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ABSTRACT

Due to the increasing importance of energy efficiency in manufacturing systems, this work analyzes the use of
two optimization algorithms, which allow an optimization of production systems. These two algorithms are
the brute force method and the Differential Evolution which is based on evolutionary strategy. The objective
value for the optimization is the energy efficiency, which is described by an innovative indicator system. This
is applicable to any hierarchical level of a production system and considers the interdependencies between
the individual processes. An exemplary production system is modeled as an event discrete simulation to
analyze the functionality of the optimization algorithms. that the Differential Evolution is able to calculate
the results in less time compared to the brute force method. But the Differential Evolution is not able
to identify the global optimum in any case. Its reliability depends on the parameterization of the three
available control variables.

1 INTRODUCTION

Due to social and political changes, the consideration of energy efficiency is becoming increasingly
important. This development includes political objectives to reduce CO2 emissions and primary energy
demand. The European Union aims to reduce emissions by 40 % and primary energy demand by 50 %
until 2050 (Ferderal Ministry for Economic Affairs and Energy. 2014; Ferderal Ministry for Environment,
Nature Conservation, Building and Nuclear Saftey. 2014a; May et al. 2015). These objectives will be
achieved by the transformation of energy systems. This transformation is based on the increasing use
of renewable energy sources and on increasing energy efficiency. This applies in principle to all sectors
(industry, commerce, households and transport), but industry has the greatest potential for improving
efficiency (Bunse et al. 2011). Exploiting this potential has the direct advantage for companies that costs
are decreased, which refers to the reduction of energy and emission certificate costs. An indirect advantage
is that the image of a company is improved by efficiency increases. This in turn has a positive effect on
sales, as customers prefer to buy their products from environmentally friendly companies (Dombrowski
et al. 2014).

The following analysis investigates to what extent optimization methods are suitable for improving
energy efficiency in the context of new planning, adaptation planning and production planning of factories.
These investigations focuses on the computation time of the optimization methods, because in future the
production planning will have to make decisions in real time. The time requirements arise from future
applications, which may include fluctuating energy prices or electrical demand side management. These
two applications enable the industry sector to support the energy system transformation. In particular,
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flexible load shifting can assist the stability of the electrical power grid (Graßl and Reinhart 2014). Today’s
energy market operates in time slots of 15 min, which is why the optimization algorithms have to achieve
outcomes below this time. For new planning and adaptation planning, significantly longer time periods are
available, which is why the computing time is less relevant for this purpose.

In general, two prerequisites are necessary for the optimization. First, all necessary information of
the production system have to be available and usable. This is not the case by default in the current
manufacturing systems. However, the ongoing industrial development (industry 4.0, digitization, internet
of things) shows that this information will be available in future adaptive production systems (Schuh et al.
2013). Second, the energy efficiency has to be represented by a suitable key performance indicator system.
This indicator system should be able to represent different process types (material transforming, energy
converting, logistic processes) and provide an indicator that serves as an optimization objective.

In order to use optimization methods for production systems in the context of new planning, adaptation
planning and production planning, the basics are first addressed in section 2. These basics include the
representation of energy efficiency by an innovative indicator system, the definition of the state space of
production systems and the description of the optimization algorithm Differential Evolution. Subsequently,
an exemplary manufacturing system is presented in section 3, which serves to analyze the optimization
procedures. Section 4 presents the optimization results, whereby the performance of the Differential
Evolution is related to the brute force optimization. Finally, section 5 summarizes the results and provides
an outlook on further research opportunities.

2 BASICS

The following section gives an overview about the basics, regarding the energy efficiency of manufacturing
systems in section 2.1, the state space of production systems in section 2.2 and the operating principle of
the non-linear, global optimization algorithm Differential Evolution in section 2.3.

2.1 Energy Efficiency

Energy efficiency is not a physical quantity and is therefore represented by key performance indicators.
Basically, the energy efficiency of a production process is defined as ratio between the usable output and
the energy used to produce it (Pérez-Lombard et al. 2013; Patterson 1996). Different types of indicators
can be developed depending on the consideration of inputs and outputs of a production process. Thus,
thermodynamic, thermodynamic-physical, thermodynamic-economic or economic indicators can be defined
(Patterson 1996). But the main problem of indicators for the shop floor level, as exemplary the specific
energy consumption, is that only one input and one output variable are set in relation. Most processes have
indeed more inputs and generate more than one output. Typically, a process and its operating resource
requires input workpieces and electric energy and manufactures products and exemplary waste heat. Due
to this, an innovative indicator system was developed in Meißner et al. (2018) to represent the efficiency
in more detail.

The indicator system consists of the Process Status Indicators (PSI) and the Process Interdependency
Indicators (PII). The PSIs are able to represent the efficiency of separate processes with an arbitrary number
of input and output variables. Furthermore, different types of inputs and outputs can be considered, as
exemplary the material flow or electric energy. Thus it is also possible to describe different process types,
such as material transforming, energy converting or logistic processes. Due to the fact that the PSIs are
designed to represent processes, it can be applied to all hierarchical levels of a production system. Based
on the PSIs, the Process Interdependency Indicators represent the interdependencies between processes
regarding energy efficiency (Meißner et al. 2018).

The PSIs consist of three indicators to describe different relations between the input and output values.
Therefore, Figure 1 shows an overview about the PSIs. The first indicator is the Energy Performance
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Indicator (EPI) which is defined as

EPIPPk,Ini,Out j =
Out j

Ini
.

The EPI describes the efficiency relation between one separate input Ini and one separate output Out j of
one production process PPk and is similar to the specific energy consumption. The indices i and j are
the counting variables for the input and output values respectively. The indice k counts the production
processes (PP) within one production system or process chain. Consequently, the number of EPIs depends
on the number of inputs and outputs. Further, each EPI has an individual unit which depends on the
combination of the considered input and output values (Meißner et al. 2018).
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Figure 1: Overview of the three Process Status Indicators.

Based on the EPI, the Combined Energy Performance Indicator (CEPI) represents the relation
between one output variable and all input variables of one process and is calculated as

CEPIPPk,Out j =
1

∑
n
i=1

bi
EPIPPk ,Ini,Out j

.

The variable n represents the maximum number of input variables of the considered production process. The
complexity for this indicator is to determine the individual rating factors bi for assessing the different input
variables. Objective of this rating is to assess the different impact of the inputs on the efficiency (Meißner
et al. 2018). Exemplary, the use of compressed air has a higher influence on the energy efficiency of a
production process compared to the use of electric energy, because the generation of compressed air is more
expensive (Meißner et al. 2018). Due to the fact that the economic consideration of manufacturing systems
is the most important one for companies, the assessment of input variables is done by economic rating
factors. Exemplary, the electric energy is rated in e/kWh and the input material in e/part. Also other
assessment methods are possible as the rating regarding CO2 emissions (Ferderal Ministry for Environment,
Nature Conservation, Building and Nuclear Saftey. 2014b).

Finally, the Grade Energy Performance Indicator (GEPI) describes the energy efficiency of one
production process regarding all inputs and outputs. It is defined as

GEPIPPk =
∑

m
j=1

Out j
CEPIre f ,Out j

∑
m
j=1

Out j
CEPIOut j

. (1)

As written in (1) the calculation of the GEPI depends on two CEPI values. First, the CEPIOut j represents
the actual state of the production process and is therefore calculated by measurement data. Second,
the CEPIre f ,Out j describes the reference state of the considered production process. This reference state
corresponds to an ideal manufacturing process which means that no idling occurs, processing times are fixed,
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energy consumption is fixed, no stochastic influences occur, no errors regarding the material flow occur,
technical equipment and employees are available to 100 %. Consequently, the value for the CEPIre f ,Out j

has to be determined before the indicator system can be used for monitoring manufacturing processes.
The advantage of the use of such a reference system is that the GEPI has no unit. In this way, different
processes, as material transforming, energy converting and logistic processes, can be represent by the same
indicator (Meißner et al. 2018). Furthermore, the GEPI can also be used to represent the energy efficiency
of processes at different hierarchical levels of a factory system.

Based on the GEPI the Sum Grade Energy Performance Indicator (SGEPI) is defined. The SGEPI
is able to represent the energy efficiency of a process chain and considers the interdependencies between
the single processes. The indicator is calculated as

SGEPI =
∑

o
k=1 GEPIPPk

o
.

The SGEPI summarizes the individual GEPIs of single processes of a process chain and standardize them
depending on the maximum number of processes o. The objective of this indicator is to create one value
which serves as an objective value for an optimization algorithm. For the SGEPI it has to be considered
that each process of the considered production system has the same influence on the energy efficiency of
the system. In the following, the SGEPI is used as optimization objective.

2.2 State Space of Production Systems

For an optimization algorithm it is necessary to define the state space of the considered optimization
problem. Regarding production systems the main characteristic is, that the various processes have discrete
operating points and not a continuous state space. Figure 2 shows a schematic manufacturing system with
five production processes. Each process has an individual number of discrete operating points (OP) which
represent different processing of material. The operating points can represent different products which are
processed or different possibilities to process one product. So, each process dispose about a operating point
quantity ZPPk that includes all operating points of the production process. Exemplary, the process PP1 in
Figure 2 has the operating point quantity ZPP1 = {1,2,3}. Further on, each operating point quantity disposes
about a lower bound LBPPk and an upper bound UBPPk . The state vector ~X contains the information about
all individual operating points of the various processes within the manufacturing system and is defined as

~X =


OPPP1 ∈ ZPP1

OPPP2 ∈ ZPP2

...
OPPPo ∈ ZPPo

 .

To represented the combination of operating points simplified, the operating state is defined as OS =
OPPP1 .OPPP2 . ... .OPPPo . The operating state is subsequently used to name the respective state of a manu-
facturing system.

2.3 Differential Evolution

Besides the brute force optimization the algorithm Differential Evolution is used as an optimization method.
This is a non-linear, global optimization algorithm based on evolutionary strategies. The Differential
Evolution is explained in detail in Price et al. (2005) and Figure 3 a) provides a general overview of its
functionality, which is briefly explained below. For the first investigations regarding the optimization of
production systems the DE/rand/1 algorithm of Price et al. (2005) is used. This is the classical Differential
Evolution, whereby Price et al. (2005) presents five more variants and their implementations.

First, the three control variables have to be defined by the user. These are the population size NP, the
step size FWeight and the crossover constant CR (Price et al. 2005; Storn and Price 1997; Das and Suganthan
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Figure 2: Discrete state space of production systems.
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Figure 3: Overview of the basics of the optimization
algorithm Differential Evolution.

2011). The definition of the control variables are discussed in more detail in the following explanations
with respect to the state space of manufacturing systems.

The next step is the initialization, which generates NP random parent vectors ~Xg,a within the state
space. These initialization vectors cover the complete state space, so that the starting problem of global
optimization is solved. The index g describes the generation of vectors and consequently the initialization
vectors are the first generation why g = 1 apply. The generated vectors are numbered starting by zero up
to NP−1 and this numbering is represented by the index a. For the algorithm, the population size must
be at least NP = 5 (Price et al. 2005; Storn and Price 1997; Das and Suganthan 2011).

After the initialization, the optimization loop starts with the steps mutation, crossover and selection.
The mutation calculates NP mutated vectors as

~Vg,a = ~Xg,γ +FWeight · (~Xg,α −~Xg,β ).

Figure 3 b) shows the mutation, whereby first two parent vectors ~Xg,α and ~Xg,β are chosen randomly. The
difference of these two vectors ∆~Xg,α,β is multiplicated with the step size FWeight and summarized to a third
randomly chosen parent vector ~Xg,γ . By this calculation it is important that the three randomly selected
parent vectors are different, why {

α 6= β 6= γ 6= δ

α,β ,γ,δ ∈ a

apply (Price et al. 2005; Storn and Price 1997; Das and Suganthan 2011). The step size can only assume
values between zero and two. Due to the state space of production systems, the use of non-integer values
is not meaningful. For this reason, only the step sizes zero, one and two are reasonably.

The fourth step is the crossover to determine the trial vector ~Ug,a, which is shown in Figure 3 c). Thereby
single elements of the mutated vector ~Vg,a are replaced by elements of a parent vector ~Xg,γ , which is also
selected randomly. If an element b is replaced, depends on the crossover constant CR and the randomly
determined value rand(b) and the calculation therefore is

ug,a,b =

{
vg,a,b rand(b)≤CR

xg,a,b rand(b)>CR
.
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The crossover constant CR can assume values between zero and one. An individual analysis must be carried
out to determine, which value range can be used to achieve the desired result. In general, the crossover
constant should be rather larger, whereby in the literature initialization values of 0.9 or 1 have proven
successful for most optimization problems (Price et al. 2005; Storn and Price 1997).

Next, the selection is done, which decides if the trial vector ~Ug,a or the original parent vector ~Xg,a
remains for the following generation. The Greedy criterion is used, which means that the vector with the
better objective function value is transferred to the next generation of parent vectors (Price et al. 2005;
Storn and Price 1997; Das and Suganthan 2011).

Finally, the termination criteria is evaluated to determine if a solution is sufficient. Five different
procedures or even a combination of these are available. These include the variants listed in the following:
objective met, limit the number of generation, population statistics, limited time, human monitoring. If
the termination criteria is fulfilled the optimization loop ends and the solution is determined. Otherwise
the optimization loop starts again with the mutation (Price et al. 2005; Storn and Price 1997; Das and
Suganthan 2011). Within the framework of the termination criteria, the determination of the maximum
number of iterations IItermax or the limitation of the number of generations is of interest. It has to be ensured
that the combination of the population size NP and the maximum number of iterations is smaller than the
number of operating states rOS. Accordingly,

NP · IItermax ≤ rOS (2)

applies so that no operating state is calculated more than once.
Another characteristic of Differential Evolution is that several optimization objectives can be considered,

so that a multi-criteria optimization is achievable. This enables the inclusion of further objectives in addition
to energy efficiency, such as throughput time or on-time delivery. The following studies focus on the
optimization of energy efficiency. For this reason, the previously introduced indicator SGEPI is selected
as the objective value for the optimization.

3 EXEMPLARY PRODUCTION SYSTEM

As an example application a production system is used which was developed in Delbrügger et al. (2019)
for an innovative multi-level simulation concept. A 3D visualization of this system is shown in Figure 4 a).
The original manufacturing system consists of two milling machines, two conveyor belts and four robots.
This production system is extended by the compressed air requirements of the two machining centers and
the generation of compressed air (Meißner et al. 2018). Furthermore, the logistical integration of the
production line to the receiving warehouse and outgoing warehouse of the factory is taken into account.
These two transport processes are carried out by a forklift truck which covers a distance of 45 m during each
transport. The schematic representation of these two extensions is shown in Figure 4 b) and the technical
properties of the operating resources are listed in Table 1.

The main characteristic of the production system is that the two milling machines dispose about six
different operating points to produce the workpiece in Figure 4 c). The features of these operating points
are listed in Table 2. The operating points differ in their electric energy consumption and processing time.
Furthermore, each machine is able to use compressed air or a combination of compressed air and cooling
lubricant for cooling and chip removal. In case that the combination of compressed air and cooling lubricant
is used, the compressed air requirements of both milling machines are lower. The choice of these two
options is independent of the previously mentioned operating points in terms of electric energy consumption
and processing time. This results in twelve operating points for each milling machine and 144 operating
states for the manufacturing system, which can be selected for machining the workpiece. The operating
points 1 to 6 of each milling machine represent the use of cooling lubricant and compressed air, while the
operating points 7 to 12 only use compressed air. Requirements of compressed air are covered by a typical
compressed air system which simulation model is presented in Meißner et al. (2018). The generation,
storage and distribution are taken into account and the control is carried out by a two-point control.
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Figure 4: Visualization of the exemplary production system and the manufactured product.

The simulation model of the presented production system is implemented in the simulation environment
Matlab / Simulink, using the toolbox SimEvents. A discrete event simulation is implemented, which has
the advantage of a shorter computing time. The electrical power requirements and the required volume
flows are represented by state flow diagrams. Each state therefore describes an operating point of the
respective operating resource. Both of the machining centers and their operating points are characterize
by the power values in Table 2. The other operating resources are modeled by their nominal values in
Table 1 as they only have one operating point. For the following analyses, a time interval of 7.5 hours
is considered and simulated in order to investigate the efficiency of the production system over one work
shift. The implementation of the Differential Evolution for Matlab is taken from Price et al. (2005) and
applied. The corresponding control variables are adjusted and the simulation model of the manufacturing
system is used as the objective function. The DE/rand/1 variant of the algorithm is used, as mentioned
before. To realize the brute force optimization, a loop construction is implemented, which runs through
all combinations of operating points of the two milling machines.

4 OPTIMIZATION RESULTS

In the following section, the two optimization methods will be tested on the production system presented
above. On the one hand, the aim is to show that optimization is possible in terms of energy efficiency and
energy flexibility. On the other hand, it is analyzed which optimization algorithm can be used for which
application purpose (new planning, adaptation planning, production planning).

4.1 Brute Force Results

In order to identify the most energy efficient operating state of the manufacturing system using brute
force, all 144 possible operating states are simulated and evaluated. Figure 5 and 6 show the resulting
objective values regarding the number of produced pieces, electric energy consumption and SGEPI. The
consideration of the physical objectives leads to a Pareto front, which is shown in Figure 5. Problematic
is that only two influencing factors on the efficiency are considered. Accordingly, only one input and one
output variable are considered. So, no exact statement can be reached which operating state works most
efficiently. The SGEPIs of the separate operating points shown in Figure 6 allow a more detailed approach
because all variables and their economic rating are considered. It appears that the operating state 8.7 is
the most efficient. According to Table 2, the energy requirements of both machining centers are the lowest
in this operating state and the machining times are the shortest. At the same time, the compressed air
requirement is higher compared to the operating state 2.1, which means that the compressed air system
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Table 1: Technical characteristics of the operating
resources.

Parameter Value
Forklift Truck FT:
Speed 1.667 m/s
Distance 45 m
Rated electric power 1 kW
Machine hour rate 22.45e/h
Conveyor belts C1 and C2:
Length 1 m
Rated electric power 0.09 kW
Machine hour rate 0.061e/h
Robots IR, PR1, PR2 and OR:
Number of axis 6
Rated electric power 8.8 kW
Machine hour rate 2.96e/h
Machining centers: MM1 MM2
Speed range 0-28000 rpm 0-18000 rpm
Maximum torque 48 Nm 130 Nm
Rated electric power 55 kW 35 kW
Machine hour rate 36.26e/h 36.26e/h
Compressed air system CAS:
Rated volume flow 72 Nm3/h
Maximum pressure 8 bar
Reservoir volume 1.5 m3

Rated electric power 6.7 kW
Machine hour rate 15.01e/h

Table 2: Characteristics of the different operating
points of the two machining centers.

Operating Processing Electric Electric
Point Time Power Energy

Milling Machine MM1:
1 / 7 115.4 s 13.49 kW 0.431 kWh
2 / 8 109.5 s 13.45 kW 0.408 kWh
3 / 9 134.4 s 12.57 kW 0.468 kWh
4 / 10 145.5 s 12.27 kW 0.495 kWh
5 / 11 294.6 s 9.87 kW 0.807 kWh
6 / 12 189.6 s 10.93 kW 0.566 kWh

Milling Machine MM2:
1 / 7 115.4 s 5.88 kW 0.187 kWh
2 / 8 127.6 s 5.57 kW 0.197 kWh
3 / 9 131.1 s 5.72 kW 0.207 kWh
4 / 10 145.6 s 5.27 kW 0.212 kWh
5 / 11 325.5 s 8.02 kW 0.721 kWh
6 / 12 168.1 s 10.34 kW 0.477 kWh

Chip removal and cooling Volume Flow
Milling Machine MM1:
Cooling lubricant and compressed air 3.19 m3/h
Compressed air 4.44 m3/h
Milling Machine MM2:
Cooling lubricant and compressed air 1.87 m3/h
Compressed air 3.59 m3/h

is more utilized. As a result, both the compressed air system and the entire production system are more
efficient using the operating state 8.7 compared to the state 2.1.

Especially the computation time has to be considered for the optimization method. In this case the
calculation needs 2.44 h. The detailed saving of simulation result data is included in this time which is not
mandatory for the application in a company. Due to this, there is potential to save time. But the computation
time is still high so the brute force algorithm cannot be used efficiently in production planning because
there is not enough time available. For new and adaptation planning, the computation time is acceptable.

4.2 Differential Evolution Results

In order to investigate the functionality of the Differential Evolution and at the same time the possible
value range of the three control variables, various simulation analyses are performed. The control variables
are varied in order to determine which combinations work most reliable for the presented optimization
problem. Each combination of control variables is simulated ten times to obtain a statistically relevant
result. The crossover constant CR varies between 0 and 1 with an increment of 0.25. The step size FWeight
is discreetly varied between the values 0 and 2. For the population size NP the values 5 and 10 are applied,
resulting in the maximum number of iterations IItermax from (2) to 28 and 14. A mathematical rounding
down to an integer value is always carried out so that the multiple calculation of operating states is avoided.
Apart from the limitation of iterations, no other termination criteria is considered, so that the algorithm
always runs through the maximum number of iterations in the following.

Table 3 gives an overview of the results obtained, with the main focus on identifying the most energy-
efficient operating state 8.7 and how often it is determined. It turns out that a crossover constant CR smaller
than 0.5 and greater than 0.75 generally fails to yield good results. The same applies to a step size FWeight
of 0. For the population size NP, it is shown that both investigated values can provide good optimization
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Figure 5: Brute force results regarding the physical
quantities of electric energy consumption and pro-
duced pieces. Only the operating states of the Pareto
front and those mentioned in the text are labeled.

Figure 6: Brute force optimization results regarding
the process interdependency indicator SGEPI.

results depending on the other two control variables. For a crossover constant of 0.5 and a step size of 1,
both population sizes yield good results. In contrast, for a step size of 2, only a population size of 10
provides good results. With a crossover constant of 0.75, only the combination of a step size of 1 and a
population size of 10 yields good results.

The Figures 7 to 9 show the evaluation of the control variable combinations which yield the best results
from Table 3 as box plots. Figure 7 shows that the combination of CR = 0.5, FWeight = 1 and NP = 5
provides the best results for the application of Differential Evolution. In the two cases where the operating
state 8.7 is not identified, the state 2.7 is returned as optimization result. This is the second most efficient
operating state, as shown in Figure 6. Therefore, this combination of control variables can be considered
as most reliable. Figure 8 shows the control variables CR = 0.5, FWeight = 2 and NP = 10. This combination
also yields good results. However, the states 7.7 and 8.8 are identified as deviations. Therefore, the control
variable combination from Figure 7 is more reliable. The same applies to the control variable combination
CR = 0.75, FWeight = 1 and NP = 10 in Figure 9.

Figure 7: Evaluation of the optimization results for
the control variables CR = 0.5, FWeight = 1 and NP =
{5,10}.

Figure 8: Evaluation of the optimization results for
the control variables CR = 0.5, FWeight = 2 and NP =
{5,10}.

Figure 9: Evaluation of the optimization results for the control variables CR = 0.75, FWeight = 1 and
NP = {5,10}.
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Table 3: Reliability of the Differential Evolution depending on the control variables.

Crossover constant Step size Population size Number of
CR FWeight NP correct result
0 0 5 0
0 0 10 1
0 1 5 0
0 1 10 2
0 2 5 0
0 2 10 3

0.25 0 5 0
0.25 0 10 2
0.25 1 5 6
0.25 1 10 6
0.25 2 5 1
0.25 2 10 3
0.5 0 5 2
0.5 0 10 5
0.5 1 5 8
0.5 1 10 7
0.5 2 5 4
0.5 2 10 8
0.75 0 5 0
0.75 0 10 2
0.75 1 5 4
0.75 1 10 8
0.75 2 5 5
0.75 2 10 5

1 0 5 0
1 0 10 0
1 1 5 4
1 1 10 7
1 2 5 6
1 2 10 4

The average computation time for one optimization run is 0.49 hours. Accordingly, there is a significant
reduction compared to the brute force algorithm. In the context of production planning, it must be analyzed
individually, whether such a computation time is sufficiently short so that Differential Evolution can be
applied. For new planning and adaptation planning, the computation time is as acceptable as the computation
time of brute force optimization. In this case, it has to be evaluated, if it is acceptable that the most energy
efficient operating state is not always identified.

5 CONCLUSION AND OUTLOOK

Due to industrial and political developments, the consideration of the energy efficiency of manufacturing
systems is an important factor for companies. Therefore, it is analyzed how optimization algorithms can be
used to improve efficiency. For this purpose, a universal performance indicator system is presented. This can
be applied at any hierarchical level and is able to handle different process types, as material transforming,
energy converting or logistic processes. Based on this indicator system, the Sum Grade Energy Performance
Indicator is used as optimization objective because the interactions between the processes are included in
this efficiency representation. The use of simulation models for factory planning is becoming increasingly
important, as various planning options can be tested before operation. Using a modeled production system
as an application example, two optimization algorithms are compared with each other. In optimization
methods, simulation models can be used as objective functions so that no mathematical objective functions
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have to be determined. The optimization of the efficiency by the brute force method is the reference
basis, in which all operating states of the production system are simulatively evaluated. Due to the time
required for this calculation, this procedure is only suitable for new and adaptation planning. For production
planning, the application of Differential Evolution is investigated. This is a non-linear, global algorithm
based on evolutionary strategies. For the application of Differential Evolution an investigation is carried
out, how the three control variables (population size, crossover constant and step size) have to be chosen
to realize a reliable optimization. The background is the discrete state space of production systems, which
is composed of the operating points of the individual operating resources. It shows that the Differential
Evolution delivers reliable results when parameterized correctly. But it does not always identify the global
optimum. For future investigations, it is advisable to analyze the determined range of control variables
in more detail, so that the reliability of the algorithm can be verified more precisely. The application
of other implementations of Differential Evolution from Price et al. (2005) is also of interest, since this
paper focuses on the classical variant of Differential Evolution. The consideration of other optimization
algorithms is also of general interest. This paper limits itself to the use of Differential Evolution to show
that the energy efficiency of production systems can be increased by optimization algorithms. Another
result is that the computation time for the use of Differential Evolution is clearly reduced compared to
brute force optimization. However, it must be checked whether the computation time is sufficiently short
for the individual application of production planning in companies. Especially for short-term changes
(e.g. flexible energy prices or demand side management) real-time decisions are necessary, which are not
realizable with the two presented optimization methods. A feasible solution is the application of machine
learning algorithms for further research. For example, in Zhang et al. (2017) Neuronal networks are used
to enable real-time job scheduling decisions. In addition to considering the energy efficiency of production
systems, other objectives, such as logistical aims, should be considered in future studies. This way, the
multi-criteria optimization of Differential Evolution can be tested. For this purpose the application of a
more complex production system respectively its simulation model is of interest.

Summarizing, both optimization algorithms are suitable to treat manufacturing systems. However,
the brute force algorithm is only suitable for new planning and adaptation planning because of its long
computation time. The Differential Evolution significantly reduces this computation time, but does not
always identify the global optimum depending on its parameterization.
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