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ABSTRACT 

Since the Oil and Gas industry crisis in late 2014, oil companies are increasing their focus on optimizing 
operations and reducing cost on upstream logistics. However, this effort must be followed by the concern 
of maintaining satisfactory logistics service to guarantee the continuity of the maritime units operations. 
The objective of this paper is to propose a different supply strategy that reduces the risk of diesel shortages 
in maritime units at Campos Basin, Brazil. The impacts of the new strategy on service level and cost are 
also taken into account. A discrete-event stochastic simulation model has been developed to consider the 
uncertainty components involved at the upstream logistics processes. Results show that the supply strategy 
designed enables the reduction of the risk of diesel unavailability, decreases the demand’s lead time and 
requires fewer supply vessels.  

1 INTRODUCTION 

The Exploration and Production (E&P) operations of the petroleum industry take place onshore or offshore 
and comprise a broad range of activities, such as geophysical surveying, exploratory drilling, field 
development, structure installation, production, and abandonment. These operations demand constant 
support from the so-called upstream logistics, which requires a large variety of specialized vessels, 
helicopters, ports, airports, warehouses, trucks and several other resources.  
 Historically, upstream logistics has never been the main concern of companies, since it is not the core 
business of the Oil and Gas sector. In addition, the logistics cost is significantly less than those arising in 
other E&P activities.  However, since the 2014 crisis, the efforts on reducing the upstream logistics costs 
turned out to be a concern of the oil companies. Thus, the industry has been searching for tradeoffs between 
cost, service level, and risk management. 
 The maritime units demand a large amount of different products, commonly named cargo. There are 
three main classes of cargo: deck or general cargo, dry bulk and liquid bulk. Containers, pipes, and well 
equipment such as Christmas trees are typical deck cargo items. Cement, barites and bentonites are 
examples of dry bulks used by drilling rigs during well construction. Diesel, brine and drilling fluid are 
examples of liquid bulks also demanded by rigs. Every product has its importance to the maritime units and 
the shortage of any of them can generate extra costs and retard operations. For instance, diesel is crucial for 
power generation and for preventing hydrates formation inside the production lines.  
 The volume of diesel required varies from one maritime unit to another and strongly depends on the 
type of operation the unit will perform. Moreover, each maritime unit has its own demand pattern and diesel 
tanks setting, with a required minimum level of diesel stored. Maintaining the diesel stock above this level 
is mandatory to avoid discontinuities and interruptions of the operation. Therefore, the logistics system 
must be prepared to meet diesel demand satisfactorily.  
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 Maritime transportation represents upstream logistics’ main cost. Hence, most of the published works 
in this area concentrate efforts in optimizing operations involving vessels. The main type of vessel utilized 
is the Platform Supply Vessel (PSV), designed to serve as a multipurpose resource, capable of transporting 
simultaneously all classes of cargo demanded by the maritime units simultaneously, where general cargo is 
transported on the deck and bulk products are located in tanks and silos under the deck.  
 Nevertheless, oil companies such as PETROBRAS made a decision to operate under a specialized 
strategy that separate fleets by group of products. From this decision, the company might use tailor-made 
vessels with larger capacity to transport a specific product. The scope of this paper concerns diesel logistics, 
which uses specialized vessels known as Diesel PSV (DPSV). These vessels had their diesel capacity 
increased and bulk capacity reduced, keeping space and deadweight restrictions respected. 
 In this context, the objective of the present work is to study a different logistics strategy that minimizes 
the risk of diesel shortages at PETROBRAS maritime units located at Campos Basin. The proposed strategy 
should also evaluate the impacts on service level and cost. 
 This article employs a simulation-based approach to cope with intrinsic stochastic elements of the 
upstream logistics process and to guarantee a robust solution. The scope of this work is limited to maritime 
transportation from the supply base and diesel terminals to offshore installations. 

Usual fleet sizing methods available in the literature explicitly give absolute fleet numbers. However, 
this paper does not mention absolute fleet numbers, as this is PETROBRAS classified information with 
respect to costs. Instead, references to fleet sizes appear a function of the historical fleet size (nሻ.   

The structure of the remaining sections of this article is as follows. Section 2 provides the literature 
review in upstream logistics and simulation approaches. Section 3 shows a definition of the problem 
statement. Section 4 contains the conceptual model and general assumptions, data gathering and treatment, 
techniques used to verify and validate the model, and the experiments performed. Section 5 presents results 
in terms of fleet occupation, service level and risk of diesel unavailability. Conclusions appear in Section 6. 

2 LITERATURE REVIEW 

A few years ago, the literature on offshore logistics was making its first steps. Nowadays, this subject has 
gained importance and the number of publications addressing problems in this area has been constantly 
increasing (Silva et al 2017). Most approaches center their solution methods solely on mathematical 
programming, although operational uncertainties often require simulation techniques. This section briefly 
reviews some works whose root problem involve supply vessels. 
 Aas (2008) wrote a paper on the role of supply vessels in upstream logistics. Moreover, Aas et al. (2007) 
developed a deterministic model applied to vessel routing whose objective was to study the impact of client 
cargo capacity on the logistics system. Leite (2012) analyzed consumption of general cargo at offshore 
installations to design a method applied for reduction of lead-time and vessel fleet. Halvorsen-weare et al. 
(2012) presented a voyage planning method organized in two phases: firstly, they list all possible voyages 
and, secondly, they find a solution to the problem by considering minimal cost and fleet. Their algorithm 
solves one voyage at a time, without dealing with variability on the parameters involved. Shyshou et al. 
(2012) created a heuristic search approach to the problem of planning of supply vessels. This problem 
consists of estimating fleet composition regarding the deadweight tonnage of each vessel, as well as 
scheduling the vessels. Seixas et al. (2016) tackled the problem of deck cargo allocation with a heuristic 
approach that attempts to optimize deck utilization of supply vessels. Silva et al. (2015) focused on 
dimensioning of supply vessel fleets, berths and maritime transport policies aiming to cope with 
transportation of cargos related to hydrogen sulfide removal systems designed for production units at 
Brazilian Pre-Salt fields. Sopot and Gribkovskaia (2014) presented a study of supply vessel routing with 
deliveries and pickups of multiple commodities, in which a voyage occurrence depends on the availability 
of a vessel capable of transporting all demand concerning both pickups (backloads) and deliveries (loads). 
Each visit to a maritime unit must fully attend the demand. Alehashemi and Hajiyakhchali (2018) studied 
the problem of servicing drilling rigs aiming to optimize fleet and vessels routes. Cruz (2019) studied berth 
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allocation together with the fleet-sizing problem, using a heuristic solution. Cuesta et al. (2017) presented 
a study on the Vessel Routing Problem with Selective Pickups and Deliveries (VRPSPD) and regarded it 
as a multi-vessel problem. 
 So far, a common theme in these papers is the tendency of focusing the study only on the deterministic 
aspect. However, uncertain elements indeed complicate supply vessel operations (Maisiuk and 
Gribkovskaia 2014). Therefore, it is relevant to study approaches that take into account stochastic 
components.  
 Pantuso et al. (2014) published a literature review on the problem of fleet estimation and composition. 
They state that existing methods to supply vessel fleet estimation and routing are in general not applicable 
to maritime transport, given that this area is highly uncertain and integrates a production chain whose 
financial resources are huge. According to the authors, most of the papers treat the problem 
deterministically. From a selection of thirty-seven papers, ten treat uncertainties superficially. From these, 
only three employ simulation. Additionally, they found that an important portion of the papers that consider 
stochastic elements propose deterministic methods of resolution. As a conclusion, the authors claim that 
future research should increase the focus on more sophisticated methods to deal suitably with uncertainty.  
 Other authors have also highlighted the need for different approaches to manage uncertainty. Maisiuk 
and Gribkovskaia (2014) argued that the stochasticity of meteorological conditions causes relevant impact 
to the vessel navigation and operation. Therefore, they propose a discrete-event simulation (DES) model to 
evaluate the size of the supply vessel fleet. According to Cigolini et al. (2014), although Excel sheets and 
integer programming algorithms frequently appear as methods for decision support in supply chain projects 
related to oil and gas area, such techniques ignore important dynamic factors. Rahman et al. (2019) have 
developed a model to study risk in marine logistics operations in remote areas with harsh weather 
conditions. They proposed fault trees to identify failure models. 
 Some studies discuss logistics operations to service wind farms. Although the clients are very different 
from a rig or an oil production asset, wind farms logistics face similar problems regarding routing and 
uncertainties due to weather conditions. Sperstad (2017) et al. studied fleet sizing and its robustness for 
operation and maintenance of offshore wind farms. They have compared an analytic method with an 
optimization and four simulation methods, which return “somewhat different results for the same input 
data”. Beinkem et al. (2017) used a discrete-event and agent-based simulation to study the installation of 
offshore wind farms, concluding that weather conditions contribute significantly with installation times, 
while sharing resources has a saving potential. Stalhane et al. (2019) studied fleet sizing with a stochastic 
programming approach. 

In another study, Shyshou et al. (2010) employed stochastic dynamic simulation, specifically discrete-
event simulation, to assess the fleet size of Anchor Handling Tug Supply (AHTS) vessels. Operators 
commonly use such vessels to move maritime units (for instance, drilling rigs) among locations and to aid 
anchoring procedures. Besides uncertainty factors that emerge from the usually disconnected plan between 
activities of rigs/installations and supply vessels, there also are changing environmental conditions. All 
these aspects together make the problem of managing vessels even more complex and challenging. The 
authors therefore support DES as the suitable method to analyze problems with intrinsic uncertainty. 
 Concerning the problem of diesel supply to offshore operations, the literature is even scarcer. Diuana 
et al. (2016) contributed to reduce this gap, using DES to compare two logistic policies concerning diesel 
orders generation of a Brazilian oil company. Silva et al. (2017) also used DES to study how concurrency 
with other services affects diesel logistics. The present work is another step in the direction of studying 
diesel offshore logistics, since none of the references studied how changing the recharging location affects 
the logistics operations. 
 A major solution approach present in many of the articles mentioned is modeling the real system as a 
DES with stochastic parameters. According to Fishman (2001), simulation is the process of designing a 
computer model of a real system and conducting experiments with this model, in order to figure it out 
through “What – If” questions and evaluate feasible strategies for their operation. For Freitas Filho (2008), 
modeling by events means conceptualizing a system of interest through the identification of instantaneous 
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occurrences, which are unconditional and depend solely on time. Occurrences such those receive the name 
“events”, and they change the values of the model state variables at discrete quantities. Regardless of 
simulation is not primarily intended to optimize a system in a realm of mathematical programming, DES is 
indeed a proper technique to cope with stochastic outcomes linked to the risk issue addressed in the present 
article. Examples of stochastic data that matter for this work are vessel speed, downtime and demand 
fluctuations. Moreover, DES allows one to grasp the dynamic behavior of the maritime transportation 
system studied. Consequently, it is possible to observe concurrency for resources, infrastructure and inter-
dependencies among stochastic variables over time. Deciding for DES, hence, makes the analysis of the 
present problem richer. 

3 PROBLEM STATEMENT 

Multipurpose or specialized vessels can deliver diesel. The DPSVs stay in different locations along the 
basin, fully charged, waiting for an installation request. The maritime units consume diesel to perform 
several operations. When the diesel quantity is below the refueling level, logistics planners place a new 
delivery order and the logistics team schedules an appropriate DPSV to fulfill such orders. When the 
operation is completed, the vessel checks if its remaining stock is sufficient to attend another order. Case 
positive, the DPSV continues at the basin, waiting for the next order. Otherwise, the vessel navigates to a 
recharging spot. Furthermore, DPSVs need to go to the supply base periodically to change crew. Periods of 
scheduled docking and downtime occurrences also take place.  

During the last decades, the available diesel infrastructure at Campos Basin supply bases had serious 
limitations regarding storage capacity. Besides, there was no possibility to receive tankers to reload the port 
tanks, which obliged PETROBRAS to find another solution for the diesel supply to the maritime units. The 
company has overcame such adverse situation by utilizing tankers as diesel hubs. After refueling at diesel 
terminals, the tanker navigates to the basin and moors at buoys, staying in location until it has diesel to 
provide to other vessels. The diesel transfer in an offshore context is a difficult procedure due to changing 
weather conditions, which impose hard constraints to operate at higher flows rates and with more than one 
vessel simultaneously. On the order hand, having a hub close to the demand might reduce the navigation 
time, which reduces diesel shortage risk. Once the tanker runs out of diesel, it navigates back to the terminal 
for reloading to another supply cycle. 

Another facility where DPSVs can receive diesel is the supply base, which provides suitable 
infrastructure at an area practically free of weather uncertainty. DPSV must come to the shore when diesel 
is needed, leading to longer navigation times. In that case, the supply base receives diesel from a tanker, 
previously loaded at a terminal. Tanker cycles between supply base and terminal follow a pre-defined 
schedule.  

4 METHOD 

4.1 Conceptual Model and Assumptions 

The simulation model presented in this work mimics the main components of the upstream logistic system 
such as supply base, waiting area where vessels await before accessing the port, maritime units, mooring 
buoys and diesel terminals. The simulator also contains several modeling artifices such as virtual locations 
to facilitate codification of specific real system behavior such as vessel downtime, docking, and a 
centralized control location. The latter is mainly important, given that it helped to manage the diesel fleet, 
preventing the necessity of somehow representing an unknown large number of decentralized control gates 
to cope with fleet location. The resources represented at the model are DPSVs and tankers. 

1944



Moreira, Silva, and Leite  
 

 

 Other important aspects of the real system also represented in the model are geographic coordinates 
and diesel infrastructure of the maritime units. Other aspects also embraced by the model are docking 
schedule, navigations speed variations, storage capacity of the DPSV, supply base characteristics, 
uncertainty on environmental conditions and on diesel daily consumption rate of each installation. Figure 
1 shows the model graphic representation. 

Figure 1: Conceptual model for DPSV and tanker operations. 

4.2 Data Gathering and Treatment 

Discrete-event simulation is a technique proper for handling with uncertainty. By using in the model 
stochastic parameters as probabilistic distributions, it is possible to obtain robust results in decision-making, 
since uncertainty turns better represented. In this way, the present simulation model encompasses many real 
system variables represented as fitted statistical distributions. In order to estimate these distributions, 
Kolmogorov-Smirnoff tests were the statistical measures used at significance level of 5%. The software 
used to generate the probabilistic distributions was Stat::Fit®. When more than one distribution was 
available, the one with the biggest p-value was the option chosen.  

4.2.1 Resources 

The main resources represented in the model are DPSVs and tankers. The DPSV fleet offers a storage 
capacity that may vary between 783 and 2680m³. Crew change must occur every 28 days. DPSV stochastic 
attributes are navigation speed, which has a different distribution depending on the distance traveled, 
downtimes and docking events. Table 1 shows the sample, statistics, chosen distribution, parameters and 
p-values for the stochastics attributes, concerning DPSVs. 

Different from the DPSV fleet, the tanker fleet is homogeneous in terms of diesel storage capacity. 
Thus, the volume 18.000m³ was a value considered for all vessels. Real flow rate values depend on the 
volume transferred (they are positive correlated), therefore is a natural choice to divide historical flow rate 
data into three categories: below 700m³; between 700m³ and 2000m³ and above 2000m³. 

Data concerning tankers navigation, downtime, docking and terminal operations times were not 
available by the time of the model development. However, tanker dates of arrival at and depart from basin 
were known. As a modeling artifice, a distribution referring to the time between departure from the basin 
and arrival of the next trip represents the tanker cycle time. Hence, once the tanker needs to navigate to the 
terminal to reload, the model samples a cycle value from that distribution and the tanker stays unavailable 
during the time sampled. Such as for the DPSVs, Table 2 shows the sample, statistics, chosen distribution, 
parameters and p-values for the stochastics attributes, concerning tankers. 
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Table 1: DPSV parameters. 

Parameters Detail Sample Mean 
Standard 

Deviation 
Maximum Distribution 

Distribution 

Parameters 
P-value 

Navigation 
Speed 
(km/h) 

Below 18 
km 

32 11.38 4.27 21.33 Johnson SB 

- Minimum: 2 
- λ:17.6 

- γ: -0.124 
- δ: 0.788 

0.997 

Above 18 
km 

121 15.18 2.79 19.02 Weibull 
- Minimum: 5 

- α: 4.4 
- β:11.5 

0.805 

Downtime 

Duration 
(days) 

591 2.41 4.12 31 Lognormal 
- Minimum: 0 
- μ: -0.0215 

- σ: 1.38 
0.147 

Occurrence 
(%) 

60 3.79% 
After offshore operations, the probability to occur a downtime follows 

the mean value 

Docking 

Duration 
(days) 

46 13.39 9.33 47.3 Weibull 
- Minimum: 0 

- α: 1.5 
- β: 14.9 

0.826 

Occurrence DPSVs dock once every two years 

Table 2: Tanker parameters. 

Parameters Detail Sample Mean 
Standard 

Deviation 
Maximum Distribution 

Distribution 

Parameters 
P-value 

Flow rate 
(m³/h) 

V < 700m³ 16 66.59 28.51 154.28 Weibull 
Minimum: 34 

- μ: 3.05 
- σ: 52.5 

0.857 

700 < V < 
2000m³ 

195 91.11 16.72 135.68 Weibull 
Minimum: 44 

- μ: 3.05 
- σ: 52.5 

0.637 

V > 2000m³ 99 100.9 21.62 236.38 LogLogistic 
Minimum: 47 

- μ: 4.85 
- σ: 51.6 

0.291 

Duration 
(days) 

Time between a 
departure and an 
arrival of the 
next trip at the 
basin 

36 13.32 6.12 28.03 LogLogistic 
- Minimum: 2 

- μ: 2.9 
- σ: 10 

0.959 

4.2.2 Maritime Units and Supply Base 

The attributes of the maritime units were divided according to three classes: individual for each unit; 
common to a group off units; and common to all units. The individual attributes are location, diesel con-
sumption rate, storage capacity, refueling level and minimum level. An example of attributes common to a 
group attribute is the unavailability to operate due to weather conditions. Finally, the diesel flow rate was 
consider common to all units. Besides the location, all other attributes are represented by probabilistic 
distributions. These parameters were not detailed in this work because the model considers 90 maritime 
units.  
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 The supply base represented at the simulation model was the Açu Port, located at the north of State of 
Rio de Janeiro. Its diesel storage capacity was considered 18,000m³. The flow rate distributions were 
estimated as a Triangular distribution T(500, 600, 700) for the operation of reloading the supply base tanks 
and Uniform U(100,120) for refueling DPSVs.  

4.3 Codification and Verification 

ProModel® was the software used to develop simulation model. It provides an environment for modelling 
and simulation of discrete-event systems. The model designed is flexible for application in every offshore 
logistics system involving supply base berth operations, PSV maritime transport fleets and installations 
demanding diesel. The entire model has about 13300 lines of code. The reason of choosing ProModel® 
was the availability of licenses at PETROBRAS and the authors’ previous experience with it.  
 Additionally, during the model codification, some verification techniques seemed reasonable for use. 
Verification is an important part in the development of a simulation model, which aims to reduce 
implementation and logic errors. There are different verification techniques such as use of deterministic 
model, robustness test, variation of the input data, simulation simplify cases, verification routines and 
graphic animation. All these techniques were rigorously applied during the verification process. 

4.4 Validation 

The validation process started with the definition of an adequate number of replications (𝑛). Among all the 
stochastics variables presented at the model, the Vessel Fleet Utilization (𝑉𝐹𝑈) for DPSVs was chosen to 
defined 𝑛, once the supply vessels are expensive resources and the highest utilization levels are desired for 
them. The average value of 𝑉𝐹𝑈 is automatically calculated by the simulation software through the formula 
 

𝑉𝐹𝑈 ൌ
∑ ௧೔

ಿ
೔సభ

ே்
 , 

 
where 𝑁 is the fleet size, 𝑡௜ is the time interval that vessel 𝑖 was in use and 𝑇 is the total simulation time. 
Then, the mean 𝜇 and standard deviation 𝜎 values obtained from replications were 𝜇 ൌ 75.23% and 𝜎 ൌ
3.49%.The semi-confidence interval ℎ formula is 
 

ℎ ൌ 𝑡௡ିଵ,௔ ଶ⁄
ఙ

√௡
 , 

  
where 𝜎 is the standard deviation of the data sample, 𝑛 is the number of replications (sample size), 𝛼 is the 
desired confidence level and 𝑡௡ିଵ,ఈ ଶ⁄  is the critical value of Student-t distribution. To define 𝑛 , the 
following criteria were adopted: 
 

 Given a 95% confidence level, half of the confidence interval should be less or equal to 1% of 𝜇. 
 Given a 99% confidence level, half of the confidence interval should be less or equal to 2% of 𝜇. 

 
 Table 3 shows the resulting semi-confidence interval ℎ for 95% and 99% confidence levels, according 
to the number of replications.  

Table 3: Semi-confidence interval (ℎ) for different numbers of replications. 

Confidence 
Level 

𝛼 
Number of replications (n) 

45 46 47 48 49 50 51 52 
95% 0.05 1.050 1.034 1.023 1.012 1.002 0.992 0.982 0.973 
99% 0.01 1.399 1.384 1.369 1.350 1.336 1.322 1.310 1.292 
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We observe that both criteria were met when the replication number is 50 or bigger: the semi confidence 
interval ℎ is less than 1% of the mean given 95% of confidence level. Being more rigorous, given a 99% 
confidence level, ℎ is less than 1.5%. Thus, 50 replications are enough to the validation process. 

Table 4: Validation results. 

 
 After the definition of the number of replications, some key performance indicators (KPIs) were 
selected for the validation process. Each replication of the validation experiment considers six months of 
warm up and one year of simulation. The obtained results were compared to real operational KPIs to verify 
the model’s ability to reproduce real-world performance, allowing its application in alternative scenarios. 
Table 4 presents the selected KPIs with their description, operational value, simulate value and the error. It 
can be noticed that 50% of the KPIs presented the absolute error inferior to 2.5% and none fell above 6.5%. 
The results confirm that the model represents satisfactorily the real operation and can serve as a decision 
support tool to evaluate new operational strategies.  

4.5 Experiments 

The data used in the model refers to a period of time where the DPSV were loaded by tankers at the basin. 
In that time, Imbetiba port, located at Macaé city was the main supply base of Campos Basin. This supply 
base presents some limitations in terms of diesel infrastructure such as tanks with low storage capacities 
and the challenge of receiving tankers to fill its diesel stock. The solution was to provide diesel at an 
offshore environment. The operation with tankers that moor at buoys to load the offshore vessels was an 
appropriate solution for those circumstances. Later on, PETROBRAS has started to operate at Açu Port. 
This supply base was a green field project and it has more appropriated infrastructure than the other ports 
close to Campos Basin. In terms of diesel capacity, the port offers to PETROBRAS a storage capacity of 
approximately 18.000 m³. It is also possible to moor PETROBRAS tankers to load the supply base with 
diesel.    

Parameter Description 
Operational 

value (OV) 

Simulated 

value (SV) 

% Error:  

(SV-OV)/OV 

Offshore 

operation (days) 

Time interval while a vessel is operating at an installation. 

For the current analysis, a vessel operates at an installation 

when the loading diesel operation is undergoing at that 

installation. 

0.28 0.30 -6.5 

Waiting before 

offshore 

operation (days) 

Time interval while a vessel waits to start operation at 

installation. This interval is due to two main reasons: 

environmental conditions for safe operation or some other 

installation issue avoiding supplies transfer. 

0.52 0.49 -5.0 

Diesel per visit 

(m³) 

Average volume of diesel delivered per visit to the 

installation. 
372 365 -1.8 

Total diesel per 

year (m³) – 

Data about diesel per 

year are classified. 

Total volume of diesel delivered to the installation per year. - - -2.2 

Downtime (%) 

Average percentage of supply vessel fleet that is in 

downtime state. Usually a vessel enters a short downtime 

due to corrective maintenance. 

3.79 3.70 -2.4 

Docking (%) 

Average percentage of the fleet that is docked. Usually, 

vessels enter a dock due to preventive maintenance policies. 

Docking periods tend to be greater than downtime ones. 

1.77 1.88 -6.3 
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 The operation in a supply base with adequate diesel infrastructure has permitted the study of new 
strategies for cost reduction, increasing the service level and, most importantly, reducing the risk of not 
suppling some products at the right time, thus avoiding great losses for E&P operations.  
 This work chose the diesel to develop its analysis. Two scenarios were defined according to the DPSVs 
refueling points. Both scenarios descriptions and graphic representations (Figure 2) are shown below. 
 Scenario 1 (S1): DPSV refueling point is the tanker moored at the buoys, which functions as a diesel 
hub. In this case, DPSV must navigate to the supply base to change crew every 28 days.  Since the tanker 
has diesel available, it stays at the basin loading DPSVs. Once the tanker runs out of diesel, it navigates to 
the terminal to reload and start another cycle.   
 Scenario 2 (S2): DPSV comes to the supply base in order to refuel its tanks from diesel. In this case, 
the crew change occurs while the vessel is at the supply base. The diesel tanks are load by the tankers that  
visit the supply base following a defined schedule.   
 

5 RESULTS 

The KPIs chosen to compare the results of each scenario can be divided into three categories: Fleet, Service 
Level and Risk. The first round of experiments were performed considering the historical fleet size (n) for 
both scenarios. Since the number of vessels under contract is a sensible parameter to oil companies, this 
paper does not contain this information. From now on, we will refer to the scenario with the associated fleet 
of the experiments as function of n. Thus, in the first round, the scenarios are S1(n) and S2(n) 
  The results show that for the same fleet size, S2(n) permits a 10% decrease in the fleet occupation. In 
terms of Service Level KPIs, a small decrease in diesel delivered per visit occurs. However, there is a 
significant reduction of the diesel lead-time (mean and percentile 90), from 1.07 and 1.21 days to 0.49 and 
0.59 days, respectively. Finally, concerning risks KPIs, there were enormous improvements: In S1(n) the 
number of occurrences when the diesel stock was below the minimum level was 71. Additionally, the 
number of stock outs events was 33. In both cases, the results refer to 50 replications with the duration of 
one year. Nevertheless, in S2(n) there were not any occurrences of low diesel quantities or stock outs. 
 Despite the fact that using a diesel hub reduces the distance between the supply and the offer, this 
solution presents undesirable inefficiencies. The first of them is the non-productive time of vessels’ loading 
operation, because usually the tanker can just operate with one offshore vessel at a time and the reduce flow 
rate in comparison with the port operation. The second one is the necessity to stop the operations caused by 
rough weather conditions. Another issue is the longer tankers’ cycles due to long times moored at the buoys. 
At last, larger uncertainties at the process resulting in periods of unavailability of tankers at the basin, 
affecting the diesel offer to the maritime units. For instance, the results show that, on average, the DPSVs 
waits 0.84 days to operate with the tanker.   

Figure 2: Scenarios. 
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 Afterwards, a second round of experiments were performed seeking the equalization of the fleet 
occupation in both scenarios. The same occupation rate was found when the fleet size of Scenario 2 was set 
to n-2 vessels [S2(n-2)]. The fleet reduction in this scenario relies on a small increase of diesel delivery per 
visit and the lead-times, in comparison with a fleet of n vessels [S2(n)]. It is observed that there is one 
occurrence of diesel level below the minimum required. Additionally, the number of stock outs was kept to 
zero. However, S2(n-2) presents more interesting KPIs when compared to S1(n), despite the same fleet 
occupation. 

The tremendous advantage presented by the S2 at the two first rounds of experiment led to a third 
round, where the fleet size was decreased until the risks KPI were close to the S1(n). The results show that 
the equivalency between both scenarios is reached when Scenario 2 fleet is placed between n-5 and n-6 
vessels. Because of the necessity of fleet size being an integer number, the equivalent scenario, in terms of 
risk KPIs, is S2(n-5). Even with a fleet occupation of 97%, the risk KPIs were more interesting than S1(n). 
For instance, occurrences of stock below the minimum level were 23 and number of stock outs were 9, for 
50 replications. The high fleet occupation shows that this scenario is close to an inflection point. This 
perception is confirmed with S2(n-6) results. In this experiment the fleet occupation raise to 100% and the 
risk KPIs suffer a significant increase, as it is presented at Figures 3 and 4. In addition, the proposed strategy 
presents none occurrence of stock outs even with a reduction of 4 vessels [S2(n-4)]. Table 5 shows the 
results of the 3 rounds of experiments. 
 

Table 5: Results. 

 

Category KPI S1(n) S2(n) S2(n-1) S2(n-2) S2(n-3) S2(n-4) S2(n-5) S2(n-6) 

Fleet Fleet Occupation 75% 65% 70% 75% 80% 88% 97% 100% 

Service 

Level 

Diesel deliver per visit (m³) 372 338 339 342 346 357 389 508 

Lead-time – Mean (days)     1.07 0.49 0.51 0.56 0.65 0.90 1.99 6.43 

Lead-time – P90 (days)     1.21 0.59 0.60 0.64 0.74 0.99 2.13 6.65 

Risk 

Occurrences of stock below 

the minimum level  
71 0 2 1 1 9 23 329 

Occurrences stock outs 33 0 0 0 0 0 9 84 
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Figure 3: Occurrences of stock below minimum level. 
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6 CONCLUSIONS 

In this work, different strategies of diesel supply were compared to evaluate the impacts in terms of risk of 
diesel unavailability, service level and cost. The analyses took place for Campos Basin, where there is a 
high concentration of maritime units close to each other. Historically, the utilization of a diesel hub was 
adopted because of the absence of an appropriate infrastructure onshore. Even though common sense shows 
that a hub close to the demand should improve the operation, the possibility of using a new supply base 
with high capacity of diesel storage has led to the study of the scenario where the PSVs are loaded at the 
supply base. None of the articles found in the literature review studied how changing the refueling location 
affects logistics operations. 
 A simulation approach was chosen because of the presence of innumerous stochastic components in 
upstream logistic processes. A discrete-event simulator of the maritime system was developed involving 
DPSVs, maritime units, tankers and mooring buoys. The diesel terminal and the supply base, with its tanks 
and berth, were also represented in the model. The experiments followed three phases for each of the 
scenarios: 1) The same fleet; 2) The same fleet occupation; 3)  The same risk management KPIs values. In 
all steps, the scenario where the DPSVs receive diesel at the supply base offers considerable advantages in 
terms of risk and cost reduction and increase at the service level. The work reached its objectives, once 
improving all these aspects simultaneously can be considered one of the main challenges of upstream 
logistics. Future research can be developed considering other products and multipurpose PSVs.  
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