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ABSTRACT

In this paper, we develop a stochastic simulation model for biomanufacturing risk analysis by focusing
on the production process from raw materials to finished drug substance. By exploring biotechnology
domain knowledge, we model how the properties or attributes of each batch dynamically evolve along
the production process. We consider main sources of uncertainty leading to batch-to-batch variation, such
as raw material biomass, cell culture, and target protein purification. The proposed simulation model
allows us to incorporate the underlying physical chemical interactions and also the no-wait constraint in
the purification process. It can be used to facilitate biomanufacturing risk management and guide coherent
operational decision making (i.e., production scheduling and quality control) so that the stability of bio-drug
quality can be improved while efficiently utilizing the resources and speeding up the time to market.

1 INTRODUCTION

The biomanufacturing industry is growing rapidly and becoming one of the key drivers of personalized
medicine and advancement of the life sciences, especially with the introduction of cell and gene therapy
products into the market. Different from traditional pharmaceuticals, the production of biopharmaceuticals
involves live cells which introduce huge uncertainties at different unit operations. Complexity and challenges
have also been brought by the frequent launch of new products, induction of personalized bio-therapy (e.g.,
CAR-T Cell therapy), and new process technologies, such as continuous manufacturing (Otto et al. 2014).
There is an increasing interest in the biopharma industry to develop science- and risk-based methodologies
that can integrate the information and data collected from each process unit operation, identify the critical
risk factors, and guide the end-to-end production process risk management.

Traditionally, chemical process simulation is used to predict the outcome of a certain procedure in a
biomanufacturing process. It mainly builds on analytic models and partial differential equations (PDEs)
to simulate the biological and chemical dynamics, e.g., thermodynamic properties (Nfor et al. 2009).
Such methodologies are often deterministic and focus on a small part of the biomanufacuring process.
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Operational research (OR) typically focuses on finding the optimal design, planning, and operational
decisions for complex stochastic systems. Mixed integer linear programming (Leachman et al. 2014;
Lakhdar and Papageorgiou 2008) and supply chain management methodologies (Fleischhacker and Zhao
2011) have been presented for planning decisions in biopharmaceutical manufacturing. Simulation models
(Saraph 2001; Lim et al. 2004; Kulkarni 2015) are also built for biomanufacturing processes under
traditional queueing network theory to analyze resource planning, scheduling, and material consumption
costs. Martagan et al. (2016, 2017, 2018) explore physical-chemical characteristics and incorporate biology-
induced randomness in either fermentation or chromatography stage, and develop Markov decision models
to optimize the corresponding operational policies.

However, state-of-the-art OR methodologies developed for biomanufacturing management have several
key limitations. First, the existing approaches often focus on developing general methodologies, and few of
them explore the pharmaceutical biotechnology domain knowledge (e.g., the underlying physical mechanics
causing the interdependence of raw material quality, production process, and bio-drug properties in safety
and efficacy). This potentially limits the OR methodology performance as well as its adoption in the
real applications. Second, as far as we know, existing approaches tend to focus on limited parts of the
biomanufacturing system and there is no appropriate and reliable end-to-end risk management framework
guiding coherent biomanufacturing operational decisions. Third, to the authors’ best knowledge, there is no
science- and risk-based OR methodology developed to facilitate the development of complex, efficient, and
flexible biopharmaceutical production systems, where many personalized bio-therapies requiring different
production processes share the same manufacturing resources.

In this paper, we develop a simulation model for the entire biopharmaceutical production process
from raw materials to the finished drug substance or active pharmaceutical ingredient (API). In simulation
modeling, we explore the underlying physical chemical interactions causing the interdependence of raw
material quality, production process, and bio-drug properties in safety and efficacy. For given decision
policies (i.e., production scheduling and quality control), the simulation models how the properties and
attributes of each batch evolve along the production process. We consider key sources of risk, including
raw material biomass variation and various uncertainties introduced from each production step in both
upstream cell culture and downstream target protein purification. Based on that, a comprehensive simulation
analysis framework is established to study the batch-to-batch variation and provide the insights on how to
improve the efficiency and stability of production process. In addition, for personalized bio-therapy, the
raw material could be each individual patient’s own cells, and the production process also depends on the
cell properties. Our simulation model could support flexible and personalized biomanufacturing.

The contributions of our study can be summarized as follows. We develop a stochastic simulation
model for the biopharmaceutical production process from raw materials to finished drug substance or API,
which can facilitate the end-to-end biomanufacturing risk management. In the simulation model, we explore
the biotechnology domain knowledge as well as queueing network modeling. We model the dynamic and
stochastic evolution of each batch property along the production process. The proposed simulation model
could guide the development of stable, efficient, and flexible biomanufacturing systems.

The paper is organized as follows: We provide the problem description and briefly introduce the
biopharmaceutical production system in Section 2. Then, we explore the biotechnology domain knowledge
and develop the simulation model for the production process in Section 3. In Section 4, we conduct a case
study on an antibody biodrug production system. We model the key sources of uncertainty and study the
system performance under various operational decision making schemes. We conclude in Section 5.

2 BIOMANUFACTURING PROCESS INTRODUCTION AND PROBLEM DESCRIPTION

In this paper, we focus on the biomanufacturing process from raw materials to finished drug substance
or API. The main steps of production process include: (1) pre-culture and expansion, (2) fermentation
and harvest, (3) centrifugation(s), (4) chromatography/purification, (5) filtration, and (6) quality control.
Steps (1)–(2) belong to upstream cell culture process and Steps (3)–(6) belong to downstream protein
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purification process. Here, we consider a biomanufacturing system producing various antibody bio-drugs
for illustration. Suppose the production of Type A bio-drugs requires external media. For Type B drugs,
we need to prepare the media internally. Once receiving the drug orders, the production process starts
based on upstream and downstream releasing policies. The logic of the production process is illustrated
in Figure 1. For simplification, suppose that there is always enough inventory of external media. The
production procedure for each batch of drug substance mainly includes upstream cell culture process (USP)
and downstream target protein purification (DSP).

Figure 1: Drug substance production process.

USP starts with pre-culture. Type A bio-drug directly starts inoculum fermentation. Finished inoculum
is moved to main fermentation vessel and start main fermentation. For producing any type B drug, the
corresponding media must be prepared before it starts the inoculum fermentation and main fermentation.
Media is a mixture of nutrients for cell growth or culture. It has a short lifetime (e.g., 2 hours used in the
empirical study). The media needs to be discarded and re-prepared if the waiting time exceeds that limit. For
simplification, suppose that media used for inoculum and main fermentation are prepared separately. The
downstream process is the same for both types of drugs. After the product is released to the downstream, it
starts with the centrifuge procedure, followed by one or multiple chromatography steps. Then, the purified
product goes through the filtration stage and final quality control before the final product substance of API
is obtained. After each step except for quality control, the used equipment needs to be cleaned.

During the production process, the main fermentation is critical and it takes up the biggest portion
of the production time. The resulting protein from main fermentation is usually fragile, inquiring the
“no-wait” constraint in the following downstream purification process. The no-wait constraint implies that
the product cannot wait between different steps. If there is no corresponding resource available during DSP,
the protein will degrade and will be discarded. In addition, due to the impurity percentage constraint of
the final product, certain “hopeless” batches need to be discarded after the main fermentation stage. This
saves the downstream purification resources for batches that could meet the final drug quality requirement
and contribute to the profit.

The complexity and variability occurring in the production process causes challenges. For example,
there exist complex interactions of hundreds of factors from different productions steps, which can impact
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drug quality, yield, and production cycle time. We are interested in end-to-end production process risk
analysis to control the batch-to-batch variation in yield (protein), quality (impurity), and production cycle
time. In system level, we are also interested in total yield, batch pass rate, and key resources utilization. In
this paper, we consider the interaction of several decisions, denoted by xxx, impacting on the biomanufacturing
system performance, including

1. the releasing policies for upstream cell culture and downstream target protein purification;
2. the threshold values used for systematic quality control after main fermentation process and finished

product substance, denoted by (γF ,γ). After main fermentation or production process, if the impurity
percentage is greater than γF or γ , the corresponding batch is thrown away;

3. the pooling window for the chromatography process.

Items 1 and 2 are production scheduling and quality control decisions, and the pooling window selection
belongs to the operational decision.

3 SIMULATION MODELING

In this section, we develop the stochastic simulation modeling the dynamic evolution of each batch
attributes along the production process, which can facilitate the end-to-end biopharmaceutical production
risk management and guide the operational decision making. Specifically, pre-culture starts with the bio-
mass attribute, denoted by X0. Here, we take the inoculum fermentation as a warm-up step and ignore
the attribute change before the main fermentation. After the main fermentation, each batch becomes the
drug product with attributes, including protein level X and impurity level I, which typically change during
centrifuge, chromatography and filtration processes. Thus, in Section 3.1, we present the production system
uncertainty quantification to study the batch-to-batch variation. Then, to model the dynamic evolution of
quality attributes for each batch through the production process, we explore the bio-chemical knowledge and
model the input-output stochastic relationship for each process unit operation including main fermentation,
centrifuge, chromatography, and filtration in Sections 3.2 and 3.3. As a difference to the classical simulation
modeling, the probability distributions for each process unit operation are developed to capture cell-level
dynamics and model the input-output stochastic relationship for each batch or entity.

3.1 Uncertainty Quantification

The simulation output depends on input models and decision variables. Suppose that there are L sources
of uncertainty in the biopharmaceutical production process. Denote the input models by F = {F1, . . . ,FL},
where F̀ with `= 1,2, . . . ,L quantifies the uncertainty from either raw materials quality or production steps.
Denote the decisions involved in the production process by xxx = (x1,x2, . . . ,xK)

>, including production pro-
cess parameters, scheduling releasing policy, thresholds of quality control at each step, the pooling window
in chromatography, etc. Then, given the input models and decisions (xxx,F), the batch-to-batch detailed simu-
lation output is YYY (xxx,F) = {Yji(xxx,F), j = 1, . . . ,J; i = 1, . . . ,n}, where YYY j(xxx,F) = (Yj1(xxx,F), . . . ,Yjn(xxx,F))>

is the simulation output from the j-th replication and Yji(xxx,F) represents the i-th batch result. Notice
Yji(xxx,F) could correspond to protein/impurity level, and cycle time.

Given any (xxx,F), we are interested in analyzing the steady state batch-to-batch variation measured
by the standard deviation (SD) of simulation-detailed output, denoted by ρ(xxx,F) = Var1/2[Yji(xxx,F)]. It
is estimated by using the sample variance of simulation batch outputs. Then, the output from the j-th
replication can be written as

ρ̂ j(xxx,F) = ρ(xxx,F)+ ε j(xxx,F),

where ρ̂2
j (xxx,F) =

1
n−1

∑
n
i=1 (Yji(xxx,F)− Ȳj(xxx,F))

2, Ȳj(xxx,F) =
1
n

∑
n
i=1Yji(xxx,F), and ε j(xxx,F) is the corre-

sponding simulation estimation error. We average the estimates from all J replications and obtain the
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estimated response,

ρ̂(xxx,F) =
1
J

J

∑
j=1

ρ̂ j(xxx,F). (1)

Notice that we use the stationary distribution of Yji(x,F) as i→∞ to characterize the variability. Because the
number of batches for each product is often very limited in the real biomanufacturing industry, the variance
or SD is used to measure the batch-to-batch variation. In addition, we also consider batch mean response

ξ (xxx,F) = E[Yji(xxx,F)], which can be estimated from the simulation sample mean, ξ̂ j(xxx,F) =
1
n

∑
n
i=1Yji(xxx,F),

and ξ̂ (xxx,F) =
1
J

∑
J
j=1 ξ̂ j(xxx,F). For notation simplification, we only consider one input model here. The

underlying “correct” input model, denoted by Fc, is unknown and estimated by m real-world data, denoted
by XXX (0)

m ≡ {X (0)
1 ,X (0)

2 . . . , X (0)
m }, with X (0)

i
i.i.d.∼ Fc for i = 1,2, . . . ,m. We generate B bootstrapped input

model samples quantifying the input model estimation uncertainty as follows.

1. For b = 1,2, . . . ,B,

(1) generate the b-th bootstrap sample of data X̃XX
(b)
m ≡ {X̃

(b)
1 , X̃ (b)

2 . . . , X̃ (b)
m },

(2) use the b-th data X̃XX
(b)
m to obtain corresponding input model estimates F̂(b),

(3) run simulation at (xxx, F̂(b)), and get the batch-to-batch variation measure ρ̂(xxx, F̂(b)) by applying
Equation (1).

2. Let R̂b(xxx) ≡ ρ̂(xxx, F̂(b)) with b = 1,2, . . . ,B. We can construct the estimated (1− ξ )100% two-
sided percentile confidence interval (CI) for ρ(xxx,Fc) accounting for both input and simulation
uncertainties,

ĈI(xxx) = [R̂(d(ξ/2)Be)(xxx), R̂(d(1−ξ/2)Be)(xxx)], (2)

where R̂(1)(xxx)≤ R̂(2)(xxx)≤ . . .≤ R̂(B)(xxx) are order statistics.
3. The impact of input uncertainty can be estimated through the variance,

V̂ar
[
R̂b(xxx)

]
=

1
B−1

B

∑
b=1

(
R̂b(xxx)− R̄(xxx)

)2
with R̄(xxx) =

1
B

B

∑
b=1

R̂b(xxx). (3)

3.2 Upstream Process – Cell Culture

Here, we briefly describe the procedure of the upstream cell culture process and then discuss each step in
the USP. For simplification, suppose there is enough external media inventory. The USP starts with the
inoculum fermentation. Then, the inoculum would be transfered to the main vessel if there is any available
resource there. We clean the inoculum tank immediately and start main fermentation at the same time.
When the main fermentation is finished, we check the quality of the antigen. If the impurity proportion
is higher than a certain threshold γF , we throw away this batch. To produce Antigen B that requires the
internal media, we start with the media preparation. After that, we clean the mixing vessel immediately
and start the inoculum fermentation if the resource is available. The remaining procedure is the same with
Antigen A.
Raw Materials and Pre-Culture: To start the production of Antigen A, a batch of pre-culture first seizes
an inoculum tank and takes the fixed processing time; see Table 1. We model the variation of initial biomass
X0 of the pre-culture with a distribution, denoted by FX0 (which could be different for Antigens A and
B). This input model is unknown and estimated from the data. To start the production of Antigen B, we
seize the mixing vessel and prepare the internal media. When the media preparation is finished, the mixing
vessel needs to be cleaned immediately and then released. Notice that media has short lifetime, and needs
to be prepared again for main fermentation. If the inoculum tank as well as the media are available, we
start the inoculum fermentation. After finished, the inoculum tank needs to be cleaned and released.
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Main Fermentation: When the inoculum seizes one main vessel, the main fermentation starts. Otherwise,
it waits in the buffer. After the fixed processing time, a new batch of antigen entity is created. Its protein
and impurity levels are random functions of exponential-growth-phase time within processing time and the
initial bio-mass of pre-culture,

XF = X0 · eµT+εP and IF = XF ·α · eεI ,

where εP ∼N(0,σ2
P) and εI ∼N(0,σ2

I ) quantify the batch-to-batch variations in protein and impurity levels
after fermentation. The exponential phase time T ∼FT is the effective time that protein grows in fermentation
(Doran 1995). It is random and different for each batch. The unknown input model FT can be estimated
from the real-world exponential phase time data {T1, . . . ,Tm} and the unknown parameters (µ,α,σ2

P,σ
2
I )

are estimated from the data (X0,i,XF,i,Ti, IF,i) with i = 1,2, . . . ,m, where m is the data size. Notice that these
parameters can be estimated by using linear regression after taking log-transformation. After a batch of
antigen is generated, we discard it if its impurity percentage is greater than the pre-determined threshold γF .
Otherwise, the antigen will be stored in the freezing buffer before released to the downstream processes.
Again a cleaning process would start right after the main fermentation. Notice that if γF is set too high,
we may waste the DSP resource on producing those hopeless batches. If it is too low, we may discard
some profitable batches.

3.3 Downstream Process – Target Protein Purification

The DSP starts with the centrifuge (it includes the inactivation). Antigens are fragile and require the
“non-wait” constraint, which prevents the antigen wait during the whole DSP. Thus, the DSP releasing
police is a critical decision for the biomanufacturing process. Since the chromatography usually takes
the most time, we can start with a policy that releases the antigen when the previous batch finishes the
chromatography process. Specifically, in the DSP, a batch of antigen goes to the centrifuge station first,
seizes an equipment, and delays a fixed processing time; see Table 1. The centrifuge does not change the
protein level, but removes a random portion of impurity; see Equation (4). When we finish this batch, the
centrifuge equipment goes to the cleaning process with fixed cleaning time, and then it is released. After
the centrifuge, the antigen goes to the chromatography process which also seizes an equipment and delays
the fixed processing time; see Table 1. Each chromatograph step removes a random proportion of protein
and impurity; see Equation (5). Based on the resulting impurity proportion, if it is greater than γ , we repeat
chromatography (need to switch the antigen to another equipment). Suppose that γ is the FDA quality
requirement for Antigens A and B. Thus, the number of chromatograph steps is random (which depends
on the batch quality) with the certain upper limit, say M. After each step, the corresponding equipment
needs to be cleaned and then released. If the resulting impurity proportion cannot be reduced to ≤ γ after
M steps, this batch is discarded.

Then, the antigen goes to the filtration process, seizes an equipment and delays a fixed processing
time. Filtration slightly reduces the impurity level; see Equation (6). When the filtration is finished, the
equipment goes to the cleaning procedure and is released after a fixed cleaning time. After that, the antigen
goes to the quality control process, which takes a fixed testing time to check the quality of the finished
API. The final impurity proportion must be no greater than the quality requirement γ .
Centrifuge: The protein and impurity levels before and after centrifuge are denoted by (XF , IF) and (XC, IC).
We can assume that this step does not change the protein, i.e., XC ≡ XF (Delahaye et al. 2015), and it
removes a random proportion of impurity,

IC = Q · IF . (4)

The distribution of random ratio Q could be estimated by using data (IF,i, IC,i) with i = 1,2, . . . ,m. In the
case study, we assume that Q follows uniform distribution Q∼Unif(0.4,0.5) (see Leung 2007; Gottschalk
2009; Roush and Lu 2008).
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Table 1: Fixed processing time for each step.

Time (hours) Antigen A Clean Equipment
Inoculum Fermentation 24 1.5

Media Preparation — 0.6
Main Fermentation 72 6.0

Centrifuge 2.5 0.2
Chromatography 8.0 1.5

Filtration 2.0 0.5
Quality Control 2.0 —

Chromatography: The protein and impurity levels of antigen before and after each chromatography step
are denoted by (XC, IC) and (XP, IP), given the pooling window w. Chromatography techniques rely on
difference in physical-chemical characteristics between proteins and impurities to separate one from other.
The output lanes would have different proportions of protein and impurities. A pooling window specified
by the starting/ending lanes and chromatography technique expects to “pool out” the part containing more
protein and less impurities. The pooling window is an operational decision that could differ for each batch
and each step. In our case study, we adopt the 3-step pooling window policy in Martagan et al. (2017).
Given a pooling window, each chromatograph step removes random proportions of protein and impurity,

XP = (QP|w) ·XC and IP = (QI|w) · IC; (5)

see Martagan et al. (2017). Given the data QP,i, QI,i and wi for i = 1,2, . . . ,m from each chromatography
step, we need to estimate the distributions of random ratios QP|w and QI|w.
Filtration: Denote the antigen protein and impurity levels before and after filtration with (XP, IP) and
(X f r, I f r). Filtration works as a polishing procedure. It only slightly reduces the impurity,

I f r = Q f r · IP, (6)

and does not change the protein level, X f r = XP. In the case study, we assume that the random ratio Q f r
again follows a uniform distribution, Q f r ∼ Unif(0.99,1).

4 AN ANTIBODY PRODUCTION CASE STUDY

In this case study, due to the limitation of our data, we consider the value stream that only produces
Antigen A. The resources of bio-drug substance production system in Figure 1 include the equipments
needed in each step, i.e., inoculum tank [5], mixing vessel [5], main vessel [5], centrifuge equipment [2],
chromatography [5] and filtration equipments [2], where the number in the bracket [·] gives the capacity
or the number of equipments at each working station. One batch at each production step only requires
one corresponding equipment. For simplification, suppose each production step requires a fixed processing
time (in hours) as given in Table 1. We need to clean up the equipment immediately after production and
the cleaning time for each equipment is also provided in Table 1.

4.1 Input Modeling and Uncertainty Quantification

In this section, we provide the input modeling procedure for each key source of uncertainty in the
biomanufacturing production process. We further describe the detailed procedure to fit the corresponding
input models given the real-world data.
Raw Materials and Pre-Culture: We have collected the starting biomass data {X0,1,X0,2, . . . ,X0,m} of

pre-culture and also main fermentation, where X0,i
i.i.d.∼ FX0 for i= 1,2, . . . ,m. We consider the nonparametric

empirical distribution, F̂X0(x)=
1
m

∑
m
i=1 I(X0,i≤ x), and then use the bootstrap to quantify the input uncertainty.
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Main Fermentation: The data available for main fermentation include starting biomass X0,i, exponential
phase time Ti, and ending protein level XF,i, with i = 1,2, . . . ,m. Similarly, we use the empirical distribution

to model the randomness of exponential phase time, F̂T (t) =
1
m

∑
m
i=1 I(Ti ≤ t). For the protein model in the

main fermentation step, we can fit the linear regression,

logXF − logX0 = µT + εP,

and the parameter µ can be estimated by least-square, µ̂ = min
µ

∑
m
i=1 (logXF,i− logX0,i−µTi)

2 . Denote the

residuals ri = logXF,i− logX0,i− µ̂Ti. Then, σ2
P can be estimated by residual variance, σ̂2

P = ∑
m
i=1(ri−

r̄)2/(m−1), where r̄ = ∑
m
i=1 ri/m.

Since we do not have the corresponding impurities data IF,i, we set the coefficient α = 1.5 following
Martagan et al. (2017), and assume σI = β0σP. We would further study the sensitivity over the selection
of β0 in Section 4.2.
Centrifuge: Notice that we do not have the corresponding data IF,i, IC,i, and also it is not a very critical
process. We also directly apply a uniform distribution for random proportion Q, that Q ∼ Unif(0.4,0.5)
according to expert knowledge.
Chromatography: For each chromatography step, instead of having exact data for (QP,QI,w), we have
the mean proportions of protein and impurity for various candidate pooling windows, denoted by qP(w)
and qI(w), where w ∈ Sw and Sw = {w1,w2, . . . ,wK} is the set of candidate pooling windows. We apply
the same distributional model for chromatography as Martagan et al. (2017), which is uniform distribution
within 10% of their mean for all w ∈ Sw,

QP|w∼ Unif(0.9qP(w),1.1qP(w)) and QI|w∼ Unif(0.9qI(w),1.1qI(w)).

Filtration: We do not obtain the data for filtration step, and also it is not a critical step. We assume the
random proportion following uniform Q f r ∼ Unif(0.99,1) according to expert knowledge (Leung 2007;
Gottschalk 2009; Roush and Lu 2008).

We first fit the input model for the fermentation protein level. From the m = 20 batches real-world
data {(X (0)

0,i ,X
(0)
F,i ,T

(0)
i ), i = 1, . . . ,m}, we fit the no-intercept linear regression and obtain the corresponding

point estimates µ̂ = 0.0475 and σ̂P = 0,0.4918, with adjusted R-square 0.9656 and p-value 1.392E-15,
which implies,

XF = X0 · e0.0475T+εP , εP ∼ N(0,0.49182).

We further perform the Kolmogorov-Smirnov (K-S) test on the residuals with fitted normal distribution,
which gives the test statistics D=0.12954, and p-value 0.8485. Thus, we claim that under current data, we
statistically do not reject this model.

The input models F = {FX0 ,FT ,µ,σP} are estimated by m = 20 real-world data {(X (0)
0,i ,X

(0)
F,i ,T

(0)
i ), i =

1, . . . ,m}, where FX0 is for raw material, FT is for exponential phase time, and (µ,σP) for main fermentation
protein model. We consider the non-parametric bootstrap approach described in Section 3.1 to quantify
the input model estimation uncertainty, and we generate B = 1000 bootstrap samples. For each bootstrap
data sample, we fit the corresponding input models and run J = 100 replications with run-length n = 200,
after a warm-up of 500 batches. By applying Equations (2) and (3), for the batch-to-batch mean and
SD response of protein/impurity level and cycle time, we record the 95% percent CI lower/upper bounds
and bootstrap variance in Table 2. Based on that, the limited data (20 batches) does have big impact on
simulation estimation uncertainty. In order to more accurately quantify the batch-to-batch variation, more
real-world data should be collected.

We verify the simulation model under simplified situations. We first study the output trend to verify
whether the proposed simulation matches the intuition. Then, we separately consider USP and DSP, and
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Table 2: Quantifying impact of input estimation uncertainty to the simulation output.

Output Mean Protein Mean Impurity Mean Cycle Time SD Protein SD Impurity SD Cycle Time
CI Lower 104.69 9.89 166.19 84.31 7.91 35.44
CI Upper 171.33 15.82 174.13 184.28 16.54 41.36
Variance 308.46 2.39 4.20 594.43 4.58 2.22

make some simplifications so that the model of the production process becomes a Jackson Network (JN):
(1) modify the inter-arrivals and processing times following certain exponential distributions; (2) let the
cleaning time of all equipments to be zero; and (3) set the number of chromatography steps to one. We
compare the analytically expected cycle time with simulation estimates to validate the simulation model.
Under this assumption, USP is a JN with two M/M/c queues (inoculum and fermentation), and DSP is a
JN with three M/M/c queues (centrifuge, chromatography, and filtration) and one M/M/∞ queue (quality
control). From the simplified simulation experiments, the analytical mean cycle time of USP TUSP = 1.067
and DSP TDSP = 2.067 matches the simulation-estimated cycle time 95% CI for USP [1.060,1.072] and
DSP [2.062,2.076].

4.2 Sensitivity Analysis of Impurities Variation in Main Fermentation

We perform the sensitivity analysis of system performance at different levels of β0 = σI/σP. We run simula-
tion at different β0 and estimate the batch-to-batch SD for protein ρ̂(X)(xxx,F ;β0), impurities ρ̂(I)(xxx,F ;β0), and
cycle time ρ̂(t)(xxx,F ;β0) respectively, where (X), (I) and (t) represent the corresponding simulation outputs.
We also record the batch-to-batch mean response estimate ξ̂ (X)(xxx,F ;β0), ξ̂ (I)(xxx,F ;β0), and ξ̂ (t)(xxx,F ;β0).
In this section, we consider three levels β0 = 0.5,1,1.5 to study the impact of relative impurities variation
on the output. For each level, we run J = 100 replications with run-length n = 200, after a warm-up of 500
batches. In addition to batch-based simulation output, we also look at the system level output as follows:

• total yield of 200 batches, which sums up the proteins of all finished and qualified batches,
Wj(xxx,F ;β0) = ∑

n
i=1 X jiI(( j, i) ∈ FQ), where FQ = {( j, i) finished & qualifiedI ji/(X ji + I ji) ≤ γ}

and I(·) is the indicator function, we average over replications W̄ (xxx,F ;β0) =
1
J

∑
J
j=1Wj(xxx,F ;β0).

• batch pass rate, the proportion of batches that finish and are qualified, η j(xxx,F ;β0) =
1
n

∑
n
i=1 I(( j, i)∈

FQ), and then η̄(xxx,F ;β0) =
1
J

∑
J
j=1 η j(xxx,F ;β0).

• equipment utilizations of inoculum, fermentation, and chromatography.

The results in Table 3 indicate that the system performance is similar for β0 = 0.5,1,1.5. As β0 increases, we
can observe: (1) the impurities variation increases; (2) more batches are dropped after main fermentation;
(3) the amount of total protein and pass rate decrease; (4) the average cycle time has slight decrease; and
(5) the utilization of chromatography decreases.

4.3 Performance Analysis under Different Decisions

In this section, we compare different decision scenarios for scheduling, quality control, and pooling window
operational decisions discussed in Section 2.
USP/DSP Releasing: The upstream releasing policy is based on the total number of working batches in
the upstream, denoted by NU . Since chromatography dominants the downstream time, the downstream
releasing policy is based on the total number of working batches in the centrifuge and chromatography
steps, denoted by ND. We consider three scenarios (NU ,ND) = (4,2), (5,2), (8,4) that correspond to slow
to fast releasing policy.
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Table 3: Sensitivity analysis of system performance at β0 = 0.5,1,1.5.

β0 0.5 1 1.5
Mean Protein ξ̂ (X)(xxx,F ;β0) 133.445±0.946 133.632±0.952 139.113±1.187
Mean Impurity ξ̂ (I)(xxx,F ;β0) 12.475±0.085 12.414±0.089 12.615±0.112

Mean CycleTime ξ̂ (t)(xxx,F ;β0) 154.465±1.518 151.368±1.551 148.679±1.591
SD Protein ρ̂(X)(xxx,F ;β0) 125.42±2.094 127.825±2.264 134.585±2.487
SD Impurity ρ̂(I)(xxx,F ;β0) 11.874±0.216 11.678±0.206 11.916±0.237

SD CycleTime ρ̂(t)(xxx,F ;β0) 35.943±1.463 36.456±1.623 35.188±1.302
Yield W̄ (xxx,F ;β0) 24799±183 22660±188 21501±207

Pass Rate η̄(xxx,F ;β0) 0.929±0.002 0.847±0.002 0.772±0.003
Inoculum Utilization 0.211±0.001 0.209±0.001 0.21±0.001

Fermentation Utilization 0.652±0.004 0.646±0.004 0.65±0.004
Chromatography Utilization 0.209±0.001 0.176±0.001 0.148±0.001

Pooling Window: We consider the pooling windows (w(1),w(2),w(3)), where w(i) is the pooling window
of the i-th step chromatography. The pooling window selection is dynamic, batch- and state-based, which
depends on the protein and impurity levels. For simplification, here we directly apply the optimal pooling
policy in Martagan et al. (2017). We would simultaneously optimize the pooling window, production
scheduling, and quality control policies in our future extension.
Impurity Proportion Threshold: We consider a fixed final quality requirement γ = 15%. The impurity
threshold for main fermentation quality control is an operational decision. Given the i-th batch protein
level and impurity level (XF,i, IF,i), we have a fixed pooling policy (w(1)

i ,w(2)
i ,w(3)

i ) for each chromatogra-
phy step. According to QP|w ∼ Unif(0.9qP(w),1.1qP(w)) and QI|w ∼ Unif(0.9qI(w),1.1qI(w)) for each
chromatograph, we are able to compute most, expected, and least protein outcome proportion of start-
ing protein level after DSP purification as umax,i = Xmax,i/XF,i = ∏

3
k=1 1.1qP(w

(k)
i ), uexp,i = Xexp,i/XF,i =

∏
3
k=1 qP(w

(k)
i ) and umin,i = Xmin,i/XF,i = ∏

3
k=1 0.9qP(w

(k)
i ) respectively. Then, since Q∼ Unif(0.4,0.5) for

centrifuge, we can further compute most, expected, and least impurities proportion of starting impurity
level after purification vmax,i = Imax,i/IF,i = 0.5∏

3
k=1 1.1qI(w

(k)
i ), vexp,i = Iexp,i/IF,i = 0.45∏

3
k=1 qI(w

(k)
i )

and vmin,i = 0.4Imin,i/IF,i = ∏
3
k=1 0.9qI(w

(k)
i ), where 0.5, 0.45 and 0.4 are most, expected, and least

proportion in centrifuge. We assume three γF policy that discard the batch based on best, expected,
and worst scenarios in the following purification steps. Thus, by solving γF vmin,i

(1−γF )umax,i+γF vmin,i
= γ , we

can get the best case γbest
F = γumax,i/(vmin,i + γumax,i− γvmin,i). Similarly, we can get the expected case

γ
exp
F = γuexp,i/(vexp,i+γuexp,i−γvexp,i) and the worst case γworst

F = γumin,i/(vmax,i+γumin,i−γvmax,i). There-
fore, we can select the γF based on the best to worst scenario which represents the quality policy with the
conservative level from low to high.

At each decision setting, we run J = 100 replications and each simulation run has warmup- and
run-length equal to 500 and 200 batches. The experiments results with different USP/DSP scheduling and
quality control decisions are shown in Table 4 and 5. In terms of USP/DSP releasing policy, we can see that
it mainly influences the average cycle time and batch variations on cycle time. The equipment utilization
only slightly increases because the utilization mainly depends on the arrival rate, processing time, and
capacity at each step. As (NU ,ND) increases, the time from order arrival to starting production decreases
and so does its variation, which contributes to the overall cycle time reduction. On the other hand, since
increasing ND could lead to “no wait” constraint violation, more batches are thrown away in DSP. So we
observe some decrease in total protein and pass rate.

For the main fermentation QC threshold γF changing from best to worst scenario, we tend to throw
away more batches after the fermentation step; see Table 5. Consequently, for batch level, we can increase
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Table 4: Production system performance at different USP/DSP scheduling policies.

(USP, DSP) (4, 2) (5, 2) (8, 4)
Mean Protein ξ̂ (X)(xxx,F) 134.17±1.10 133.63±0.95 132.95±0.93
Mean Impurity ξ̂ (I)(xxx,F) 12.543±0.099 12.414±0.089 12.455±0.084

Mean CycleTime ξ̂ (t)(xxx,F) 581.03±30.27 151.36±1.55 130.91±0.48
SD Protein ρ̂(X)(xxx,F) 128.75±2.23 127.82±2.26 128.02±2.10
SD Impurity ρ̂(I)(xxx,F) 11.912±0.22 11.678±0.206 11.778±0.194

SD CycleTime ρ̂(t)(xxx,F) 125.49±5.70 36.45±1.62 16.60±0.63
Yield W̄ (xxx,F) 22722±200 22660±188 22314±175

Pass Rate η̄(xxx,F) 0.847±0.003 0.847±0.002 0.839±0.002
Inoculum Utilization 0.205±0.001 0.209±0.001 0.209±0.001

Fermentation Utilization 0.634±0.002 0.646±0.004 0.647±0.004
Chromatography Utilization 0.172±0.001 0.176±0.001 0.175±0.001

the average protein. However, it might not be profitable as we are getting less batches. Notice the total
protein and pass rate reduced a lot. The chromatography equipment utilization also decreases in the worst
scenario case since less batches would be able to enter the DSP.

Table 5: Production system performance at different QC threshold levels γF after main fermentation.

γF best scenario expected scenario worst scenario
Mean Protein ξ̂ (X)(xxx,F) 135.396±0.984 133.632±0.952 145.623±1.359
Mean Impurity ξ̂ (I)(xxx,F) 12.596±0.087 12.414±0.089 13.02±0.123

Mean CycleTime ξ̂ (t)(xxx,F) 152.64±1.711 151.368±1.551 149.368±1.459
SD Protein ρ̂(X)(xxx,F) 132.326±2.754 127.825±2.264 139.371±3.222
SD Impurity ρ̂(I)(xxx,F) 12.109±0.271 11.678±0.206 12.742±0.308

SD CycleTime ρ̂(t)(xxx,F) 36.883±1.558 36.456±1.623 35.57±1.292
Yield W̄ (xxx,F) 23243±177 22660±188 17978±198

Pass Rate η̄(xxx,F) 0.859±0.002 0.847±0.002 0.617±0.004
Inoculum Utilization 0.21±0.001 0.209±0.001 0.21±0.001

Fermentation Utilization 0.648±0.004 0.646±0.004 0.65±0.004
Chromatography Utilization 0.181±0.001 0.176±0.001 0.119±0.001

5 CONCLUSIONS

In this paper, we develop the stochastic simulation for the biopharmaceutical production process from
raw materials to finished drug substance. This model can integrate key sources of uncertainties from
USP/DSP. Thus, it can support the end-to-end production process risk management. We explore the bio-
technology domain knowledge as well as queueing network modeling in the simulation model. The case
study demonstrates that the proposed simulation model can study the system risk analysis and guide the
development of efficient and stable biopharma production process.
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