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ABSTRACT 

The emergence and steady adoption of machine communication protocols like the MTConnect are steering 
the manufacturing sector towards greater machine interoperability, higher operational productivity, 
substantial cost savings with advanced decision-making capabilities at the shop-floor level. MTConnect 
GitHub repository and NIST Smart Manufacturing Systems (SMS) Test Bed are two major resources for 
collecting data from CNC machines. However, these tools would be insufficient and protractive in 
Modeling & Simulation (M&S) scenarios where spawning hundreds of MTConnect agents and thousands 
of adapters with real-time virtual machining is necessary for advancing research in the digital supply chain. 
This paper introduces a flexible simulator testbed of multiple MTConnect agents and adapters for 
simulating Levels 0 & 1 of the ISA-95 framework and help support R&D activities in complex multi-
enterprise supply chain scenarios. To the best knowledge of the authors, there is no publicly accessible 
multi-enterprise MTConnect testbed yet. 

1 INTRODUCTION 

The term ‘Smart Manufacturing’ is characterized by the presence of an integrated and synergized system 
of hardware, software, and information operating to improve production efficiency and responding to 
dynamic changes through data-driven intelligent decision making. Producers are adopting smart 
manufacturing technologies to be profitable in the competitive global market and to support sustainability, 
reduce running-costs and perform basic machine monitoring at the shop floor (Shao et al. 2010; Lynn et al. 
2017; Flum et al. 2019). Methods like On-Machine Measurements (OMM) can be deployed on legacy 
equipment and assembly lines to monitor critical interfaces of a process (Lei et al. 2017) and support digital 
twin applications. Manufacturing Data Analytics (MDA), low-cost Internet of things (IOT) devices, 
advances in computational resources and global competitiveness are some of the key enablers of this newly 
founded intelligence colloquially referred to as ‘Industry 4.0’. 
 Digital Twin is one of the trending concepts in smart manufacturing (Garner-Trends 2018) and is 
projected to be omnipresent in future factories. It is a virtual representation of the physical process 
mimicking behavior in near real-time and has a multitude of applications in quality control, automation, 
design simulations, troubleshooting, manufacturing traceability and dynamic assessment across the product 
life cycle (PLC) (Parrott 2017). Thus, analysts can recognize actionable insights from enormous streams of 
shop floor data using advanced algorithms and domain knowledge (Brodsky et al. 2017).  
 Modeling and Simulation (M&S) concepts are extensively leveraged for understanding, analyzing and 
optimizing dynamic manufacturing systems (Negahban and Smith 2013). The biggest drawback with M&S 
is that 31% of time and resources are lost in gathering, processing and extracting suitable data (Bengtsson, 
2009). Research and development of smart manufacturing applications catering to multi-enterprise level 
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problems are impeded by the unavailability of simulation resources, multiple testbeds, robust architectures, 
and public-access shop-floor data repositories. For instance, a simulation experiment involving 100 virtual 
factories each with a separate MTConnect agent and multiple machines would be very costly to manually 
implement and time intensive to execute. As demonstrated by (Edstrom, 2017), connecting just 8 simulators 
to one MTConnect agent can take about 5 minutes in configuration files setup and adjustments. Beyond 
just setup time, M&S scenarios require that machine behavior be modeling into the virtual machines to 
simulate shop-floor conditions. 
 In this paper, we introduce the architecture of a fully-automated system capable of generating and 
sustaining real-time MTConnect agent simulators rapidly (MTConnect Standard, 2018).  To the best 
knowledge of the authors, there is no open-source or commercial grade MTConnect multi-agent, multi-
adaptor simulation platform yet. The focus of this paper is the overall architecture framework for creating 
a multi-enterprise simulated environment. This framework will help researchers in getting access to 
MTConnect compliant streams of data from multiple simulator agents in an efficient manner. This simulates 
the Level 0 and Level 1 operations specified in the ISA-95 standard for the integration of enterprise and 
control systems (ISA, 2017). The motivation behind choosing the MTConnect protocol is its steadily rising 
popularity (Figure 1), read-only-access nature and well-defined semantics implementable across a variety 
of industrial machines. This platform is an effort to support R&D applications in areas such as decentralized 
manufacturing (Angrish et al. 2018), integration of virtual machining models (Shin et al. 2016), 
crowdsourcing models on a high-level scale (Jain et al. 2015), simulating cyber-physical production 
systems (CPPS) (Kang and Lee 2018) , predictive maintenance (Vogl et al. 2016) with federated learning 
and M&S use-cases in planning & scheduling (Negahban and Smith 2013) . 

2 LITERATURE REVIEW 

2.1 Modeling & Simulation 

Modeling & Simulation (M&S) saves considerable costs and time by substituting the physical process with 
a mathematical model running on a computing device. Furthermore, M&S can be executed at an accelerated 
rate and conditions which may be impossible or even unethical to test in the real-world. In a fast-paced 
industry like manufacturing, M&S has immense value in territories like design, planning, hazard analysis, 
engineering, production, and training.  
 A study of 290 papers by (Negahban and Smith 2013) explores M&S opportunities and research in 
manufacturing system design, production system operations and simulation language/package 
development. The paper mentions the need for generic simulation modelling for facilitating reusability and 
interoperability between different industries. It also highlights contributions by the National Institute of 
Standards and Technology (NIST) researchers in creating generic manufacturing shop and virtual factories.   
 Some of the biggest requirements and challenges in implementing digital twins have been explained by 
(Shao and Deogratias 2018). Their study points out the hurdles in the development of digital manufacturing 
technologies and describes the relationships between IOT, Artificial intelligence, and digital threads. A 
prototype of the NC machining process with life cycle assessment was done in a simulated environment to 
achieve sustainable manufacturing (Shao et al. 2011).  In other works, (Jain et al. 2015)  proposed a standard 
based automatic generation of a virtual factory using a hybrid simulation approach.  
 The research team (Kibira et al. 2015) introduced a systematic method to drive a simulator behavior 
only from the parameters most pertinent to the problem statement. (Jain et al. 2017) demonstrated the usage 
of M&S and Manufacturing Data Analytics (MDA) in decision support through predictive and prescriptive 
models on a complete factory level. Other research shows an organization and key structure of a reusable 
knowledge base consisting of atomic, composite performance models and analytical dashboards for creating 
decision support systems (Brodsky et al. 2017).  
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2.2 MTConnect Protocol 

Two protocols that have gained immense popularity among manufacturing researchers over the last few 
years are 1) Object Linking and Embedding for Process Control Unified architecture (OPC UA) and 2) 
MTConnect. Both are open source, royalty-free, standards built on top of the Hyper Text Transfer Protocol 
(HTTP) layer and have their advantages and disadvantages. One notable difference is that MTConnect is a 
read-only protocol while OPC UA has read-write  features and often used in conjecture with Programmable 
Logic Controllers (PLC). Another distinguishing feature of MTConnect is that it provides a dictionary of 
contextualized technical vocabulary for data communication between machines and different OEM’s.  

 

 
 
 

  
 MTConnect plays a crucial role by smoothly connecting novel and legacy machines to software 
applications in a plug-n-play manner. For the uninitiated, MTConnect framework comprises of 3 central 
elements – (i) Adapter, (ii) Agent and (iii) Applications (Figure 2). An adapter is a software or hardware 
which extracts real-time, multi-type, signals at the device level and relays it over TCP/IP in Simple 
Hierarchical Data Representation (SHDR) format which is a time-stamped key-value pair delimited by the 
“|” symbol.  An agent is a program that reads incoming SHDR data from the various adapter ports listed in 
its configuration file. It parses the incoming data, validates the MTConnect schema compliance and 
translates it into a unified Extensible Markup Language (XML) document retrievable over a web browser 
with HTTP requests. Users can build applications with functionalities ranging from basic time-series 
visualization for statistical process control (SPC) to complex cyber-physical production systems (CPPS) 
(Hedberg et al. 2019).  
 It is possible to run simulators mimicking machine behavior and interacting with the original 
MTConnect agent. For the advancement of smart manufacturing R&D, AMT offers public access to the  
C++ agent software, adapter simulator and schema files on the official GitHub library (AMT, Github 
MTConnect, 2018). Customized adaptors and simulators are also commercially available to users through 
3rd party vendors and OEM’s. Some of these simulators have advanced machining capabilities like 
generating feed path x,y,z, coordinates data from a STEP-NC program (Shin et al. 2016). It is highly 
improbable that any simulator will possess the exact features of a physical machine. Nevertheless, statistical 
and stochastic variation can be programmed into its behavior to closely replicate machine operation. 
Researchers have performed simulations at the machine level, process level and manufacturing-cell level 
using discrete event simulation (DES) techniques (Jain et al. 2015)  
 Several research projects have employed MTConnect framework for developing conventional and 
advance manufacturing technologies such as web-based machine monitoring (Edrington et al. 2014; Lynn 
et al. 2017), knowledge resource center (KRC) or data management algorithms (Kang and Lee 2018). 
Researchers have investigated concepts like Fog computing with MTConnect DAQ (Data acquisition) by 

Figure 1: Google search volume for keywords 
“MTConnect” and “OPC UA” from 2008 – 2019. 

Figure 2: MTConnect Framework. 
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conducting a high-frequency vibrational analysis of dynamic machine parts (Lynn et al. 2018). Many other 
research projects use MTConnect for creating factory-level data acquisition (Yu et al. 2018) and building 
efficient virtual factories for simulations. (Jain et al. 2015) . 

2.3 Manufacturing Management and Analytics 

The MTConnect standard which is analogous to Bluetooth protocol for consumer electronics was developed 
with a vision for plug-n-play interoperability between industrial machines and software (Albert , 2007). 
This potentially augments efficient automation systems and management of manufacturing shop floor 
activities. Manufacturing management means optimizing operations and resources with both technologies 
and methods. Intelligent methods like virtual sensing can be deployed to accurately predict the energy 
consumption of a device , its tool path or uptime (Gittler et al. 2018).  Multi-level production planning 
through M&S and linear programming can be enhanced significantly by including dynamic factors like 
inventory buffering and real-time breakdown information (Kibira et al. 2016). Also, Artificial Intelligence 
techniques like reinforcement learning can be the cornerstone to novel methods like real-time batching of 
production orders (Zhang et al. 2018) and prognostic maintenance (Vogl et al. 2016). 

3 SYSTEM ARCHITECTURE 
The purpose of a multiple enterprise MTConnect simulator is to enable R&D and M&S in digital 
manufacturing technologies flexibly and efficiently. All the components of this simulator including the 
MTConnect agents are written in Python as it is one of the fastest growing programming languages 
(Spectrum, 2018). With a Flask micro-framework, the simulator has been converted into an intuitive web 
app. The system architecture and sub-systems are depicted in (Figure 3) and explained in the following. 

 
Figure 3: Simulation platform architecture. 

3.1 Virtual Organizations 

Every colored box in Figure 3 represents a unique virtual factory (manufacturing cell) having a random 
number of machines/digital twins and individual properties. Just like a physical factory, each virtual factory 
has a geographical location and metadata sampled through a database of cities. The top layer of the virtual 
factory is an MTConnect agent that assimilates real-time data from virtual machine adapters. A holistic 
view of 60 different virtual factories is shown in Figure 4, where red markers denote a non-operating 
enterprise, green markers with a star represent those running at full-capacity and so on. Clicking a marker 
pops up the dashboard of the corresponding manufacturing enterprise and displays Organization ID, Agent 
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Port number, URL Links to MTConnect agent and probe, number of virtual machines and a metric of 
capacity utilization. 
 

 
Figure 4: Federated view of 60 enterprises and respective MTConnect agents. 

3.2  MTConnect Adapter 

An Adapter is a piece of hardware or software that captures machine data through inbuilt machine sensors, 
external sensors or an application programming interface (API). An adapter may have “many-to-one”, “one-
to-one” or “one-to-many” relationship with the devices. The collected data is streamed via TCP/IP 
(Transmission Control Protocol/Internet Protocol) based socket servers in a fixed format which is 
timestamped and delimited (SHDR format). Each Adapter is bonded to a unique port address and tags the 
data with contextual information like ‘EVENTS’, ‘CONDITION’, ‘FEEDRATE’.  

3.3 MTConnect Agent  

This is the heart of the MTConnect standard which iteratively listens to incoming data from adapters and 
performs parsing, mapping and buffer storage service. It responds to client Representational State Transfer 
(REST) calls by sending an XML document of the translated data in a federated, structured hierarchical 
format. An MTConnect agent can be accessed through its IP:port address and supports queries through 
/sample, /current, /probe, /asset requests. 

• Probe request:  MTConnect returns a static XML document containing data-items description for 
the connected device(s). 

• Current request: It is a snapshot of the current values or states of available data-items in the 
device(s). MTConnect records change of state in data and has adjustable polling frequency rate. 

• Sample request: Since polling the agent with requests for current data continuously may 
overburden the server, the agent has temporary buffer storage retrievable with sequence IDs. 

• Asset request: An asset is an auxiliary device or tool connected to the main device and can be 
removed or replaced without affecting the main device.  
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3.4 User Module 

This is an intuitive web-based interface with login authentication, control functions and input features for 
the simulator testbed. Model warehouse selection functions and probabilistic behaviors could be stated at 
this juncture. It is a gateway programmed on the Flask micro-framework to intuitively and effortlessly 
manage the complex interconnections and computations of thousands of real-time servers in the backend.  

3.5 Control Panel  

Once the environment is generated and initialized, the user gets a view panel that displays the virtual 
organizations and a dashboard of their properties (Figure 4). Users can STOP or RESET the environment 
through the control panel. Extrinsic properties or events can also be triggered through this module. Tasks 
like manually ‘Shut down all factories in Ohio for 2 days’ or ‘Stop a particular virtual device’ in a simulation 
testbed which has 600 adapters and 60 agents (E=60, M=10) can be easily automated. 

3.6 Extrinsic Features 
Real-world data APIs could be integrated with the simulator programmatically. Using Weather API and 
GPS location in the master database, virtual factories in a particular region can be shut down during a ‘real 
world’ hurricane. In other prospective simulation, news from Twitter feed API and traffic data from Google 
maps API can be made to change STATE of machines and impact the supply chain and production 
decisions. The extrinsic features module of the testbed provides limitless simulation possibilities impacting 
the real-time MTConnect data streams. A MongoDB database connects to the external API’s and interacts 
with the MTConnect simulators. 

3.7 Models Warehouse 

During the generation process, the system pulls predefined properties, behaviors, and functions from the 
model warehouse. It is an essential element to this system bringing reusability, realism and integration to 
the virtual machines and respective organizations. Machine models and properties are stochastically 
distributed amongst the virtual factories, and can be reprogrammed as needed. For instance, the virtual 
factory size is assumed as directly proportional to the region population. Hence, the factories near New 
York city have more machines than the one near Raleigh city in North Carolina. 
 Similarly, virtual machines can generate data for cutting path with mathematical functions. Several 
mechanisms exist for generating and optimizing tool paths from STEP-NC files or G-Codes by performing 
simulations in multi-process manufacturing environments (Rauch et al. 2014). Figure 5 (a) shows the tool 
path with x = r*cos(t), y = r*sin(t) at different radius r and t. Figure 5 (b) shows a linear  cutting path.  
Real-time data functions will have interactions with overall machine operations like Planned Shutdowns 
and Breakdowns  as shown in Figure 5 (c).  

3.8 Master Database 
Once the environment is generated, meta-data such as GPS coordinates, unique ports and machines of the 
virtual factories are saved in masterdb.csv file. It is useful for quick access to environment parameters and 
for creating a dashboard view in the user control panel. Static data about the organizations and virtual 
machines are stored in each run of the simulation testbed. 
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Figure 5(a): Tool-path of virtual machine 1. Figure 5(b): Tool-path of virtual machine 2. 

 
Figure 5(c): Device STATE change at time “t”. 

3.9 Client Applications 

Although not an internal feature of the system, the real-time MTConnect data generated from the virtual 
factories is ingested by applications and processed accordingly. This simulation testbed current handles 3 
main client requests – Sample, Current  and Probe. 

4 PROCESS FLOW 

The backend mechanism and overall process flow (Table 1) in the simulation platform is described briefly 
in the next section. 

Table 1:  Various steps in the process are enumerated below. 

Step Name Stage Description 
Input 
Parameters 

Generate User enters parameters like number of organizations (Figure 6 a) 

Allocation Generate Auto-allocate metadata like Longitude-Latitude for organizations. 
Pull 
Models 

Generate Assign properties from the model warehouse to the virtual entities. 

Auto 
Coding 

Generate The assigned models merge with template source code and replicates 
subdirectories containing files for agent, adapters, XML docs, etc. 
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Create 
View 

Initialize Interactive map dashboard built using Folium package (Figure 4). 

Start Initialize Sequentially execute server files of MTConnect agents and adapters. Real-
time data communication takes place in an asynchronous and non-blocking 
manner. Asyncio network programming library drives high-performance web-
servers and event looping on agents essential for large volume data 
management. 

Agents 
XML 
Response 

Simulate Respond to MTConnect requests by returning devices.xml, current.xml and 
sample.xml files to the client (Figures 7a and 7b).  ElementTree library with 
XPath referencing achieves high-speed processing of data and saves a 
buffer.txt file in a last-in-first-out (LIFO) style. 

Events Simulate The system performs discrete event simulation in the virtual organizations 
according to the stochastic behavior defined by the user in master template 
files and influence of extrinsic factors 

Control Simulate Sustain system control features like ‘START’, ‘STOP’ (Figure 6 b). 

 
Figure 6 (a): Configuration page.       Figure 6 (b): Control page.  

 
Figure 7 (a): /CURRENT request.         Figure 7 (b): /PROBE request. 

5 USE-CASES 

In the following sections, some use cases for the multi-enterprise MTConnect simulation testbed are briefly 
described. Since this paper’s primary goal is introducing MTConnect testbed simulation tool, therefore the 
dynamisms, fidelity and standards pertaining to higher control levels have been assumed negligible. For a 
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small-sized manufacturing company or individual manufacturer, this assumption is pragmatic and 
reasonable. 

5.1 Artificial Intelligence for Breakdown Prediction 

Bill, a researcher at DIME Lab wants to design a breakdown prediction model for CNC machines using 
deep learning techniques that could be readily deployed in a real-world MTConnect compliant shop floor. 
He doesn’t have enough data, multiple physical machines or MTConnect agents access from manufacturers. 
Using this testbed, he simulates multiple virtual machines with breakdown models in the warehouse. He 
trains a deep learning algorithm on “A” set of virtual CNC machines and tests it on the “B” set using XML 
data fetched from /SAMPLE request. 

5.2 Client Application Testing 

A software developing firm wants to demonstrate a real-time multi-facility OEE monitoring application to 
the CEO of a large manufacturing group. This simulator helps them design, build and test the intended 
dashboard which pulls XML data from the MTConnect agents of different manufacturing units and 
computes the necessary KPIs. 

5.3 Combinatorial Optimization 

The procurement team at an Auto-Parts company is designing a system to save logistics costs and negotiate 
the price with suppliers through delivery time and urgency. They have access to MTConnect agents of 
supplier shop floors but can’t vary the actual physical conditions needed to design, build and test their 
optimization model. Hence, they use this simulation testbed and validate their application before testing on 
the real agents. 

5.4 Case Study 

Group of manufacturing companies “A” in Connecticut city have frequent emergency shutdowns due to 
“forest fires” in the region. They cause unforeseen production order delays and customer attrition. The 
company owners in the region want to develop an automated system that subcontracts immediate pending 
orders to similar manufacturers “B” in other cities at an optimal cost. This would save their reputation, 
mitigate losses and keep future schedules on track. We shall assume that “A” companies can do ‘Best 
Selection’, ‘Price negotiation’ and ‘fast decision making’ by checking the real-time capacity utilizations 
and capabilities of prospective subcontracting manufacturers. 
 For an order requirement of Type = F, Quantity = 150, Machine = GF, Customer Location = 
Connecticut (CT),we simulate 10 virtual factories each having a random number of machines in the range 
(5-12). The multi-enterprise MTConnect simulator testbed will stream real-time machine data of the 10 
virtual factories and is executing on a computer Xeon(R) CPU 3.50 GHz, x64  with 128 GB RAM. An 
optimization application running on a laptop Intel(R) i5 1.6 GHz represents the manufacturers “A”. 
  The search app queries the 10 MTConnect agents at ports 19200, 17500, 10700, 19000, 14200, 18900, 
13100, 14100, 13100, 11700 and receives relevant real-time data of devices from virtual factories plotted 
in (Figure 8).  
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Figure 8: KPI’s computed from MTConnect data of virtual factories in real-time through the testbed. 

 The algorithm computes KPI’s and ranks the top 3 organizations (Table 2). Then it minimizes the costs 
by assuming uniform weights and selecting Factory 10 as the best available subcontractor in the current 
time. The simulation was possible due to the availability of MTConnect data stream from the supplier’s 
machines revealing their current operational states. Hence, with the help of this simulator testbed, we 
successfully created this basic yet practical and useful application to test our algorithm with realtime 
MTConnect datastreams. 

Table 2 :  Top 3 Organizations ranked on different criterion. 

Rank Distance Experience Capability Availability 
1 Org 7 Org 2 Org 10 Org 10 
2 Org 10 Org 10 Org 7 Org 3 
3 Org 9 Org 3 Org 9 Org 5 

6 CONCLUSION AND FUTURE WORK 

This paper introduces a unique simulator testbed for MTConnect based machines in a multi-enterprise 
environment. As demonstrated above, the architecture can instantiate multiple virtual MTConnect agents 
and adapter enabling R&D and M&S of digital supply chain technologies. Some of the future work is to 
enhance the simulator’s error handling capability, integrate broad MTConnect schema validation and 
optimize memory management and computing resources. Our research is also directed towards building 
virtual models’ warehouse, MTConnect based predictive maintenance applications and to develop reliable 
device authentication methods. Future work encompasses the integration of other machine communication 
protocols like OPC/UA on this testbed and features to connect physical sensing devices for data gathering. 
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