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ABSTRACT 

Multi-resolution simulation models of manufacturing system, such as the virtual factory, coupled with 
analytics offer exciting opportunities to manufacturers to exploit the increasing availability of data from 
their corresponding real factory at different hierarchical levels. A virtual factory model can be maintained 
as a live representation of the real factory and used to highly accelerate learning from data using analytics 
applications. These applications may range from machine level to manufacturing operations management 
level. While large corporations are already embarking on model based analytics initiatives, small and 
medium enterprises (SMEs) may find it challenging to set up a virtual factory model and analytics 
applications due to barriers of expertise and investments in hardware and software. This paper proposes a 
shared infrastructure for virtual factory model based analytics that can be employed by SMEs. A 
demonstration prototype of the proposed shared infrastructure is presented. 

1 INTRODUCTION 

Multiple trends are coming together to create exciting opportunities across all aspects of human lives. These 
trends include increasing computing power with accompanying reduction in its cost, increasing connectivity 
and speed across internet, increasing capabilities for data collection through sensors, and increasing access 
to data and applications via cloud and fog computing technologies. These trends have largely relaxed the 
constraints of computing power and data availability and enabled rapid growth in application and further 
development of technologies such as Internet of Things (IoT), artificial intelligence (AI) and analytics. The 
application of simulations and mathematical optimization techniques are rapidly growing too, taking 
advantage of the same trends. A number of these technologies have been around for years but were 
constrained in their applications due to lack of infrastructure of computing power, data access, and 
connectivity. For example, artificial intelligence attracted a lot of attention in 1980s building on special 
purpose languages such as PROLOG and LISP, special purpose hardware such as Texas Instruments 
Explorer workstation, and deployment of expert system applications for such varied fields as medical advice 
(Shortliffe 1986) and manufacturing scheduling (Jain et al. 1989). However, such developments plateaued 
with their growth constrained by the infrastructure limitations. 
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The ongoing rapid growth in infrastructure has not only provided an opportunity for development of 
earlier developed technologies, it has also spurred further developments across most of them. AI in 
particular has gained from a shift from mimicking human intelligence and rule based approaches of 1980s 
to now building on machine learning based analytics. Analytics applications employ increasingly rigorous 
and advanced applications involving large amount of computations. For example, Neural Networks are 
getting stacked for deep learning applications. Mathematical optimization and simulation applications have 
seen new developments based on the advancements in infrastructure. Simulations software today allow 
quick executions of large models that integrate multiple paradigms such as system dynamics and discrete 
event representations, compared to a couple of decades ago where applications of even single paradigm 
models were limited in size due to execution speed limitations. 

There are multitude of efforts for developing and deploying standalone applications based on the four 
technologies listed above, namely AI, analytics, mathematical optimization, and simulation. Efforts are also 
beginning to be reported that synergistically employ these technologies together. This paper proposes an 
infrastructure for an application that brings together simulation and analytics technologies for supporting 
manufacturing operations management and machine level decisions. Majority of recent and under 
development analytics applications analyze real data to identify patterns and develop insights to support 
decision making. However, the knowledgebase of such applications is restricted to analyzing scenarios that 
occur in real life and thus their predictions are credible within that envelope only. Simulation applications 
on the other hand can generate credible outputs for a range of what if scenarios. Using the simulation as a 
data-generator for a range of scenarios and using that data to train analytics application can increase the 
prediction envelope of the analytics application by several fold. Such use of simulation models to generate 
data, which is then analyzed by data driven analytics applications, has been referred to as model based 
analytics. 

This paper reports on the next step in bringing model based analytics closer to actual implementation. 
The progression of the work has been reported in successive years at this conference. Jain et al. (2017) 
presented initial work for model based analytics by linking a virtual factory prototype to a Neural Network 
(NN) for developing a meta model for manufacturing order promising. Jain et al. (2018) took the model 
based analytics further by linking virtual factory prototype to a Gaussian Process Regression (GPR) 
application and using the capability to compare NN and GPR for the order promising function. This paper 
proposes infrastructure for deploying the model based analytics capability to facilitate its eventual 
application by small and medium enterprises (SMEs). The emphasis is on SMEs since they generally lack 
the resources to develop and implement advanced technologies. 

The next section briefly reviews recent literature for similar efforts. Section 3 presents a modeling and 
analysis framework that has been developed with a focus on machine learning based analytics applications 
for manufacturing. The framework is enhanced in Section 4 to include simulation models and to link them 
with analytics applications to enable (simulation) model based analytics. A prototype implementation of 
the proposed infrastructure is described in Section 5. Section 6 concludes the paper with discussion of future 
directions. 

2 RELATED WORK 

2.1 Virtual Factory 

This paper uses the definition of a virtual factory as a multi-resolution simulation model of a manufacturing 
system capable of supporting analysis at different levels of hierarchy with interfaces to real factory and 
analytics applications. The definition largely overlaps with those of digital twin of factory, shop floor digital 
twin, and digital factory used by some authors (for example, see Garetti et al. 2012). Reported work over 
the last 2 years relevant to this definition of virtual factory are briefly reviewed in this section. The work 
focusing on virtual reality aspects or collaboration across manufacturers to make a “virtual factory” is not 
included here. Readers are referred to Jain et al. (2017) for relevant literature prior to 2017.  
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A number of efforts report development and implementation of virtual factory models with increasingly 
diverse applications and identify challenges. Hwang et al. (2017) use a virtual factory model to demonstrate 
and validate the use of an IoT based performance measurement system. Brenner and Hummel (2017) 
describe a prototype implementation of a digital twin in a learning factory setting. Modoni et al. (2018) 
present the digital twin of a factory as a digital factory and also as a virtual factory and highlight its benefits 
and technical challenges including the lack of interoperability of supporting software systems. Caggiano 
and Teti (2018) present a digital factory model that allows machine level modeling using a 3D simulation 
and cell level flow using a discrete event simulation. These efforts indicate continued development of the 
virtual factory concept with varied applications. 

2.2 Model Based Analytics for Manufacturing 

There appears to be little work reported that employs model based analytics for manufacturing applications. 
Giri et al. (2012) propose use of model based analytics for management of power grid and point to its 
capability for what-if analysis and coming up with corrective actions as a major benefit over measurement 
based analytics. Kajmakovic et al. (2018) propose to use model based analytics for predictive fail safe 
systems in industrial operations. Some authors identify the approach as simulation based analytics. Biller 
et al. (2017) modified simulation models of Silicon Carbide manufacturing operations and analyzed the 
outputs to address the challenge of limited data from a real facility. Ji and AbouRizk (2018) utilize 
simulation based analytics for decision support for pipe welding quality management in industrial 
construction. The opportunities offered by combination of simulation and data driven analytics models are 
being recognized and its increasing use is anticipated.  

2.3 Model Based Analytics Infrastructure 

The infrastructure for model based analytics and virtual factory has recently drawn attention of researchers. 
Chen and Lin (2017) support use of Factory Simulation as a Cloud Service (FSaaCS) for SMEs and identify 
two major issues, the need to convert models for different simulation systems available on different clouds 
and estimating the simulation time. They focus on load balancing approaches for FSaaCS. Coronado et al. 
(2018) describe a Manufacturing Execution System (MES) based on MTConnect protocol and cloud based 
technologies suitable for SMEs that can be used to develop a shop floor digital twin, an overlapping concept 
to virtual factory discussed above. The proposed MES could be one building block that SMEs can employ 
for developing the model. Further development can bring in analytical tools for model based analytics.  

A few efforts have been reported outside the manufacturing domain. Lee et al. (2013) present a model 
based analytics service available via cloud for building energy consumption. He et al. (2018) describe a 
multi-tier fog computing structure for model based analytics of large scale IoT for smart cities. Gausemeier 
et al. (2011) discuss integration of manufacturing with control engineering and information services and 
describe a general procedure model for integrative development of mechatronic products.  Lee et al. (2014) 
propose a framework for self-aware and self-maintained machines for Industry 4.0, which includes cyber 
physical systems and decision support systems, and address the trends of manufacturing service 
transformation in big data environment. To our knowledge, there is no framework that integrates simulation 
into the design and analytics aspects, thus expanding the data driven capabilities beyond the status quo. 

Overall, this brief review indicates that there is recognition that the advancements in simulation and 
data analytics are offering exciting potential for their combined application as model based analytics. 
Integration frameworks need to be developed or extended to incorporate such combinations. There is also 
recognition of an emerging need to facilitate the application of model based analytics through development 
of infrastructure particularly for SMEs.  

3 FRAMEWORK FOR DATA DRIVEN MODELS 

Data analytics (DA) allows identifying performance improvements across multiple levels of manufacturing 
system functionality. DA techniques have been applied in manufacturing for many years (Harding et al. 
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2006). Most of these DA applications, however, are addressed to very specific issues under specific 
conditions (Sharp et al. 2018). Furthermore, DA applications are prohibitively complex and expensive, 
especially to SMEs. This is because DA techniques often require expertise in data collection, data analysis, 
machine learning, and decision optimization. A typical SME cannot afford to have a DA expert on staff. 
Thus, manufacturers need an enhanced decision-support facility so that analysis results at the process level 
can be elevated and used to influence enterprise-level decision making faster and better. The manufacturing 
industry can benefit greatly if such facility can 1) represent a wide range of manufacturing problems, 2) 
connect them to appropriate DA solutions, and 3) translate DA results into decisions that impact 
manufacturing operations across different levels of hierarchy. To address the need, a model-based analytics 
framework for manufacturing has been developed (Narayanan and Lee 2018) and is shown in Figure 1.  
 

Figure 1: Model-based analytics framework for manufacturing. 

The framework consists of a set of software to connect independent cloud and third-party DA applications 
or services to core manufacturing models. The framework supports both model integration and service 
integration across the entire hierarchy. The goal of the framework is to help the manufacturing industry to 
match their requirements to appropriate analysis services. The framework consists of four major layers 
described below. 
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• The manufacturing system layer, representing the physical system, includes the physical factory, 
physical sensors, and other data generators. The physical system may be composed of multiple 
subsystems organized as different lines, departments, cells, etc. At lower levels of the hierarchy, 
various machine tools and equipment are used to performs steps in the process plan for different 
products.  

• The model ecosystem layer includes two major components: the domain-specific modeling 
environment and the library of meta-models. This layer provides the technical foundations for 
connecting a variety of analysis tools and services. The modeling environment will simplify system 
specification for manufacturing operations across different levels of hierarchy. It takes the domain-
specific modeling approach to model abstracts in digital representations for manufacturing systems. 
The digital, manufacturing-domain models are then converted into analytical-domain models using 
model transformation to facilitate DA applications. Meta models are used to describe various 
aspects of manufacturing systems, based on the essential elements and rules of the domain of the 
individual physical systems; they are presented in a standardized way to facilitate model exchange 
and integration (OMG 2016).  

• The transformation layer includes a set of model transformations or software tools that transfer 
system models into analysis models. It utilizes mapping algorithms that identify specific entities in 
the manufacturing-system domain and produce a corresponding entity in the analysis domain. The 
analysis model will be used to provide a solution to the manufacturing problem. When possible, 
the analysis model can be generated in a standard format, such as the Predictive Model Markup 
Language (PMML) (Guazzelli 2019), which can then be used with a variety of off-the-shelf 
analysis tools. 

• The cloud layer includes various third-party services addressing various analytics needs. The third-
party services can be standalone or cloud-based applications. The model ecosystem is connected to 
the cloud layer to allow various third-party tools to be used to perform analyses based on the system 
models.  

 
To support the interaction among the layers, the framework provides additional components such as 

model library, standard interfaces, digital thread, and analysis discovery services. The model library 
includes pre-built system models to accelerate system specification, analysis models for various analysis 
objectives, reference data sets for specific scenarios, and possibly, extensions based on custom scenarios 
and data by individual organizations. Standard interfaces, based on standardized protocols and guidelines, 
are provided to make it easier for manufacturers to use available analytics services on their system models. 
The framework uses digital thread (Society of Manufacturing Engineers 2011) mechanism to connect 
digital representations and their corresponding physical entities. The digital thread allows manufacturers to 
trace analysis results back to actual physical components of the system. This traceability is necessary and 
plays a key role in decision making. The analytics discovery service guides manufacturers to the appropriate 
analysis services based on their needs. The discovery service is a very important component of the 
framework since the manufacturing users often are not experts in analytics. The service discovery interface 
will make it easy for manufacturers to find implementations that will provide the analytics service 
appropriate for solving the relevant analysis problem. The implementation of such service will require a 
high level of expertise in both the manufacturing and the analytics domains.  

The core parts of the framework are the modeling techniques and the communication interface. 
Advanced modeling techniques are used to define intuitive and robust abstractions and interfaces for system 
specification and problem formulation. The framework is being developed using a service-oriented 
approach. The core modeling abstractions are being developed in a standardized way, e.g., the Core 
Manufacturing Simulation Model standard (Lee et al. 2011) has been used to facilitate the specification of 
complex manufacturing systems. Standard interfaces, e.g., PMML, are provided to communicate with third-
party services for various analysis tasks. The analysis services are being built relying on the accurate 
transfer of relevant information through the standard interfaces. In the initial implementation, the 
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framework is envisaged to carry only the basic items in each component. It is expected more component 
items will be developed through a collaborative effort by the community of researchers and practitioners.  

4 PROPOSED INFRASTRUCTURE 

In this section, we propose enhancements to the framework described in Section 3 to include simulation 
models in the framework and have their results be analyzed by data driven models.  

4.1 Enhanced Framework for Model Based Analytics 

Section 3 described the framework for data driven models for advanced manufacturing. Two of the essential 
components of the framework are the model ecosystem, which holds the digital representations of the 
manufacturing system, and the transformation layer, which enables the creation of data driven models from 
the digital representations. We extend these components to support simulation models. We extend the 
transformation layer to be able to automatically generate simulation models from the system representations 
in the model ecosystem. The implementation details are described in Section 5. Figure 2 shows the extended 
framework to support simulation models. 

The goal of the extended framework is to provide the ability to easily configure simulations of a 
manufacturing system. The extended framework will allow users to make arbitrary changes to the digital 
representation of the system to easily create new configurations of the system. A model transformation 
component will automatically generate a simulation model from the digital representation in a standard 
CMSD (Riddick and Lee 2010) format. This allows users to rapidly generate multiple simulation models 
for various configurations. The standard simulation model may then be imported into a variety of simulation 
tools to run simulations. These simulations can be used for various purposes, such as generating synthetic 
data for new data driven models, or for performing other types of optimizations. In the subsections below, 
we discuss these applications in more detail.  

4.2 Virtual Factory Model 

The “model” employed for model based analytics is a virtual factory in the context of manufacturing. The 
virtual factory is envisaged as a multi-resolution model that allows representation and analysis of the 
corresponding real factory at different levels of hierarchy. In a real factory, the performance can be analyzed 
at various levels such as machines, cells, departments, and the entire factory including their interactions 
with supporting system using the data streams from various sensors and data collection systems. The virtual 
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factory would allow analysis at the desired level of resolution similar to the real factory except it would 
have the advantage to create and analyze a range of future potential scenarios. The virtual factory will need 
to be closely linked to the real factory to be its high fidelity representation. The virtual factory will also 
need to be interfaced with data analytics applications similar to the real factory for this purpose. The virtual 
factory is proposed to reside in the extended model ecosystem to gain from defined interfaces to the real 
manufacturing system and the data driven models in the framework. 

The virtual factory will have a synergistic relationship with data driven applications. The primary intent 
is of course to have the virtual factory generate data for model based analysis. However, the analytics 
applications will help the virtual factory in return by improving the data used for simulations. For example, 
the data for machine failures can be continuously tracked and periodically analyzed to improve the 
distributions used to represent them in the virtual factory. 

4.3 Support for Model Development 

The framework provides an intuitive domain specific modeling environment that makes it easy for 
practitioners to develop digital models that closely and accurately represent their manufacturing systems. 
The modeling environment enforces rules that ensure that the models are sound, and allows for error 
checking. Digital threads trace relationships between model elements and the physical component that they 
represent. This allows us to develop rule based transformations that can automatically create other types of 
models from these models. One example of such a model transformation allowed us to generate neural 
networks for predicting energy consumption from milling machine models (Lechevalier et al. 2014).  
 In the extended framework, we implemented such a model transformation to generate a CMSD file as 
a standard representation of a simulation model. This transformation is completely automated, and allows 
users to make changes in the factory model and quickly generate simulation models. The CMSD file may 
be imported into a simulation tool such as AnyLogic to execute the simulation. More details of the 
implementation are presented in Section 5. 

4.4 Support for Analytics 

As stated before, the transformation layer of the framework implements various model transformations to 
generate analytic models from the system model. Data from the factory is used to train the analytic models. 
However, in many cases data from the factory is not available. For example, if the factory is newly set up, 
there may not be sufficient historic data. Also, the user may want to experiment with various factory 
configurations, and data may not be available for all of these new configurations. In such cases, it is 
beneficial to have this data generated synthetically through simulations. Figure 2 shows how simulations 
can be executed to generate simulated data, which can then be used to train the analytic models. 

5 INFRASTRUCTURE PROTOTYPE 

In this section, we present our preliminary implementation of the framework, and describe its use through 
an example. 

5.1 Implemented User Modeling Environment 

The model ecosystem shown in Figures 1 and 2 was implemented using the Generic Modeling Environment 
(GME) (Ledezci et. al. 2001). GME is an open source tool for creating configurable modeling 
environments. We developed a meta-model (abstract model) in GME that describes the main concepts and 
modeling rules of the model ecosystem. The meta-model defines the rules based on which models can be 
built. The concepts and relationships in the meta-model are “instantiated” to build models. The models 
represent actual items in the physical systems in that domain. Figure 3 shows a screenshot of the domain 
specific modeling environment in GME. It shows an instantiated model of a manufacturing process, 
showing the process parameters, metrics and variables. The tree structure on the right of Figure 3 represents 
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the hierarchical structure of the entire system model. The environment we implemented for this framework 
allows the user to model the factory layout, parts manufactured, the process plans, and the resources used.  

We implemented a model transformation that takes the factory representation shown in Figure 3, and 
generates a CMSD file. The CMSD file is an XML file that represents all the elements of the factory model 
necessary to create a simulation of the factory. We implemented a plug-in for the AnyLogic simulation 
tool, to read the standard CMSD file and generate an AnyLogic simulation model. We executed the 
simulation in AnyLogic, and generated data from the simulation. The generated data was then used to train 
machine learning models for cycle time predictions for the purpose of order promising. We generated a 
Neural Network (NN) and a Gaussian Process Regression (GPR) model. These models are described in 
Section 5.3. 

5.2 Implemented Virtual Factory Model 

The virtual factory model is based on the scenario described in Jain et al. (2017) and Jain et al. (2018). The 
use case is based on order promising for a small job shop and hence the corresponding model may be 
referred to as a virtual job shop. The job shop produces parts from three different material types. The goal 
is to predict a shipment date at the time of the order, based on the material type chosen for the part, and the 
current load on the shop.  

The job shop model was built in GME, in the domain specific modeling environment (DSME) described 
above. The DSME allows us to visually construct a hierarchical model of the job shop, and specify all the 
machine parameters within the model itself. The job shop model consists of a turning cell with four turning 
machines, and a milling cell with two milling machines. A process model is built in the DSME to describe 
the process flow. The model elements can be seen in the tree hierarchy on the right side of Figure 3. 
MillingStep and TurningStep specify the machine cells, and MainProcessSequence specifies the overall 
process sequence.  

We implemented a translator tool that automatically generates a standard CMSD file from the shop 
floor model specified in the DSME. This CMSD file was then imported into the AnyLogic simulation tool 
(using another plugin that we implemented), to execute the simulation. The virtual factory prototype does 

Figure 3: Model representation of a manufacturing process. 
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have the capability to utilize multi-resolution models with the most detailed level capable of modeling 
machine dynamics. However, with the focus on analyzing job shop cycle times for this study, only the 
discrete event model of material flow across the shop was used. We generated synthetic data for the scenario 
from the simulation, which was then used to train a prediction model for order promising. 

The advantage of building the model in the DSME and generating the simulation model, as opposed to 
building the simulation model directly in the simulation tool, is twofold. First, The DSME is designed to 
be used by a manufacturing domain expert, and uses concepts and visual representations that are easy to 
understand for a domain user. This can greatly accelerate model development, reduce model errors, and 
ease maintenance of models. Second, The DSME allows us to implement many different algorithms for 
various tasks in a more powerful and elegant way than does a simulation tool (which is restricted to 
simulation tasks). In particular, we can implement several model translators to generate other types of 
models from the specification in the DSME. For example, we implemented a Neural Network (NN) 
generator that can automatically generate a NN for a machine from its specification in the DSME 
(Lechevalier et al. 2014). This neural network can then be trained on data (real or synthetic) for that 
machine. Thus, from a single model in the DSME, we are able to generate and run a simulation, generate 
an NN model, and use the data from the simulation to train the NN. Figure 4 provides an overview of the 
infrastructure prototype. 

 

Figure 4. Overview of the implemented infrastructure prototype. 

5.3 Implemented Analytics Applications 

Based on the simulation model described above, we implemented two different machine learning models 
to predict throughput. We first trained a Neural Network (NN) model (Jain et al. 2017) for throughput 
prediction. We then generated a Gaussian Process Regression (GPR) model (Jain et al. 2018) for the same 
purpose, and compared it to the prediction accuracy of the NN model. We summarize these models here. 
For theoretical background on NNs and GPR, we refer the reader to Haykin (2004) and Rasmussen (2004). 
 The NN model takes a set of input variables and makes a prediction on a desired target variable. In our 
case, the target was “cycle time”, which was needed to estimate the expected time for order completion. 
The input variables included the material type, the number of parts in the order, and the current load on the 
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system. The material type is one of aluminum, steel or titanium, and is represented using one-hot encoding, 
i.e., it is represented by three variables (one for each material), with a zero or one depending on the material 
chosen. The load on the system is modeled by a triplet (nA, nS, nT), which denotes the parts of material type 
aluminum, steel, and titanium currently being processed in the system. For a new job shop, there is not 
sufficient real data to train a reliable model for predicting duration under many varying conditions. Our 
simulation model described previously overcomes this problem, by generating simulated data for a variety 
of shop conditions. The data generated by the simulation model is then used to train the NN model. The 
resulting NN model is capable of predicting an estimated duration for new orders, and can be used to give 
an estimated ship date when the shop is operational. 
  We also created a Gaussian Process Regression (GPR) model for duration prediction from the same 
simulated data. GPR is a probabilistic method of interpolation to determine the target value from the inputs. 
GPR produces a distribution of the expected target value, allowing us to account for uncertainty in the 
prediction. The GPR model uses the same inputs and outputs but provides a prediction window for the 
target based on the uncertainty. In input regions where sufficient training data was available to provide a 
reliable prediction, the uncertainty is small. Figure 5 shows a comparison of the NN and GPR models on 
simulated test data. The grey color bands around the GPR predictions represent the confidence bounds 
generated by GPR. More details of the comparison between these prediction models can be found in Jain 
et al. (2018). 

 

6 CONCLUSION 

This paper proposed an infrastructure for model based analytics with emphasis on orienting the capability 
for SMEs. A prototype implementation for the infrastructure has been described that uses a small virtual 
factory to generate cycle time performance data that is then analyzed by NN and GPR applications to 
develop a predictive model for order promising. The next proposed step is to use data from a larger real 
manufacturing system to set up the model based analytics capability and exercise it for addressing issues 

Figure 5: Comparing NN and GPR for cycle time predictions (Jain et al. 2018). 
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of interest to the decision makers. Future work may focus on successive iterations of enhancements in all 
the components of the framework including the interactions with manufacturing personnel, increasingly 
automated generations of virtual factory models, interfaces of virtual factory with real factory data systems, 
and interfaces of virtual factory for guided analytics driven by decision makers. 

DISCLAIMER  

No approval or endorsement of any commercial product by the National Institute of Standards and 
Technology (NIST) is intended or implied. Certain commercial software systems are identified in this paper 
to facilitate understanding. Such identification does not imply that these software systems are necessarily 
the best available for the purpose. 
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