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ABSTRACT 

The purpose of this panel is to discuss the state of the art in digital twin for manufacturing research and 
practice from the perspective of the simulation community. The panelists come from the US, Europe, and 
Asia representing academia, industry, and government. This paper begins with a short introduction to digital 
twins and then each panelist provides preliminary thoughts on concept, definitions, challenges, 

implementations, relevant standard activities, and future directions. Two panelists also report their digital 
twin projects and lessons learned. The panelists may have different viewpoints and may not totally agree 
with each other on some of the arguments, but the intention of the panel is not to unify researchers’ thinking, 
but to list the research questions, initiate a deeper discussion, and try to help researchers in the simulation 
community with their future study topics on digital twins for manufacturing.  

1 INTRODUCTION 

Recent technology advancement of smart sensors, Internet of Things (IoT), cloud computing, Artificial 

Intelligence (AI), Cyber-Physical Systems (CPS), and modeling and simulation make it possible to realize 

the “digital twin” of a manufacturing product, system, and process (Bolton 2016). These technologies 

enable better real-time data collection, computation, communication, integration, modeling, simulation, 

optimization, and control that are required by digital twins. “Digital Twin” has become an important 

component in programs and initiatives related to Smart Manufacturing, Digital Manufacturing, Advanced 
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Manufacturing, and Industry 4.0 globally. It is a “hot” topic among researchers, educators, software vendors, 

and practitioners in these fields, as one panelist indicates that searches of the key word “digital twin” has 

been growing rapidly since 2016.  On Gartner’s 2017 Hype Cycles of Emerging Technologies, digital twin 

is listed with a time to acceptance of (five to ten) years, i.e., one-half of companies, by 2022, will be using 

digital twins to achieve more efficient system performance analysis and improved productivity (Panetta 

2017). The International Data Corporation (IDC) forecasts that companies investing in digital twins will 

see improvements of 30% in cycle times of their critical processes in the next five years.  

However, manufacturers are not implementing or embracing digital twins as rapidly and efficiently as 

expected. This may be because digital twins are still in their infancy stage, and there is a lot of confusion 

about what they actually are, what they should include, and where to start to implement them. The lack of 

consensus among researchers and practitioners in different communities and different industrial sectors also  

hinders the acceptance of digital twins by manufacturers. Many companies, especially small- and medium-

sized enterprises (SMEs), do not have the expertise and resources required to study and understand the 

digital twin concept, definitions, and associated challenges; and then effectively implement the digital twin 

concept for their products and manufacturing operations. They typically have neither sufficient information 

on the required technologies and standards, nor systematic procedures guiding the implementation of a 

digital twin. In the simulation community, we thought that we knew digital twins better because we have 

been performing modeling and simulation for a few decades. However, with the opportunities of new 

technologies and data and the challenges and requirements of new data-driven and real-time modeling, we, 

as a community, should equip and update ourselves for this new era of modeling and simulation.   

The goal of this panel is to start a discussion regarding the state of the art in digital twins for 

manufacturing research and development from the perspective of the simulation community. The panelists 

come from the US (Guodong Shao and Sanjay Jain), Europe (Christoph Laroque and Oliver Rose), and 

Asia (Loo Hay Lee and Peter Lendermann). Among them are four researchers from academia (Sanjay Jain, 

Christoph Laroque, Oliver Rose, and Loo Hay Lee), one panelist from the US government (Guodong Shao), 

and one panelist from a software vendor (Peter Lendermann). Each panelist has provided preliminary 

thoughts on concept, definitions, challenges, implementations, and future directions. Two panelists also 

report on their digital twin projects and lessons learned. The panelists may have different viewpoints and 

may not totally agree with each other on some of the arguments, but the intention of the panel is not to unify 

researchers’ thinking, but to identify research questions, initiate a deeper discussion, and try to help 

researchers in the simulation community for their future study topics on digital twin for manufacturing.  
 The remainder of this paper contains the list of panelists’ statements, which represent their personal 
thoughts, their research findings, and their implementation results of digital twins.  

2 PANELIST STATEMENTS 

This section provides initial thoughts of each panelist on the simulation aspect of Digital Twin for Smart 
Manufacturing.    

2.1 Digital Twin for Smart Manufacturing: Impact on the Simulation Community and Relevant 

Standards (Guodong Shao) 

2.1.1 What is a digital twin? 

The digital twin concept was originated by Grieves in 2002 to create a digital informational construct of a 
physical system as an entity on its own. This digital information would be a “twin” of the information that 
was embedded within the physical system and be linked with that physical system through the entire 

lifecycle of the system (Grieves and Vickers 2017). The digital twin concept allows manufacturers to create 
models of their production systems and processes using real-time data collected from smart sensors and 
used for near-real-time analysis and control. The digital twin and the physical system are connected through 
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IoT or smart sensors and actuators. Synchronization between the digital twin and its physical twin, either 
online or offline, ensures that the production systems are constantly optimized as the digital twin receives 
real-time performance information from the physical system.  

Currently, there are multiple different definitions of the digital twin out there (Ahuett-Garza and 
Kurfess 2018; Coronado et al. 2018; Garetti et al. 2012; GE 2018; Haag and Anderl 2018; Hughes 2018; 
Negri et al. 2017; Siemens 2018; Tao et al. 2017).  Many of the definitions imply that a digital twin is an 
identical virtual duplication of a physical entity or an entire system. However, from my perspective, there 
may be multiple digital twins each representing different focus, aspect, or view of the system, i.e., each 
digital twin application should have its own focus. A digital twin is context-dependent and could be a partial 

representation of a physical system, it may consist of only relevant data and models that are specifically 
designed for their intended purpose (Boschert and Rosen 2018; Shao and Kibira 2018). 

2.1.2 What are the relationships between digital twins and simulation models? 

Many people may think that simulation models are digital twins. The fact is that a digital twin can be a 
simulation model, but a simulation model may not necessarily be a digital twin. Digital models used in 
simulations often have the same type of sensor information and controls of a digital twin, but the 

information may be generated and manipulated within the simulation. The simulation may replicate what 
could happen in the real world, but not necessarily what is currently happening (Wong 2018). Kritzinger et 
al. (2018) propose a classification of digital models into three subcategories based on their level of data 
integration between the physical and digital counterparts: (1) Digital model: a digital representation of an 
existing or planned physical object without any form of automated data exchange between the physical and 
digital objects. Most of the current offline simulation models are this kind of digital model; (2) Digital 

shadow: a digital model with an automated one-way data flow between the physical and digital objects, 
e.g., a simulation model using real-time sensor data as inputs (Yang et al. 2017); (3) Digital twin: a digital 
model with bi-directional data flow between the physical and digital objects, e.g., a simulation model that 
uses real-time sensor data as inputs and updates some of the parameters of a manufacturing process or 
equipment.  

2.1.3 Typical digital twin applications for smart manufacturing 

Digital twins can be used to ensure information continuity throughout the entire product/system lifecycle; 

perform real-time monitoring, predict system behavior, provide production control and optimization; view, 

analyze, and control the state of products or processes; enable preventive maintenance, and realize virtual 

commissioning. The applications of the digital twin concept help reduce resource downtime, improve 

product throughput and quality, reduce manufacturing costs, and ensure operation safety. Advanced digital 

twins may update products in the field and provide service to end-user customer (Hughes 2018). 

2.1.4 What are the research directions to promote digital twin applications in the simulation 

community? 

Digital twins are gaining more attention but are still in their early stage. There are a lot of challenges that 

need to be overcome before manufactures can effectively, economically, and correctly implement digital 

twin technologies. Manufacturers, especially SMEs, need help interpreting the concepts, relevant standards 

and technology implementations. In the simulation community, we need to help solve issues related to data 

management including data collection, data processing, and data analytics; real-time model synchronization 

that guarantees the digital twin reflects the current status of its physical twin; model generation that includes 

automatic data driven model creation and standard-based model generation; and model verification, 

validation, uncertainty quantification (VVUQ) (Shao and Kibira 2018; Lugaresi and Matta 2018). 

2087



Shao, Jain, Laroque, Lee, Lendermann, and Rose 
 

 

2.1.5 Current relevant standardization efforts 

Useful standards for digital twin implementation include guidelines for consistently performing credible 
digital twin modeling and specifications that define the information models and data formats to enable the 

interoperability of data and models within digital twins. NIST researchers currently participating in the 
development and testing of multiple such standards. Two of them are listed below: 
 

• ISO 23247 - Digital Twin Manufacturing Framework: is intended to provide a generic 
manufacturing digital twin development framework that can be instantiated for case-specific 
digital twin implementation. The standard will have four parts: (1) Overview and general 

principles, (2) Reference architecture, (3) Digital representation of physical manufacturing 
elements, and (4) Information exchange. The completed framework standard will provide 
guidelines, methods, and approaches for the development and implementation of manufacturing 
digital twins. It will also help facilitate the composability of models and interoperability among 
modules, provide examples of data collection, modeling and simulation, communication, 
integration, and applications of relevant standards. The framework will also enable the generation 

and management of common data and model components that most digital twins need to have to 
facilitate the reuse of these components. For example, a simulation components library or model 
template may be useful for composing and reusing components for future models. This standard is 
currently work-in-progress.  

• The American Society of Mechanical Engineers (ASME) Verification and Validation (V&V) 
standards committee is developing best practices, general guidance, and a common language for 

verification, validation, and uncertainty quantification for computational modeling and simulation 
in advanced manufacturing. The guidelines for incorporating VVUQ for data-driven models and 
throughout model lifecycle are especially applicable to digital twin development. It will allow 
better traceability, improved verification and validation capability, and better model credibility.  

2.2 From Virtual Factory to Digital Twin? (Sanjay Jain) 

The panel members’ inputs present a range of overlapping perspectives on digital twins in the context of 

manufacturing.  All the perspectives appear to agree on some major aspects. All of us consider digital twins 
to have simulation models as the key platform and include interfaces to the real system and to analytics 
applications as part of the concept. Some of us include a few analytics capabilities as part of the digital twin. 
Some of us explicitly identify the capability to vary level of details and supporting the lifecycle of the 
manufacturing system. With that overall agreement, the views appear to diverge a bit as we get into some 
details. 

The challenge appears to be in achieving an alignment in our understanding at the deeper level.  
Considering that all the panel members are long time participants of Winter Simulation Conference (WSC), 
a practitioner or even a researcher from outside the community may expect us to be quite well aligned. The 
differences in our perspectives underline the need to work towards a common understanding. If we, being 
a part of the same community over a long period, differ on the details, it is not surprising that a whole range 
of diverse viewpoints are found in the larger community of manufacturing practitioners and researchers. 

Interestingly the challenge of developing a common understanding of the digital twin concept is rather 
similar to the challenge with the virtual factory concept.   Based on Google Scholar searches the earliest 
mention of virtual factory appears to be by Fisher (1986) as below: 

“Perhaps the most important benefit that can be derived from the development of an intelligent factory 
design agent is the ability to create an electronic model of the factory for subsequent use by other KSs 
(knowledge-based systems) and problem solvers. This virtual factory would benefit, for example, redesign 

of a factory when a change in product line occurs because only change related information would need to 
be collected due to the a priori existence of a factory model.” 
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It can be seen that this original idea of virtual factory as an “electronic model” of the real factory that 
can be updated is quite similar to at least some definitions of digital twins. This is indeed why the challenge 
of definition of virtual factory has been referred to rather than any of other multitude of concepts that suffer 

from overuse with varying definitions. We submit that the digital twin in the context of manufacturing is 
almost the same concept as virtual factory, at least with the definition that we are using now and that is 
somewhat enhanced version of original idea described in Jain (1995). 

Virtual factory was conceptualized as going beyond the simulation of only the material flow and 
immediately associated resources and activities. The three major enhancements proposed were in taking an 
integrated view of multiple relevant aspects of the factory, developing the virtual factory in parallel with 

the development of a real factory through its life cycle, and simulating and analyzing at different resolution 
levels. The concept was more recently enhanced in Jain and Shao (2014) to include open standard based 
interfaces with data sources and with analytics capabilities and is shown in Figure 1. 

Figure 1: Virtual factory concept (adapted from Jain and Shao (2014)). 

It should be apparent that the virtual factory concept largely overlaps with the digital twin concept 
applied to manufacturing. Digital twin is clearly a more generic concept as it can be applied to other 
environments such as a port and it appears to be used frequently for products. One would need to use an 
additional specifier such as the factory’s digital twin. Some authors appear to use digital factory largely in 

the sense of factory’s digital twins. It will be beneficial to all to agree on the terminology to avoid potential 
miscommunications between the providers and users of such capabilities. 

It would help define not only one phrase representing the envisaged virtual factory or factory’s digital 
twin capability, but also successively larger subsets that provide a path to start small and build a factory’s 
true digital twin. The coining of digital model, shadow, and twin mentioned elsewhere in this paper is in 
the right direction and so is the idea of the increasing capabilities defined on four dimensions but perhaps 

a more comprehensive maturity model approach and/or additional dimensions are needed. Such a set would 
need to be developed via an international multi-party effort for wider acceptance. The development of the 
comprehensive model will help with better communication and allow practitioners and researchers to focus 
on advancing towards smart manufacturing without being lost in definitions.     
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The multi-resolution capability for the concept in Figure 1 will likely require multiple simulation 
paradigms for implementation including continuous simulation at for modeling individual manufacturing 
processes, discrete event simulation for modeling factory flow, and system dynamics for modeling 

interactions of business processes. Jain et al. (2015) present a virtual factory prototype that employs 
continuous simulation for modeling the turning process dynamics and kinematics, agent-based modeling 
for machine level model, and discrete event simulation for job shop level model.    While the use of multiple 
paradigms provides the capability for analysis appropriate to level of detail, it does increase the expertise 
requirement for the modelers and analysts to carry out the task. 

There are multiple challenges beyond definitions of the concept and the high expertise requirement for 

multiple resolution modeling that are facing manufacturers, particularly SMEs, interested in implementing 
their factory’s digital twins. These include the effort and expertise required to collect and set up data for 
simulation, build the interfaces, analyze the outputs, and provide timely input to the decision makers. 
Technology advancements in multiple fields are helping address the challenges. Jain, Narayanan, and Lee 
(2019) propose a standards-based infrastructure to move towards addressing the challenges.  

2.3 The Digital Twin for Simulation in Operations – Something new beyond marketing? 

(Christoph Laroque) 

Data-driven Decision Support such as Simulation, Advanced Data Analytics, and AI are changing how 
modern manufacturing processes are planned and executed. Within the vision of Industry 4.0 and Cyber-
Physical Production Systems, complex problems due to planning, scheduling and control of production, 
and logistic processes are derived by data-driven decisions in the nearer future. Thus, new processes and 
interoperable systems must be designed, and existing ones have to be improved, since Industry 4.0 has 

placed extremely high expectations on production systems to have substantial increase in productivity, 
resource efficiency, and level of automation. The deliverance of these expectations lies in the ability of 
manufacturing companies to accurately predict and plan their activities on the machine, the plant,  as well 
as at the supply-chain-level. 

Discrete event simulation (DES) is very suitable to model the reality in a manufacturing system with 
high fidelity. Such models are easy to parameterize and they are able to consider several influences 

including stochastic behavior. However, simulation models are challenged when it comes to operational 
decision support in manufacturing as well as logistics. The simulation models are very complex and need 
huge amount of production data and up to hours for the execution of simulation experiments. A better 
approach is to integrate the methods and algorithms from (big) data analytics and AI during the 
implementation of the “digital production twin” for different purposes, e.g., Predictive Maintenance or 
Workforce Scheduling. The digital twin represents the behavior of the corresponding real object or process 

and is compared with it at (mostly regular) defined points in time. A large amount of data can be used, the 
data is generated when implementing the Industry 4.0 concepts during operation as so-called “digital 
shadows.” 

 

Figure 2: Worldwide searches for the term “Digital Twin” (Source: Google Trends). 
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  One might say, that the concepts behind the innovative term “digital twin” might be old and known, 
which seems to be reasonably true from the perspective of a simulation expert. However, with the growing 
importance of searches for the term from all over the world (Figure 2 indicates that searches grow by 400% 

in the last two years) and within the technological roadmap of the larger consultancies, the “digital twin”’ 
might lead to a higher visibility in top-management and at the decision-makers desk (at least this panelist 
thinks so). 
 But also, from a technological perspective, it might be reasonable to think about innovative 
combinations of the existing data-driven methods for decision making or decision support with DES, 
specifically material flow simulation, in order to implement more applications of simulation in daily 

manufacturing operations to achieve better planning, scheduling, and control results. Especially, 
approaches from data analytics that perform pre-simulation data aggregation, selection, and analysis might 
lead to performing successful applications in the manufacturing practice. 

2.4 Building Toward the Digital Twin for the Smart System (Loo Hay Lee) 

A digital twin is the manifestation of the physical system in the digital world that can be used for various 
purposes. It can provide an environment for monitoring, testing, planning, and decision-making without 

real physical or time constraints. Besides the spatial representation of its physical counterpart, digital twin 
also needs to include simulation model and analytic methodologies.  
 The desired capability for the digital twin includes four dimensions as illustrated in Figure 3. Namely, 
the Connectivity that indicates the level of communication with its physical counterpart; the Visibility that  
indicates the ease of perception for human beings; the Granularity that indicates the detail level of the 
model, which can help us to look into the future scenarios in different fidelities; and the Analyzability that 

indicates how it can be used to assist for decision making (e.g., simulation optimization that can help us to 
find the best decision for the future; an analytics tool that can help us to learn based on the future simulated 
optimized data).  

 

Figure 3: The four dimensions of desired capability for digital twin. 
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We have developed an O2DES (object-oriented discrete-event simulation) framework as shown in 

Figure 4 (Zhou et al. 2017). With a rigorously defined Trinary modeling paradigm, the O2DES framework 

allows developers and researchers to implement algorithmic tools to perform various types of analysis 

including (1) simulation to handle discrete event model, (2) optimization in simulation that can help to 

model the operation decision, (3) simulation in optimization (SimOpt approach) that can help to find the 

best decision under each scenario (Xu et al. 2015; Xu et al. 2016), as well as (4) learning based decision-

making, i.e., simulation analytics that can learn the optimal decision function based on future optimized 

data. We have used this framework to develop digital twin for container terminal (Li et al. 2017; Zhou et 

al. 2018), aircraft spare part management (Li et al. 2015), warehouse (Pedrielli et al. 2016), and wafer fab 

plant.  

 

 

 

Figure 4: The illustration of O2DES framework with trinary modeling paradigm. 

 Digital twins are not only the crystal ball to look into future but also the doctors that help provide 

solution for the future. Digital twins can enable us to actively learn from future, so that we are more prepared 
for the future, and aim to learn for success. 

2.5 Challenges with regard to the Usefulness of Digital Twins (Peter Lendermann) 

The potential of the digital twin concept for the enhancement and continuous re-optimization of 
manufacturing and logistics operations has generally been recognized and accepted not only by academia 
but also by industry as it is an important backbone of the Industry 4.0 paradigm.  

 As mentioned by several co-panelists, simulation is an important enabler for creating a digital twin of 
a manufacturing and/or logistics system. However, a digital twin will never be able to be an “identical 
virtual duplication of a physical entity or an entire system” as  stated  by Shao, main reason being that the 
behavior of basically all manufacturing and logistics systems also involves human considerations and 
decision-making which inherently cannot be portrayed a computer simulation model. As such, the digital 
twin concept appears to be applicable mainly for highly automated systems with little human involvement.  

In D-SIMLAB Technologies, the concept of digital twin is currently pursued mainly for semiconductor 
manufacturing, in particular highly automated 300 mm wafer fabs. 
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An additional complication in such a manufacturing environment, however, is the high degree of 
randomness on the production floor, caused by process steps such as quality measurement that, dependent 
on their outcome, may or may not result in re-work. As such, meaningful deterministic forecasts are only 

possible for very short time horizons in the order of a few hours at maximum. 
Such deterministic forecasts are also the basis for complicated scheduling procedures that nowadays 

are used to optimize the material flow performance at critical equipment groups in wafer fabs. How this 
typically looks like in a wafer fab in terms of system architecture is outlined in the upper half of Figure 5. 

 

 

Figure 5: Simplified system architecture for material flow management in a wafer fab (upper half) and 
Digital Twin representing the cleaning area (lower half). 

 

An important question to be addressed through a digital twin could be, for example whether certain 
scheduling parameters can be enhanced and better parameter values can be identified consistently. However, 
in a cleaning area of a large 300 mm fab comprising more than 100 wet benches, furnaces, and metrology 
tools, for example, commercially available scheduling tools typically run at a frequency of  once every 10 
min, whereby the scheduling procedure runs most of this time and the remaining time is needed for data 
input and output. This basically means that the scheduler runs almost continuously and hence also the digital 

twin, i.e., the simulation model of the cleaning area (in which the scheduler would have to run equally 
frequently) will inherently not be able to run faster than real-time. Optimization of scheduling parameters, 
in the sense of what are the best parameter values under which circumstances, will therefore be possible 
only retrospectively by comparing the (simulated) performance associated with different scheduler settings 
for different historical down or lot arrival patterns. 
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As indicated in Figure 6, parallel execution of different scenarios will be required, otherwise a 
meaningful analysis of scheduling parameters will not be possible. Also, multiple instances of the 
Scheduling solution will be required, basically equivalent to the number of instances that would be required 

to compare different scenarios on a cloud infrastructure, posing challenges to the licensing models currently 
practiced by commercial vendors of scheduling solutions. 

 

 

Figure 6: Comparison of different Digital Twin settings on a parallel (Cloud) computing infrastructure. 

 

2.6 Some Simple Thoughts beyond the Industry 4.0 Hype (Oliver Rose) 

The term “Digital Twin” was coined as a part of the huge marketing campaign called Industrie/Industry 4.0 
to speed up digitalization in production and logistics. Computer simulation models of production and 
logistics models are in use since the 50s of the last century. A computer model is a digital twin per se. What 

is more important is the question of what will be achieved with a newly invented digital twin that could not 
be achieved with computer simulation of manufacturing systems before. In my opinion, the goals are the 
same, the concepts and methods are the same, and eventually the problems are the same. For high-fidelity 
trustworthy models we needed and need appropriate data sources that still do not exist in almost all 
industries, even in high-tech cutting-edge manufacturing facilities, after decades of trying to achieve digital 
factories, smart factories, and the like. The only difference compared to the approaches of the past is that 

our computer equipment that is used to analyze the data, build models, and run simulations became much 
more capable over the years: it is considerably faster and has more memory. This means that we can have 
more model details, more simulation runs, and improved methods for analyzing data and building models 
such as machine learning. But this is just an evolution of the same old concept and nothing that is 
fundamentally new. 

3 SUMMARY  

In this panel paper, the panelists’ statements are meant to aid researchers and manufacturers to have a better 
understanding of the concept, definition, challenges, and modeling requirements of digital twins. Two 
panelists also provided implementation examples to explain the digital twin concept and reported lessons 
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learned. The panelists’ statements represent their preliminary thoughts. The panelists may have different 
viewpoints, but all these viewpoints are worthwhile for further investigation and research.   
 This panel initiated a discussion on the topic of digital twin for smart manufacturing in the simulation 

community. The implementations of the digital twin concept have been initiated and better received in the 
design community for  monitoring and improving product design (e.g., jet engine or turbines) and 
performance throughout the product lifecycle (Grieves 2014). It is mainly because of the characteristics of 
the problems and the relevant technological advances, i.e., the existence of the formal models of the 
products (e.g., CAD models) and the capabilities of integrating the system representation models with the 
system analysis models. These factors facilitate the successful implementation of digital twins for products.  

The implementation of the digital twin concept in manufacturing has seen multiple approaches used 
with varying success as clear from the preceding statements of the panel members. The manufacturing 
community does not have the benefit of widely accepted formal models of the factory configuration or 
factory control, though there have been some efforts in this direction.  The Core Manufacturing Simulation 
Data (CMSD) standard (Riddick and Lee 2010) developed under the auspices of Simulation Interoperability 
Standards Organization (SISO) has been used by multiple researchers in the US and Europe for representing 

factory configuration data with associated simulation data, such as statistical distributions for processing 
times.  Lin and McGinnis (2017) show the feasibility of developing standard reference models for semantics 
and syntax of semiconductor manufacturing system models. Continued progress of such efforts will 
facilitate a more common approach for digital twins in manufacturing. 

In the WSC community, most of the manufacturing applications are DES models of the manufacturing 
systems, processes, and supply chains. Some work does use multiple paradigms as pointed out by one of 

the panelists.  Digital twins of manufacturing systems are anticipated to continue to largely use DES models.  
The simulation community is invited to help the move towards digital twins of manufacturing systems with 
efforts in the following tentative areas that are likely to get updated during the panel discussion at the 
conference: 

 
• Agree on a definition of digital twins in manufacturing perhaps with an associated maturity model 

that allows clear identification of their capabilities at each stage. 
• Agree on standard representations for configurations at each level of manufacturing hierarchy (e.g., 

machine, cell, line, factory, supply chain). The standards may vary for different manufacturing 
sectors. 

• Develop and agree on standard representation of manufacturing control systems at different 
hierarchical levels.   Again, the standards may vary for different manufacturing sectors. 

• Enhance the capabilities of real-time model generation and its validation. 
• Develop interfaces for model synchronization with its real manufacturing system counterpart. 
• Develop standards for interfaces between models with different simulation paradigms. 
• Integrate the digital twins with data analytics applications. 
• Integrate digital twins’ visualization capabilities (e.g., virtual reality(VR), augmented reality (AR), 

or mixed reality (MR)) if needed. 

• Develop standard infrastructure for digital twins for manufacturing in particular for their 
implementations by small and medium enterprises. 

 

DISCLAIMER  

No approval or endorsement of any commercial product by NIST is intended or implied. Certain 
commercial software systems are identified in this paper to facilitate understanding. Such identification 

does not imply that these software systems are necessarily the best available for the purpose. 
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