31) are module constraints for wafers within a lot, as wafer w is processed from module 2 to MS. 
(26) enforces the entry time to module m to be  greater or equal to the sum of the entry time to module m+1 
and the module process time. Constraints (27) and (28) serve a similar purpose to (24) and (25). (27) defines 
the entry time wafer w of module m to be at least the entry time of wafer 𝑤 − 𝑅VW,0  to module m+1, 
considering the redundancy of module m. (28) prevents overtaking as before. Constraints (29)-(31) are 
similar and are for the last module stage.  
 
 		𝑋",�,% 	≥ 	𝑋C,�Y���W,���,3

− 𝑀(1 − 𝑦C,"), 𝑘, 𝑙 = 1,… , 𝐿, 1 ≤ 𝑤 < 𝑅VW,%, 𝐺C = 𝐺" (32) 
 𝑋",�,% 	≥ 	𝑋C,�Y,3 − 𝑀h1 − 𝑦C,"i, 𝑘, 𝑙 = 1,… , 𝐿, 1 ≤ 𝑤 < 𝑅VW,%, 𝐺C ≠ 𝐺" (33) 
 𝑋",�,0 	≥ 	𝑋C,�Y���W,���,0�%

−𝑀h1 − 𝑦C,"i,			𝑘, 𝑙 = 1,… , 𝐿,𝑚 = 2,… ,𝑀𝑆 − 1,1 ≤ 𝑤 < 𝑅VW,0, 𝐺C = 𝐺" (34) 
 𝑋",�,0 	≥ 	𝑋C,�Y,0�% − 𝑀h1 − 𝑦C,"i, 𝑘, 𝑙 = 1,… , 𝐿,𝑚 = 2,… ,𝑀𝑆 − 1,1 ≤ 𝑤 < 𝑅VW,0, 𝐺C ≠ 𝐺" (35) 
 𝑋",�,�� 	≥ 	𝑋C,�Y���W,����,��

+ 𝜏VY,��
0 −𝑀h1 − 𝑦C,"i, 𝑘, 𝑙 = 1,… , 𝐿, 1 ≤ 𝑤 < 𝑅VW,�, 𝐺C = 𝐺" (36) 

 𝑋",�,0 	≥ 	𝑋C,�Y,�� + 𝜏VY,��
0 −𝑀h1 − 𝑦C,"i, 𝑘, 𝑙 = 1,… , 𝐿, 1 ≤ 𝑤 < 𝑅VW,��, 𝐺C ≠ 𝐺" (37) 

 𝑋",%,��% 	≥ 	𝑋",%,� + 𝜏VW,�
0 + ∑ 𝜏VY,VW

bc 𝑦C,"*
C+% , +𝜏VW

bcdh1 − ∑ 𝑦C,"*
C+% i − 𝑀h1 − 𝑦C,"i,			𝑙 = 1,… , 𝐿 (38) 

 
Constraints (32)-(38) are module constraints for wafers between different lots and consider setups. They 

are similar to (26)-(31) but consider whether lot k is the predecessor of lot l and use Big-M notation to 
ignore non-successive lots. In particular, (38) includes the reticle alignment setup between successive lots.  
  
 𝑆" = 𝑋",��W�%,%,			𝑙 = 1,… , 𝐿 (39) 
 𝐶" = 𝑋",�W,�� + 𝜏VW

��,			𝑙 = 1,… , 𝐿 (40) 
 	𝑋",�,0 ≥ 0,			𝑙 = 1,… , 𝐿, 𝑤 = 1,… , 𝐿, 𝑚 = 1,… ,𝑀𝑆 (41) 
 

(39) defines the start time of lot l as the entry time of the first wafer into the first stage, considering 
dummy modules (process flows of different classes may have different lengths and so dummy modules are 
used to coerce the same number of module stages for each class). (40) defines the completion time of lot l 
as the sum of the entry time of the last wafer at the last module stage and its process time. 

The optimal lot sequence schedule using flow lines is solved by: 
 

Minimize	(1)	or	(2)	or	(4) 

Subject	to	(11) − (15),			(23) − (41)	𝑜𝑟	𝑎𝑑𝑑	(3)	or	add	(5) − (6).  
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3.5 Loss and Error Evaluation 

Using the MILPs described above for the linear, affine and exit recursion models, we can obtain the optimal 
sequence schedule for the three objective functions. In effect, we are modeling the true system with reduced 
models to solve a sequence scheduling problem. Using the solutions from these reduced models, we add an 
extra constraint (42) to the flow line MILPs to enforce that the same schedule is used, and solve for objective 
values. 𝑦C,"bef is the optimal sequence obtained from the reduced models.  
 
 	𝑦C,"bef = 	𝑦C,",			𝑘, 𝑙 = 1,… , 𝐿 (42) 
 
 By reusing the optimal sequence from reduced models and solving the flow line model again, we can 
evaluate the loss that occurs. Loss is defined as the ratio between objective values of reduced models and 
flow line from each solutions. Error is defined as the ratio between objective values of flow line from 
reduced schedules and objective value of flow line. Loss means how much inaccuracy occurs when we use 
abstract models and error means how far prediction goes wrong. 

4 EXPERIMENTS 

4.1 Experimental Design 

Table 3 describes the design of experiments. The number of lots is varied from 1 to 100. As the number of 
lots increases, the optimization models cannot be solved optimally in adequate time. We thus set the time 
limit as 1 hour. As described before, we conduct experiments about 3 objectives. We consider two cases of 
reticle alignment setups, where setups are either independent of or dependent on lot class changes. In the 
first case, the reticle setup is uniformly distributed from [210, 260] regardless of class changes between 
lots. In the second case, we use different distributions for class changes, where the reticle setup is uniformly 
distributed in [210,260] if there is no class change. For cases with class change, a factor from the non-
symmetric of Table 3 is applied to the same distribution. We use 3 types of arrival. First one is a classical 
assumption of scheduling problems in Bitar et al. (2014). Other two arrival case is more similar with reality. 
Lot length means the possible number of wafer in a lot and Average lot size means the average number of 
wafers in a lot. We also include FIFO, a simple rule-based heuristic, as a guideline to compare the 
mathematical models developed in this paper. 10 replications are conducted for each of test cases. 

Table 3: Design of experiments. 

Category Description Category Description 
No. of lots 1 1, 5, 10, 20, 50, 100 lots in optimization 

Average 
lot size  

1 12, { 11, 12, 13 } 
Objectives 1  Mean cycle time, Total makespan, Total tardiness  2 14. { 13, 14, 15 } 

Reticle 
setup 

distribution 

1 Uniformly distributed, [210,260] for every lot change 3 16, { 15, 16, 17 } 

2 Uniformly distributed, [210,260] for no-class change 
Uniformly distributed, (2or3) * [210,260] for class change 4 18, { 17, 18, 19 } 

Arrival 
times 

1 Interarrival times of all lots are 0 5 20, { 19, 20, 21 } 

2 20 % of lots have 0, the other follow exponential 
distribution 6 22, { 21, 22, 23 } 

3 All the Interarrival follow exponential distribution 7 24, { 23, 24, 25 } 

Lot length 

1 3, { 23, 24, 25 } Time limits 60 min 
2 6, { 20, 21, 22, 23, 24, 25 } Optimality gap 1e-4 
3 9, { 17, 18, 19, 20, 21, 22, 23, 24, 25 }   
4 12, { 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 }   
5 15, { 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 }   
6 Bimodal distribution, { 11, 12, 13 } & { 23, 24, 25 }   
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4.2 Result and Discussion 

FIFO is used as the initial schedule for all optimization models. We consider loss to compare each model, 
where it is calculated as the final objective value of the reduced model divided by the final objective value 
of the flow line model. Note that as there are time limits and the flow line optimization model contains 
many more decision variables than the other reduced models. Reduced models may have negative loss, 
meaning that they can outperform our true system in our experiments. 

In the most variation case, there is chance to decrease 20% or 30% inefficiencies, if we use MILP 
schedules instead of FIFO or LPT. Even all our mathematical model show similar results about loss, using 
ERM makes to be better predicted more than 5% linear and affine models. Next step is to conduct sensitivity 
analysis from table 3. We will show interesting results among them. 

Figure 3 shows the cycle time loss of each types of setup distribution. With the same distribution, there 
is not much differences between the models. Otherwise, the presence of non-symmetric setup makes affine 
and ERM outperform other models. Linear and FIFO cannot reflect the sequence dependent characteristics. 
 

 
Figure 4 shows the error with average lot size. The left graph describe the type 1 arrival result and the 

right one illustrate the type 3 arrival result. With type 1 arrival, the error is decreasing with increasing 
average lot size. With type 3 arrival, the error is independent with the average lot size. ERM show small 
error about any average lot size and any type of arrival. This is due to linear and affine model cannot reflect 
the parallel characteristics into their model otherwise ERM can do. 

 

 
Figure 5 shows the loss by the increasing lot length. The left graph is the loss for mean cycle time and 

the right one is the loss for total makespan. By the longer lot length, the loss tends to increase because 
longer lot length means that processing time variation is much larger. 

 
 

Figure 3: Mean cycle time loss from setup distribution (left: same / right: non-symmetric). 

Figure 4: Mean cycle time error by average lot size (left: type 1 arrival / right: type 3 arrival). 

2233



Kim, Park, Park, and Morrison 
 

 

 
The total tardiness case shows similar results to the mean cycle time case and will not be shown. This 

may be due to the fact that the total tardiness optimization problems have a similar structure to the mean 
cycle time problems, using due dates information 𝐷" instead of arrival time 𝑎".  

 

Table 4: Run time. 

 
Computation Time (s) 

Mean cycle time Total makespan Total tardiness 

LIN AFF ERM FL LIN AFF ERM FL LIN AFF ERM FL 

Number 
of Lots 

1 0.016 0.016 0.016 0.031 0.005 0.007 0.007 0.021 0.005 0.007 0.0100 0.020 

5 1.186 1.435 1.841 10.452 0.421 0.564 0.487 3.786 0.046 0.0400 0.0260 6.246 

10 358.660 480.018 1097.429 3600.950 78.390 100.043 128.170 3601.600 3600.261 3600.521 3600.261 3601.550 

>20 3600.464 3600.282 3600.233 3600.960 3600.418 3601.822 3600.901 3601.370 3600.717 3600.558 3600.980 3600.890 

 
Table 4 describe the run time results. All the above 20 lots case, it spend whole our time limits to solve 

problems. Without this case, we tried to calculate the relative computation time. ERM needs 1.5 times and 
1.2 times computation than linear and affine model. 

5 CONCLUDING REMARKS 

In this paper, we developed MILP sequence scheduling models different from the error prediction using 
FIFO schedules in park et al (2017b) and evaluate the loss of using reduced models in place of the true 
model for three objective functions. The reduced models considered have low loss in most cases and even 
outperform the flow line model for a large number of lots under time limits. ERMs exhibit the best 
performance among them in terms of error and loss. Affine models perform similarly to ERMs in terms of 
loss in all cases, but are shown to have high errors. The linear model cannot properly express class 
dependent setups and exhibits high loss and high errors. We used different average lot sizes and different 
setup distributions in order to give more variance to the lot schedules.  
 In the future, we will consider greater variation in the processing times and allow different arrival or 
ready times for each lot. Additionally, as the flow line MILP model was computationally prohibitive and 
time limits had to be used, learning techniques or heuristics could be utilized to produce more accurate 
results. Comparing the loss of using ERMs and of using the heuristics/other approaches could be an 
interesting direction for further research. 

Figure 5: Loss by lot length (left: mean cycle time / right: total tardiness). 
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