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ABSTRACT 

This paper presents challenges in the field of automatic generation of simulation models in production and 

logistics. For this purpose, we first present existing approaches in this field, we then analyze them, and we 
present trends in the field of automatic composition of structures for simulation models. Subsequently, 
possibilities from the field of software engineering are discussed, illustrating a possible approach to the 
composition of structures for simulation models. In particular, the focus is placed on synthesis of logical 
structures by means of combinatory logic. The strategy of how this logic can support the automated 
generation of structural variants in simulation models is shown on the basis of one of the areas of 

intralogistics. In our example, different possibilities of structural variants are clarified and their potential 
for automated composition demonstrated. 

 INTRODUCTION 

In the field of production and logistics, simulation is a recognized method of the Digital Factory for 
evaluation, planning and monitoring of systems and processes (Wenzel et al. 2010; Bracht et al. 2018). In 
this context simulation is used to ensure planning reliability, to discover potentials for rationalization and 

to support the decision making process. In production and logistics, tools based on discrete event simulation 
(DES) paradigms are normally used. Simulation tools allow the software-technical reproduction of systems 
in DES models and the investigation of system behavior over time. Simulation models are used both in the 
planning phase and in the operating phase of a production system. In the planning phase, planning concepts 
are worked out and checked with the help of these models without interfering with the real systems. Process 
alternatives can be checked, system structures varied and control strategies tried out. In the operating phase, 

simulation models are used to control the production systems, e.g. as early warning systems (Hotz et al. 
2006), to understand complex systems or to support decision-making. 

Simulation allows to inspect the effects of changes in production and logistics systems very precisely. 
The long model building times and high effort, e.g. for collection and analysis of data and information 
regarding the considered system, complicate the execution of simulation studies in particular with the 
modeling of complex production systems (Bogon et al. 2012). The quality of the results of a simulation 

study depends in particular on the quality and scope of the information used in the simulation study (Abel 
et al. 2013). Within the framework of simulation-based planning of complex production systems, a large 
number of experiments are carried out (Rabe et al. 2009). Not only the parameters, but also the structures 
and control strategies of the models have to be varied or adapted. A major challenge in the planning of 
modern flexible as well as adaptable production and logistics systems is the variation of system structures 
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with simultaneous consideration of the adaptation of corresponding control strategies in the simulation 
model (Wenzel et al. 2018). Fowler and Rose (2004) discuss challenges for complex production systems, 
pointing out the need to reduce the effort required to conduct simulation studies and addressing closer 

cooperation between the real world and the model world. Automatic model generation is proposed as a 
possible solution, but it is pointed out that existing approaches such as Ozdemirel et al. (1993), Jankauskas 
and McLafferty (1996) or Law and McComas (1989) will only work if the data are available in the correct 
form for the simulation model. Approaches to automatic model generation enable efficient implementation 
of simple standardized models, e.g. using CAD data and work plan data. For example, the automotive 
industry implements different strategies for semi-automatic or automatic model generation using 

specialized automotive unit libraries (Jensen 2007; Bergmann and Strassburger 2010; Rooks 2009). These 
solutions are only useable for manageable standardized systems and do not take into account automatic 
adjustments of the control strategies of the modeled system. In addition, there is no guarantee that optimal 
structural variants will be proposed. Most approaches are also time consuming. When planning logistics 
systems, one is often faced with the challenges of choosing the best and most economical system variant 
from many possibilities. Therefore, the structure of a system cannot always be considered statically, because 

it changes over the duration of system existence, which is subsequently understood as structural variance 
(Tabeling 2006). Tabeling (2006) distinguishes the following kinds of structural variance: 

 
 Modification of the connection structure, 
 Emergence and disappearance of components, 
 Modifications of component types - internal conversion, 

 Structural variance as a targeted conversion of the system, 
 Description of dynamic structures by behavioral models, 
 Structural variance in programmed systems. 

 
As more and more versatile systems are being used in production and logistics, their digital models 

must be able to take into account and implement the structural variance of these systems as early as the 

planning stage. Because many variants are used and experimented with in the planning of systems, the 
automatic generation of variants of simulation models would reduce the planning effort (Wenzel et al. 
2018). Other important challenges in the planning process of the adaptable production and logistics systems 
are the transparent selection and explanation of the planning alternatives with a view to meaningful target 
values and their system structures. It must be taken into account that with the increasing number of 
framework conditions, the number of system variants to be analyzed with different system structures will 

increase at the same time. 
DES offers comprehensive possibilities to plan dynamic processes of flexible and adaptable systems 

and to test complex scenarios. Even in the age of Industry 4.0, DES plays a key role, which corresponds to 
the trend towards digital test environments (Schluse, Rossmann 2006; Wenzel et al. 2018). The methods of 
the Digital Factory can be used to secure the factory system structure (Bracht et al. 2018). In the context of 
Industry 4.0, process dynamics and product variants will require fast decisions, especially if the scope in 

decision-making becomes larger in the future and at the same moment the time window for decisions is 
continuously shrinking (Xu et al. 2016). Xu et al. (2016) discuss optimization by simulation as a suitable 
decision and analysis tool. In particular, the need for research in the support and verification of simulation-
based decisions on comprehensive and flexible systems is pointed out, the models of which can be simulated 
in real time, e.g. with the help of several simulation computers, and used for decision making. 

In future, simulation models will also have to meet requirements such as adaptability and applicability 

over the entire plant life cycle. These requirements entail a certain conceptual openness of the simulation 
tools, and flexible, adaptable and self-learning component libraries will be needed. Associated digital 
models must be easy to integrate, adaptable, extensible, and easy to reuse in different contexts. For this 
purpose, they must be modular, easy to parameterize, have flexible structures and, if necessary, be generated 
automatically (Wenzel et al. 2018).  
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The focus of this paper is therefore on the presentation of trends in automatic composition of structures 
for simulation models in production and logistics and the presentation of a developed approach, which 
enables to generate structures of simulation models from prefabricated component collections in a 

simulation tool, which reduces the modeling effort. With this approach, the suitable structures of a 
simulation model should be selectable and adaptable. The paper is structured as follows: After this 
introduction developments and trends in automatic model generation are briefly discussed in Section 2. 
Subsequently, possibilities from the field of software engineering are explained, which illustrate a possible 
approach for the composition of structures for simulation models (Section 3). In particular, the synthesis of 
logical structures using combinatorial logic is presented. The developed approach, how this logic can 

support the automated generation of structure variants in simulation models, is shown by means of a simple 
example. In this example different possibilities of structure variants are clarified and their potential for an 
automated composition is pointed out (Section 4). Finally, a the results (Section 5) and some information 
about future developments are discussed. 

 DEVELOPMENTS AND TRENDS IN AUTOMATIC MODEL GENERATION 

Lattner et al. (2011) identify different approaches to improve the performance of simulation studies for 

production and logistics and developed a methodology to automate simulation studies in logistics and to 
ensure high quality simulation results. Research efforts on procedure models, automatic model generation 
concepts, auxiliary tools for statistics, optimization or visualization and decision support systems are 
presented (Lattner et al. 2011). Research work and concepts for automatic model generation are of particular 
importance for the paper. Therefore, they will be explained more detail below. 

The automatic model generation concepts support the execution of a simulation study by using existing 

data sources to generate simulation models of a specific manufacturing system. In many industries, it is 
very common for process flow information to be stored electronically, e.g. in the Manufacturing Execution 
System (MES). This data can be exported to parameterize the existing simulation models or to use this data 
for semi-automatic or automatic generation of simulation models from a specific area. For the semi-
automatic or automatic generation of simulation models with the help of data, suitable technical concepts 
must be used (Fowler and Rose 2004). Bergmann and Strassburger (2010) call these technical concepts 

data-driven model generation. Semi-automatic data-driven model generation and initialization promise to 
support the goals and execution of a simulation study consistently and effectively. In general, the term semi-
automatic model generation in the simulation context means an approach in which the simulation model 
generation is not carried out manually with the modeling tools or the programming environment, but rather 
is generated from external data sources using interfaces and algorithms (Bergmann and Strassburger 2010). 

According to Bergmann and Strassburger (2010) and Gmilkowsky et al. (1998), the approaches of 

automatic data-driven model generation are roughly divided into the following classes. The three relevant 
classes for the automation of the building of DES models are parametric, structure-based and hybrid 
knowledge-based approaches. 

Parametric approaches are characterized by the fact that models are built on the basis of existing 
simulation modules stored in libraries, which are selected and configured by the model generator on the 
basis of parameters (Bergmann and Strassburger 2010). For example, the approach of Skoogh et al. (2012) 

refers to the parameterization of a model and includes all steps from the preparation of the raw data to their 
transformation into input data for a simulation model. 

The starting point for model generation in structure-based approaches is data describing the structure 
of the system to be mapped, in particular, factory layout data from corresponding CAD systems (Bergmann 
and Strassburger 2010). These include such approaches as the one approach of Lorenz and Schulze (1995) 
and the approach of Splanemann (1995). Lorenz and Schulze (1995) use CAD data and data from other 

information systems for semi-automatic model generation. The approach for the semi-automatic generation 
of simulation models  based on a STEP data exchange format (STEP: Standard for the Exchange of Product 
model data) by Splanemann (1995) also uses the layout as a primary data source in the form of CAD data. 
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Hybrid knowledge-based approaches combine methods of artificial intelligence (e.g. expert systems, 
neural networks) with the two approaches described above (Bergmann and Strassburger 2010). Hybrid 
approaches include the approaches, e.g. developed by Gmilkowsky et al. (1998) and Selke (2004). The vast 

majority of current semi-automatic or automatic model generation methods (Bergmann and Strassburger 
2010) can be classified as "hybrid" because they usually require additional expert knowledge for model 
generation. Therefore, most of the approaches cannot be clearly classified as parametric approaches or 
structure-based approaches. 

A lot of approaches to semi-automatic and automatic model generation are not universal and are often 
limited to one question or one of the life cycle phases of a factory (Bergmann and Strassburger 2010). For 

example, approaches such as Rooks (2009) support the planning phases of systems and approaches such as 
Splanemann (1995), Selke (2004), Jensen (2007) support the operating phase of a factory. 

An essential problem of automatic model generation is the representation of more complex system 
behavior. The spectrum of problems already starts with the mapping of simple control strategies. Rooks 
(2009) uses digital process planning as a data source for his developments and supplements this with layout 
information from another system. The approach presented by Rooks (2009) requires that the typically 

missing descriptions of rules of conduct be manually supplemented by the planners. This approach 
technically allows to generate executable simulation models semi-automatically, but it is questionable 
whether this approach can be implemented in practice. The work of Selke (2004) examines a different 
approach to the problem of generating control strategies. Here the model generation is located in a 
companion context and an attempt is made to recognize the control strategies automatically by evaluation 
of status data of the real system. The automatic generation of such behavior rules and logics is difficult and 

typically limited to simple decision rules or decision tables. Jensen (2007) develops a method for coupling 
different industrial production-related data storage systems with the goal of automatic model generation. 
The core of his work is the merging of different data sources into a data framework based on web services. 
These contain a logic with which these data can be flexibly processed in an Extensible Markup Language 
(XML) file. With this approach, questions such as capacity analyses, lot size determination and buffer 
dimensioning can be addressed. 

Mueller et al. (2007) presents a simulation framework that can generate a wide variety of manufacturing 
simulation models. This approach is based on the description of models using simulation data and aims at 
reducing the effort for verification and validation of models. The approach according to Mueller et al. 
(2007) uses existing theory for classical Petri nets and allows to make certain statements about the behavior 
of the generated simulation model. In Ruscheinski et al. (2018) a methodology for conducting simulation 
experiments is being developed. This approach supports the automatic generation of simulation experiments 

and facilitates the planning and execution of simulation experiments. A template for various simulation 
experiments and the documentation of a simulation model are used to automatically generate and execute 
statistical model test experiments and sensitivity analysis experiments. In this approach, the documentation 
of the experiments is also generated semi-automatically by the simulation expert using the documentation 
during model development to generate simulation experiments. 

In summary, it can be stated that various practical approaches exist towards generating simulation 

models semi-automatically. In most cases, however, these approaches are tailored to a specific operating 
scenario or research goals. Furthermore, a strict separation into planning and operational approaches can 
be observed. The technical implementations are very different due to the lack of standards. In addition, the 
variation of model structures is not taken into account in automatic model generation, for example in order 
to achieve the best possible system variant with regard to the simulation problem. The procedure for 
selecting a model with associated structural variants is also only considered statically in the approaches, 

whereby the future simulation models of the production systems must have the ability to adapt outside the 
corridor with predefined system solutions. Therefore, the simulation models should not only be generated 
automatically, but also the adaptability of the structures has to be considered. Approaches that consider 
adaptability are still rare. In the following section, an approach is presented in which structural variants of 
simulation models can be generated with the help of combinatory logic. 
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 COMBINATORY LOGIC 

A collection of several, structurally different, but largely identical contents of a (simulation) model or a 
software solution is also referred to, in computer science, as a (software) product line. The variability of 

simulation model structures can be defined as product lines of simulation models and poses particular 
challenges to software. Each point of variation can be realized by a set of features whose cardinality 
multiplicatively enters into the number of possible occurrences of the product line. With eight variation 
points with two possible implementations, up to 256 possible product characteristics are already created in 
this way. Consequently, it is extremely challenging to create and test the software of a realistic product line 
without automation and reuse. Furthermore, the multiplicative relationship between the costs for the 

selection and integration of features asymptotically always exceeds the additive connection between the 
total costs and the realization of separate features. Combinatory software synthesis is motivated by this cost 
composition. Independently implemented features in the form of a component repository are assumed and 
their selection and composition are automated by an algorithm. 

The idea of combinatory logic (CL) goes back to basic works for modern mathematics by David Hilbert 
and Haskell Curry (Curry 1930; Krazer 1905). Questions of type-inhabitation are mathematically well-

defined and enjoy a likewise rich research tradition (Statman 1979; Urzyczyn 1999; Düdder et al. 2012; 
Rehof and Urzyczyn 2011). The decidability and complexity of the restricted combinatory logic used with 
intersection types has been mathematically proven (Düdder et al. 2012). An implementation of the 
inhabitation algorithm suitable for the research project exists in the form of the Combinatory Logic 
Synthesizer (CLS) Framework (Bessai et al. 2014). The application has been successfully tested in 
numerous experiments (Bessai 2013; Vasileva 2013; Wolf 2013; Düdder et al. 2012). The relationship 

between type inhabitation and feature diagrams for software product lines has been formally proven 
mathematically (verified by a theorem prover), confirmed experimentally using a prototypical example. 
The formal proof and the application are published by peer review (Bessai et al. 2016). 

The heterogeneity of sub-problems in creating software makes it indispensable to use a synthetic 
approach that is strong enough in its expressive power to specify highly specialized issues in a problem-
dependent vocabulary. This requirement can be met by mapping to the synthesis problem of combinatory 

logic (Rehof 2013). Formally, the repository is interpreted as a collection Γ of combinators whose type 
corresponds to the interface specification of the respective software component. By using the intersection 
type system, types can be simultaneously extracted from the type system of the programming language used 
for implementation, and can include additional semantic characterizations. An example for such a semantic 
characterization is the function "Cel2Fhrt: (int → int)∩ (Cel → Fhrt)". Let us assume that the function 
converts a Celsius temperature into the corresponding Fahrenheit temperature. "Cel2Fhrt" denotes the 

function name, (int → int) the signature of the function with regard to native types. The function accepts 
an integer number as an argument and returns an integer number as the return value. (Cel → Fhrt) adds a 
semantic description of the function argument and the return value to the type signature. The integer number 
of the function argument therefore has the semantic meaning of a Celsius temperature, the return value 
therefore represents a Fahrenheit temperature. Types of this type make it possible to specify components in 
detail and to ensure that their composition is also correct in semantic terms when answering the type-

inhabitation question. 
The type-inhabitation question is answered in an algorithmic way: Can be from a given set of 

components (or combinators) "Γ" create a term "e" with the desired target type "τ" ("∃ e. Γ Ⱶ e: τ")?  
In the subsequent code generation, executable program code is generated from the developed models, 

without this having to be written by a developer "by hand". There are certainly similarities to compilers that 
also generate machine readable and executable programs from a previously written source code. However, 

code generators generate the source code that the compiler can accept. Just as there are separate 
programming languages for formulating source code, there are also languages for formulating models from 
which source code can be generated. 

2194



Wenzel, Rehof, Stolipin, and Winkels 

 

 

This method is now to be used in this application to generate executable simulation models from a 
collection of appropriately structured building blocks. During code generation, executable program code is 
generated from a automatically composed model without this having to be written "manually" by a 

developer. There are certainly similarities to compilers that also generate machine readable and executable 
programs from a previously written source code. However, code generators use one step earlier and generate 
the source code that the compiler can accept. Just as there are separate programming languages for 
formulating source code, there are also languages for formulating models from which source code can be 
generated. 

 APPLICATION AND EXAMPLE 

The Combinatory Logic Synthesizer (CLS) (Bessai et al. 2014) uses the principle of template-based code 
generation. A template describes a program code written as a kind of gap text. While parts of the code look 
like normal application code (JAVA code in the present case), other parts consist of wildcards that are 
populated according to requirements during the generation process. In the CLS framework, individual 
components can be added to the components. If a component is used in a solution, its code block will be 
inserted at the intended location in the entire template of the solution. At the end of the process, executable 

program code with the previously specified requirements is created. 
It is certainly easy to see that the approach of software synthesis by combinatory logic presented in the 

previous section is very well suited to automatically generate simulation models as well. This is mainly due 
to the fact that simulation models are also represented as program code in most of the common tools. For 
example, the AnyLogic simulation environment generates JAVA code executable from the graph created 
in the editor, which of course could also be generated by the CLS system. Other simulation environments, 

such as Plant Simulation, work in the same way, although in some cases with other programming languages. 
In order to clarify the general feasibility of the project, the general planned procedure will now be explained 
below with the help of a smaller example (Figure 1). 

 

 
Figure 1 shows a simple exemplary simulation model of a production line. In the example, a work piece 

is manufactured by a pre-assembly and a final assembly process. The aim is to determine the possible 
throughput per hour. In the model, in the sense of structural variance, the use of buffers in the production 

line, as well as the decision which modules are used (only module_assembly1, only module_assembly2, or 
both) should be optional. In order to determine which configuration of the process promises the highest 
throughput per hour, the simulation expert have to individually model and evaluate each of the 12 resulting 
opportunities. This is associated with a lot of modeling effort even in a small example. By contrast, the 
approach planned in this project allows the simulation expert to model only the individual components of 

Figure 1: Exemplary simulation model. 
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the process in an editor yet to be developed, and to provide them with appropriate types that reflect the 
dependencies in the model. For the example used in this paper, the components are represented in a 
repository in Figure 2. 

 

 
The repository is formed from the individual modules of the simulation model shown above. This has 

been broken down into its components and further variants are to be created from these components. 
Essential is the combinator called "end". It generates in JAVA code templates, which can later be used in 

module_assembly_group2:  

(String -> String -> String) & (buffer1 -> module_assembly1 -> 

module_assembly_process) 

 

buffer1: (String -> String) & (pre_assembly_process -> buffer1) 

 

buffer2: (String -> String) & (module_assembly_process -> buffer2) 

 

module_assembly1: String & module_assembly1 

 

module_assembly2: String & module_assembly2 

 

module_assembly_group5: (String -> String) & (buffer1 -> module_assembly1 

-> module_assembly_process) 

 

module_assembly_group1: (String -> String -> String -> String) & (buffer1 -> 

module_assembly1 

-> module_assembly2 -> module_assembly_process) 

 

module_assembly_group6: (String -> String -> String) & (pre_assembly_process -> 

module_assembly2 -> module_assembly_process) 

 

start: String & start 

 

end: (String -> SimModelCompilationUnit) & (final_assembly -> end) 

 

module_assembly_group4: (String -> String -> String -> String) & 

(pre_assembly_process -> module_assembly1 -> module_assembly2 -> 

module_assembly_process) 

 

module_assembly_group4: (String -> String -> String) & (pre_assembly_process -> 

module_assembly2 -> module_assembly_process) 

 

final_assembly: (String -> String) & (module_assembly_process -> final_assembly) 

 

final_assembly2: (String -> String) & (buffer2 -> final_assembly) 

 

pre_assembly: (String -> String) & (start -> pre_assembly_process) 

 

Figure 2: Combinator repository for simulation model synthesis. 
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simulation tools. All other combinators (or components) then add further components of the simulation 
model to be generated to this template. The dependencies between each combiner are defined by the 
semantic types in the combiner's signature. Thus, the signature of the combiner "final assembly" (Buffer 2 

=> final assembly) states that the code of the combiner "buffer2" must be present to generate the code from 
the combiner "final_assembly". Structural variance is covered by the fact that there is another combiner of 
the type "final_assembly" in the present repository. "final_assembly" has the signature 
"module_assembly_process => final_assembly", which thus does not require the buffer block. 
The inhabitation algorithm generates in this case all valid variants of the process, so both a solution that 
uses the first and a solution that uses the second “Final Assembly” combinator. In this case, a corresponding 

program code is generated in the background, which could be translated into code when developing the 
corresponding interfaces, which is accepted by a desired simulation software. This automatically creates a 
whole series of simulation models covering all possible variants that can occur in this model. Some of the 
variants of the generated structures can be seen in Figure 3. 

 

 
Even if only a part of the generated variants can be seen here, it is still ensured that the set of possible 

variants of the process is generated completely. In addition to the structures, the control logics can also be 
generated. This can be done by using appropriate combinators, which contain the control code. At the end 

of the generation process, all variants of a simulation model are available in executable form. These can 

Figure 3: Excerpt from the generated model structures. 
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then be executed and evaluated in the simulation tools, where it can be determined which of the structure 
variants is the most suitable for the respective application. 

 CONCLUSION AND FUTURE WORK 

In this paper, we have reviewed the current state of research in the automated generation of structural 
variants of simulation models of production systems. Our research has shown that, despite extensive work 
in the late 1990s, there are still a few executable and resilient approaches. Thus, structural variance still 
causes a large amount of manual work in the generation of simulation models, which can only be absorbed 
by complex remodeling of existing models. 
 Subsequently, we have identified an approach to address this gap. In our approach, structures of 

simulation models are generated from prefabricated component collections in a simulation tool, thus 
reducing modeling work. The goal of future research will be to further develop this approach and to 
implement a framework for the automatic generation of simulation models. Therefore it is necessary to use 
a large number of components from which such models can be generated. It is also necessary to process 
and record the relationships between individual components, their mutual relationships, and their associated 
control logics in a structured way. For this purpose it is our goal to design a taxonomy that maps the entire 

domain of the simulation components to create a structured semantic basis for the component-based 
synthesis of structural variants of simulation models. 
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