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ABSTRACT

Export customers requesting empty containers in the hinterland areas are serviced by maintaining suffi-
cient inventory at each regional depot. The supply-demand imbalance at the regional level is stabilized
by repositioning empty containers between inland depots. We propose an inter-depot empty container
repositioning problem and a heuristic real-time decision algorithm to solve it. Initially, single-period travel
time is considered and three models: Allocation Problem (AP), Value Approximation Model (SPL-VA),
and Node Decomposition Heuristic (NDH-SP) are presented. The system is simulated over a certain time
horizon by generating real-time supply and demand values, and the system’s evolution is studied under
each of the proposed models. The VA models perform better than the AP with modest computational
effort. The NDH-SP is further generalized to accommodate multi-period travel times. By simulating this
algorithm with a demand rejection policy, we observe that maximum demand satisfaction is obtained by
allowing medium-sized demand queues at the depots.

1 INTRODUCTION

Packing and transporting goods in standardized containers has increased the efficiency of multimodal
transport by reducing the time and costs associated with cargo handling at multiple terminals. These
containers can be directly loaded on the ships, barges, trains, or trucks and moved from the shipper to the
receiver over large distances. Once the goods are unloaded, the empty container is free to be assigned to
another customer. However, the regions with a high level of imports generate a supply of empty containers
with few export commodities to be loaded in them. On the other hand, regions with higher exports have a
high demand for empty containers, which may not be locally available. Thus, there is an inevitable need
to transport empty containers from supply to demand locations. The empty container repositioning is done
at both global as well as regional levels.

The repositioning of empty containers at different levels is subject to distinct constraints. At the global
level, containers are stacked on the ships carrying loaded containers and no excess costs are incurred.
However, at the regional level, where the containers have to be moved individually by trucks or pooled
together to be relocated by trains, the costs are significant. The time required to procure international
containers is much larger than that involved in getting them from some hinterland location. For these
reasons, the two problems are modelled and studied separately.

Most of the research concerning empty container repositioning focuses on the global imbalance, whereas
the work related to inland repositioning is limited (Sterzik and Kopfer 2013). The inland repositioning
papers mainly focus on the movement of containers between ports\depots and customer locations. The
containers available at the depot are allocated to the requests arising in the real-time during the operational
stage. Repositioning empty containers between multiple depots leads to the availability of the containers
to the customers in the shortest possible time and thus dictates the service level. This aspect has not been
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explored extensively in the existing research. As per our knowledge, this is the first work that explicitly
models and solves the problem of inter-depot repositioning of empty containers.

This work defines the Inter-depot Empty Container Repositioning Problem (IDCRP) and presents a
heuristic real-time decision model to address it. Initially, single-period travel time is assumed and three
models are proposed that use predicted demand and supply values for a time window of two time periods.
Problems of this type are traditionally modelled using bipartite graphs separating the demand and supply
locations. Hence, first, the problem is modelled as an Allocation Problem that assigns excess supply
during time period t to the excess demands during t + 1. However, as this model does not consider the
effects of repositioning decisions at t, a Value Approximation Model based on Dynamic Programming is
described. To reduce the complexity of the model, a heuristic based on Node-wise Decomposition of the
Value Approximation model is proposed. To study the effectiveness of the model, the system is simulated
over a certain time horizon and the evolution of the system under each of the three models is studied.
Statistical significance of the results is tested using Wilcoxon signed rank test, and it is concluded that the
heuristic is suitable for practical applications. The single time period heuristic is further generalized to
allow realistic multi-period travel times. A simulation study is conducted on the modified heuristic and the
demand rejection policy is tested.

The paper is organized as follows. A review of the inland repositioning literature is presented in Section
2. The detailed description of the IDCRP investigated in this paper is given in Section 3. Various models
to solve the described problem are detailed in Section 4 with a simple allocation model in Section 4.1,
Value Approximation Model in Section 4.2, and a Node Decomposition Heuristic in Section 4.3. All these
models assume a single-period travel time between depots. Section 5, provides a comparative study of
these models. A generalized model for multi-period travel time is presented and analyzed in Section 6.

2 LITERATURE REVIEW

The maritime Empty Container Repositioning Problem has been addressed by numerous researchers.
However, only the literature pertaining to inland repositioning is reported in this section. A detailed review
of the empty container management literature is given by Braekers et al. (2011). They differentiate the
papers based on the level of planning (Strategical, Tactical or Operational) as well as the type of model
proposed (Deterministic, Stochastic or Simulation). In our view, Crainic et al. (1993) have published the
first work concerning the inland repositioning of empty containers. They formulate dynamic deterministic
models for both single and multi-commodity empty container allocation problems and a two-stage recourse
model for the dynamic stochastic single commodity problem.

The repositioning decision is classified as global, inter-regional or regional by Boile et al. (2008).
They focus on the regional repositioning of containers between ports, empty container depots and import
or export customers. The depot positioning and container allocation problem is formulated as an ILP
and solved by Branch and Bound technique. Further, the model is used to analyze the port of the New
York-New Jersey region. Jula et al. (2006) assess the empty container movements in the Los Angeles and
Long Beach port areas. A Transportation Problem is solved over a bipartite network of demand and supply
locations to determine the number of containers to be moved. To study the effect of reuse cost on depot
direct and street turn methodologies, simulations are performed over multiple demand-supply scenarios.
Finke and Kotzab (2017) conduct a case study on the empty container problem in the German hinterland
region. They demonstrate the effectiveness of the inland depots in reducing the total distance travelled by
trucks and overall operating costs by modelling the problem as an ILP and solving it by branch and bound
method. None of these models (Boile et al. 2008; Jula et al. 2006; Finke and Kotzab 2017) assume direct
movement between depots or import and export customers.

Another practical application concerning a transportation company in Germany with consideration of
future demands is presented by Jansen et al. (2004). Various sub-problems of operation planning like
modality choice, repositioning, combination of orders, order planning and planning improvement are solved
separately. The repositioning problem is modelled as a minimum cost flow problem including both rail
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and road movements. Reinhardt et al. (2016) study the cost reductions obtained by allowing triangulation
with predetermined as well as free destination cases. They enumerate all feasible paths and select the most
profitable ones by an order covering model and solve the model using column enumeration technique.
The imbalance at each depot is avoided by solving a container yard balancing model. A Decision Support
System based on a detailed model including terminals, depots and customer locations for optimization of
empty container movements in Valencia is studied by Furio et al. (2013). They indicate similar insights
of cost saving in hinterland operations by allowing street-turn operations.

The repositioning and leasing decision at a single port is studied by Yun et al. (2011) using an inventory
control model. They determine the near-optimal inventory levels at the port under different conditions by
varying the parameters like (s,S) policy, simulation period, leasing, ordering and holding costs and the
supply-demand gap. Dang et al. (2012) use the inventory model on a multi-depot region with a port. The
optimal policy determines the number of containers to be acquired from other ports, depots or leased from
other companies and is obtained by a genetic algorithm. However, they do not attempt to optimize the
repositioning decisions but allocate containers from other depots based on fixed rules.

The container repositioning problem is similar to the empty rail car assignment problem where the
available empty cars have to be allocated to the demands in the network. This problem has been explored by
Narisetty et al. (2008) who use the transportation problem to determine the number of cars to be assigned
during each time period. Spieckermann and Voss (1995) model the problem as a scheduling problem
where the demands have to be assigned to the rail-cars and are solved using a heuristic approach. The
models based on Transportation Problem and minimum cost flow formulation are described in Gorman
et al. (2011). These models are similar to the allocation model considered in Section 4.1 of this paper.

3 PROBLEM DESCRIPTION

Consider a network of hinterland depots distributed over a region. We assume that there is a single depot
in each region and a set of neighbouring locations are allocated to each depot. After unloading the import
containers, they are returned to this depot and the container requests in the neighbourhood for loading
export goods are met by empty containers available here. Thus the demand or supply at the depot indicates
aggregate values of the neighbouring customers. The allocation of empty containers to a demand location
is an operational decision and depends on the availability of the containers at the depot. For this, sufficient
inventory of empty containers should be maintained at each depot. As supply and demand values in each
region may vary, there is a need to reposition the empty containers from depots with excessive supply to
the container deficit regions. This decision has to be optimized such that maximum demands can be served
with minimum empty movement.

The containers need to be repositioned at each time period over the specified time horizon. However,
at a given time period, the demand and supply at each depot are known over a certain time window. For
this, we assume that the demands are known at least ′k′ days before they are required such that k is greater
than the time required to reposition the containers from some other depot. Since the container requests are
placed ahead of time, this is a realistic assumption.

Similarly, as the import containers enroute their destination are known, the supply for each time period
in the given window can be determined. Though the demand and supply values are deterministic in the
observed window, the containers are relocated to other depots only when they are available at the depot.
Thus, the repositioning decision has to be taken in real time.

The parameters used in the model are as following:

• N- Set of nodes in the network indicating depots, n ∈ N
• E- Set of edges indicating paths between two depots in the network ei j ∈ E for i, j ∈ N
• T - Set of time periods, t ∈ T
• ti j- Travel time between nodes i and j
• ci j- Travel cost between nodes i and j
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• rt
n- Number of containers available at depot n at start of time period t.

• st
n- Estimated supply at depot n during the time period t

• dt
n- Estimated demand at depot n during the time period t

• pt
n- Pending demands at depot n during at time period t from previous periods

• Qn- Revenue earned by serving demand at n

A two node representation of the inter-depot container repositioning is shown in Figure 1. Note that the
decision to move containers xt

i j containers from i to j is taken at the start of time period t. For the node i,
the demands and supply of containers by neighbourhood customers are realized during the time period t.
The demands dt

i can be served by the containers available at i i.e., rt
i − xt

i j as well as the incoming supply
during the same time period i.e., st

i . The containers moved from i are available at j at the start of time
period t+ ti j. However, at t we do not know the number of containers at j at the start of t+ ti j as it depends
on decisions at j between time t and t + ti j.

Figure 1: Representation of container repositioning problem.

This problem can be solved by modelling it as a dynamic transportation problem. However, for large
data sets, this takes a considerable amount of time to solve as compared to single-period models. The
demand and supply are subject to uncertainty in real life applications. In this paper, the problem is modelled
as a real-time repositioning problem where the decision is taken at the start of every time period t and only
the containers available at the depot at this time period can be relocated.

4 MODELS FOR INTER-DEPOT REPOSITIONING PROBLEM

This paper aims to develop a heuristic to solve the inter-depot empty container repositioning problem with
multi-period travel time. Initially, the problem is simplified by assuming single-period travel time between
any two depots. Hence, only a time window of two time periods, t and t + 1 is considered. First, the
problem is formulated as a Container Allocation Problem in Section 4.1. This maximizes the revenue
earned by the excess containers at t repositioned during the time period t. The total revenue obtained by
supplying empty containers to requests includes the demands satisfied at current as well as future time
periods. However, the AP does not consider the effect of the decision at t on the demand satisfaction during
t and only the revenue generated by repositioned containers is considered. A Value Approximation based
inclusive model considering demand and supply over the entire time window is presented in Section 4.2.
A heuristic method developed by decomposing this model over individual nodes is given in in Section 4.3.
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4.1 Container Allocation Problem

In the model presented here, a rolling horizon of two time periods is considered, where the number of
containers to be repositioned between depots is determined in the first time period and the results of this
decision are observed in the second time period. At every depot, the demands during t are prioritized and
only excess available containers are considered for repositioning. The net supply and demand at each n∈N
are calculated using known supply and demand values during the given time window.

Apart from the variables described in Section 3, in the preprocessing step, the following parameters
are utilized to calculate the net supply and demand of containers at depot n at the start of time period t:

• pt
n- Unserved demands at n from time t ′ < t, ∀t ′ ∈ T

• dt+
n - Excess demands at n, during time the period t (dt+

n = |dt
n + pt

n− st
n|+)

• r̄t
n- Containers available for assignment at n at the start of time period t (r̄t

n = |rt
n−dt+

n |+)
• It+1

n - Imbalance of supply at n during time period t +1 (It+1
n = r̄t

n + st+1
n −dt+1

n )
• S̄t

n- The net supply at n indicates the number of excess containers available at start of t apart from
the containers reserved for demands during time t and t +1 at n. S̄t

n = min(r̄t
n, |It+1

n |+)
• D̄t

n The net demand at n is the number of requests that cannot be served by the available containers
at n over the given time window. D̄t

n =
∣∣∣|It+1

n |−−|st
n +dt

n− pt
n|+

∣∣∣+
The decision variable used in the models is xt

i j which indicates the number of containers to be repositioned
from depot i to depot j at time t. The final allocation at the current time period can be determined by
solving the following model at a given time period t

Maximize ∑
i j∈E

(Q j− ci j) xt
i j (1)

such that

∑
i:(i j)∈E

xt
i j ≤ S̄t

i ∀i ∈ N (2)

∑
j:(i j)∈E

xt
i j ≤ D̄t

j ∀i ∈ N (3)

xt
i j ∈ Z+ ∀i j ∈ E (4)

Objective (1) maximizes the net revenue earned by repositioned containers. The number of containers
supplied from each depot is restricted by net supply available at that depot by Equation (2). As the
repositioning costs have to be minimized, Equation (3) restricts the number of containers moved to every
depot beyond its net demand.

The post decision container availability at n is given by, rxt
n = rt

n−∑i∈N xt
ni,∀n ∈ N. This represents

the number of available containers at the start of the time period t after the repositioning decision is made.
When actual supply, ŝt

n and demand d̂t
n are realized during the time period t, the number of containers

at time t + 1 is the sum of available containers after decision at t, net supply generated during time
period t and the containers arriving as per the decision taken at start of period t. This is calculated as

rt+1
n =

∣∣∣rxt
n + |ŝt

n+ d̂t
n− pt

n|
+
∣∣∣+ +∑i∈N xt

in,∀n ∈ N. The number of pending requests at the start of time t +1

is also updated based on the observed supply and demand, pt+1
n = |ŝt

n + d̂t
n− pt

n|
−
, ∀n ∈ N.

The parameters are updated and the above model is solved for the next time period to make the
repositioning decisions at t +1. The revenue obtained by serving demands at time t +1 by repositioning
decision taken at time t is maximized. To ensure that the demands in the current time period t at depot n
are not affected, the excess supply of containers, S̄t

n that can be relocated is determined. This model does
not implicitly maximize the current revenue, which is an important factor during repositioning.
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4.2 Single-Period Lookahead Value Approximation (SPL-VA)

In this section, a single-period look-ahead model incorporating the effect of decision xt
i j on the demands

during time period t and t + 1 is presented. In this model, vt
n represents the number of demands served

at depot n during the time period t and V̂ t+1(xt) the approximate revenue earned during time period t +1
given the decision xt at time t. Under the current assumption of single-period travel time, the decisions
at t affect only the states at t and t +1, and thus only revenue over these two periods is considered while
allocating containers at time t. The net revenue at time period t by the Dynamic Programming Model can
be determined as follows

Maxxt
(
∑
i∈N

Qivt
i− ∑

i j∈E
ci jxt

i j +V̂ t+1(xt)
)
. (5)

The number of demands served during time period t for every n ∈ N is given by

vt
n = min(rt

n−∑
k∈N

xt
nk + st

n,d
t
n). (6)

The revenue at t + 1 also depends on decision at t + 1. Demands at the current node are prioritized
by the model due to the negative repositioning costs in the objective. Thus, the containers at n will not
be repositioned during t +1 if there is a demand at n at the start of t +1. As the decisions at t +1 which
determine the supply and thus the revenue at t +1 are not considered, the approximate revenue at t +1 is
given by V̂ t+1(xt) = ∑i∈N Qivt+1

i . The number of demands served at n at t +1 can be approximated as,

vt+1
n = min(rt+1

n + st+1
n + ∑

k∈N
xt

kn,d
t+1
n +(dt

n− vt
n)). (7)

where (dt
n− vt

n) is the pending demand from time period t and the pending demands prior to t− 1 are
included in dt . Let gt

n represent the number of containers available at t after assignment. The dynamic
program described above, is modelled and solved as an ILP. Equation 5 is the objective which can be
directly written as

Max ∑
i∈N

Qivt
i− ∑

i j∈E
ci jxt

i j + ∑
i∈N

Qivt+1
i (8)

such that,

∑
k∈N

xt
nk ≤ rt

n ∀n ∈ N (9)

vt
n ≤ gt

n + st
n ∀n ∈ N (10)

vt
n ≤ dt

n ∀n ∈ N (11)
vt+1

n ≤ rt+1
n + st+1

n +∑k∈N xt
kn ∀n ∈ N (12)

vt+1
n ≤ dt+1

n +(dt
n− vt

n) ∀n ∈ N (13)
gt

n = rt
n−∑k∈N xnk ∀n ∈ N (14)

rt+1
n = gt

n + st
n− vt

n ∀n ∈ N (15)
vt

n,v
t+1
n ∈ Z+ ∀n ∈ N (16)

In this formulation, the objective (8) maximizes the revenue earned during the time periods t and t+1 while
minimizing the repositioning costs. Equation (9) restricts the number of assignments from every n to be
less than the number of available containers. Further, Equations (10) to (13) linearize the value functions
at t and t + 1 given in Equations (6) and (7). The number of containers available at the start of t after
assignment decision is made i.e., gt is calculated by Equation (14). The number of containers available
at start of t +1 is determined by Equation (15). Lastly, Equation (16) constraints decision variables to be
positive integers.

1830



Ghorpade and Rangaraj

Based on the observed demand and supply values, the number of available containers at the start of
t + 1 are, rt+1

n = |gt
n + ŝt

n− d̂t
n|

+
+∑k∈N xt

kn, ∀n ∈ N. The pending demands pt+1
d = d̂t

n−min(d̂t
n,v

t
n) are,

added to the demands in next time period, dt+1
n = dt+1

n + pt+1
d , ∀n ∈ N.

The above model determines the optimal repositioning decision for all the depots in the network for
the time period t. For large-sized real networks, this model involves n2 variables and 7× n constraints.
The complexity of the problem can be reduced by determining optimal decision at each depot instead
of solving for all the depots simultaneously. The Constraint (12) makes the model inseparable in n as it
includes repositioning decisions from all other nodes k ∈ N to n at time t. The remaining constraints are
independent of the decisions made in t from nodes other than n. To simplify the model, an approximate
heuristic by node wise decomposition of the above model given in Section 4.3 is developed by separating
the initial problem at each n and approximating V t+1 without the knowledge of x. This reduced formulation
has n− 1 variables and (5+ 2 ∗ n) constraints and thus it is easier to solve as compared to the SPL-VA
model.

4.3 Node Decomposition Heuristic Based on SPL-VA (NDH-SP)

A heuristic presented in this section is devised by, decomposing and solving SPL-VA individually at each
node, n ∈ N. The final repositioning is then determined from the cumulative solutions. Thus for the
individual depots n ∈ N, the objective 8 is redefined as

Max Qnvt
n−∑

i∈N
cnixt

ni + ∑
i∈N

Qivt+1
i . (17)

This objective function maximizes the revenue earned in time t at n and demands served in t + 1 at all
nodes n ∈ N, while minimizing the total cost of repositioning empty containers. This is maximized under
the constraints, 9-15 described in section 4.2 for a single node n. The value of vt+1

k , ∀k ∈ N\n has to be
approximated as the decision xt

k j, ∀ j ∈ N is not determined by this model. The number of demands served
at depot k at time t and t +1 is approximated as

vt
k = min(rt

k + st
k,d

t
k)

vt+1
k = min(rt+1

k + st+1
k + ∑

j∈N
xt

jk,d
t+1
k + pt+1

k ).

By the above definition, ∑ j∈N xt
k j is not included in vt

k since it is not known at this stage, however at
the node at which repositioning decision is made, i.e., n the dependency of vt

n on xt
nk exists. Also note that,

rt+1
k is also dependent on xt

k j, ∀ j ∈ N. If the containers are repositioned from n to k at time period t, this
satisfies deficit of demand during t +1. Such k should not have any containers repositioned during t, as
it doesn’t have sufficient supply during t to satisfy deficit in the next time period. Thus we approximate
gt

k = rt
k and rt+1

k = rt
k + st

k− vt
k. In order to determine the demands served at k ∈ N\n at t +1 we consider

the demands served by relocated containers xt
nk and available containers rt

n from previous time period
rather than overall demands. The revenue earned by serving the demands dt+1

k by incoming supply st+1
k

during same time period remains fixed for all n. Thus, vt+1
n represents the demands satisfied by available

or repositioned containers and can be given by

vt+1
k = min(rt

k + xt
nk, |dt+1

k − st+1
k |

+
+dt

k− vt
k).

Thus, following constraints are added to the model

vt+1
k ≤ rt

k + xt
nk ∀k ∈ N\n (18)

vt+1
k ≤

∣∣dt+1
k − st+1

k

∣∣+ +dt
k− vt

k ∀k ∈ N\n (19)
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The solution of the above model for each n ∈ N determines the number of containers allocated from
n to serve demands arising over the entire network. This could lead to multiple solutions from different
depots n ∈ N to a depot k. To ensure that excess containers are not assigned the following post-processing
steps are implemented:

• For every k ∈ N, if ∑n∈N xt
nk >

∣∣dt+1
k − st+1

k

∣∣+ , assign containers from the nearest locations till the
demands at k are satisfied.

• All the remaining assignments are cancelled i.e., xt
nk = 0 and the containers are assumed to be

available at this location, considered to be a temporary supply at n, stemp
n

• If the excess demand at some k is not satisfied, the containers from nearest stemp
n ∀n∈N are assigned.

• Thus, the final assignments at t are intended to satisfy all excess demands at k at t +1.

Further, as described in Section 4.2, we update the values of rt+1
n and dt+1

n for the period t +1. Note
that not all possible supply-demand pairs are balanced in this case. This heuristic is compared with the
standard AP and the VA model in Section 5 to determine its usability in real life applications.

5 MODEL COMPARISON

In Section 4, three single-period models to solve the IDCRP are presented. The performance of these models
are compared across the 30 instances over six network sizes |N|= {5,10,15...,30} over a 50× 50 grid.
At each node n, the average supply (sn) and demand (dn) values are obtained from a uniform distribution
∼U(2,4). For each instance, the decisions are simulated over a time horizon of T = 50 and the number of
demands served and the total empty repositioning distance is observed over each simulation. The supply
and demand values at each node n over the time horizon T are drawn from normal distributions ∼ N(sn,2)
and ∼ N(dn,2) and form dynamic inputs to the models. To avoid the end effects, availability of a certain
number of containers is assumed at the start of time period 0 at each depot and the demand and supply at
each node during the last 5 time periods is set to zero. This ensures that the results do not vary by partial
realization of decisions. The simulations for the models are performed by using Python. The ILPs are
modelled in PuLP in Python 2.7.13 and solved by COIN-OR solver. All the computations are performed
on a machine equipped with 4 Intel Xeon 2.13 GHz cores and 64 GB RAM.

The maximum number of demands that are satisfied at each t is is bounded by the min(∑t,n st
n,∑t,n dt

n)
as the import or leasing decision is not considered in this work.

It is observed that for all the instances, maximum possible demands are served using any of the
models. Since the value of satisfying each demand is considered to be the same and the maximum possible
demands are served, the revenue earned by satisfying demands remains constant. Therefore, to compare
the performance of these models, only the repositioning costs are studied. Partial results of this study for
three grid sizes and ten instances are reported in Table 1.

Table 1: Empty travel costs for different models.

N=10 N=20 N=30
Instance AP SPL-VA NDH-SP AP SPL-VA NDH-SP AP SPL-VA NDH-SP

1 3431 2795 2713 6015 5248 4989 12147 11076 11115
2 6993 6167 6191 10566 8787 9148 10679 9967 9878
3 6103 5897 5978 8708 6798 7074 6118 4817 4907
4 404 288 293 5516 4923 4895 10079 9161 8120
5 2187 2185 2185 9882 8646 9061 5242 4536 4753
6 4594 4183 4380 4408 4219 4497 4845 4690 4572
7 4312 4033 3773 6890 5713 6251 10086 7848 8323
8 7726 7265 7320 7977 8058 7947 10490 9703 9706
9 6883 5631 5674 5021 4709 4710 12278 11027 11135

10 3748 3811 3814 9316 8166 8294 11398 9758 10399
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The minimum repositioning costs are obtained by the SPL-VA model in 72 percent of the instances
and NDH-SP model in 24 percent. In 35.5 percent of the total cases, NDH-SP performs equal to or better
than SPL-VA whereas in 85 percent of the remaining cases the NDH-SP cost is within 5 percent of the
SPL-VA solution. The maximum deviation seen is 10 percent.

The non-parametric Wilcoxon signed-rank test is applied to test the statistical significance of the
results. Pairwise tests are performed on (AP, SPL-VA),(AP, NDH-SP) and (SPL-VA, NDH-SP). We test
the hypothesis that the means are equal against the alternative hypothesis, µAP > µSPL−VA, µAP > µNDH−SP
in the first two cases and µSPL−VA 6= µNDH−SP in the third with significance level 0.05. The results state
that the null hypothesis is rejected in the first and the second case, concluding that there is a significant
improvement in the performance of Value Approximation models when compared to the traditionally used
Allocation Model for the empty container repositioning. The test suggests that there is not enough evidence
to reject the null hypothesis in the (SPL-VA, NDH-SP) pair when |N| > 10. Thus, from the tests, we
conclude that NDH-SP heuristic gives comparable solutions to SPL-VA on larger networks.

Due to lower repositioning costs than AP and lesser complexity than SPL-VA, the NDH-SP heuristic
can be considered to be more suitable for practical applications. Further, the heuristic is generalized with
some approximations in order to be applied to realistic container data, with multi-period travel time.

6 MULTI-PERIOD HEURISTIC

In this section, the NDH-SP is generalized to accommodate the realistic multi-period travel times to formulate
the Node Decomposition Heuristic with Multi-period Travel Time (NDH-MP). A demand rejection criteria
to provide higher service level to the customers is described in Section 6.1 and the simulations under
different rejection parameters is provided in Section 6.2.

The objective function (17) is updated to account for the multi-period travel times as given in equation
(20) where the rolling horizon window of two time periods is extended to include the time when the
container reaches its destination node.

Max Qnvt
n−∑

i∈N
cnixt

ni + ∑
i∈N

Qivt+tni . (20)

The constraints for each individual node n at time t are same as given by Equations (9)–(11) and
(14)–(15). As the containers repositioned from n at t will be available to satisfy the demands at location k
at time t + tnk where tnk is the travel time between nodes n and k, Equations (18) and (19) where the effect
of travel time was observed need to be modified. Let x̄(t,u)n,k be the number of containers repositioned at
time t from n and are expected to reach k at u. The total number of containers reaching location k at time
u is given by:

x̄u
k = ∑

t<u
∑

n∈N\k
x̄(t,u)n,k .

The available containers and pending demands at k at the start during the time period (t + tnk) depends on
the intermediate time periods and is approximated by using the net imbalance in the corresponding time
window, given by:

R(t+tnk)
k = rt

k + ∑
u∈(t,t+tnk−1)

(su
k−du

k + x̄u
k).

The predicted number of containers available at k at the start of t + tnk is given by r̂
t+tnk
k = |R(t+tnk)|+ .

Similarly the demands at k at time t + tnk are predicted to be d̂
t+tnk
k =−|R(t+tnk)|− . Equations (18) and (19)

are modified as given below:

vt+tnk
k ≤ r̂

t+tnk
k + xt

nk

vt+tnk
k ≤ |dt+tnk

k − s
t+tnk
k |+ + d̂

t+tnk
k .
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All the repositioning decisions made at t < u that lead to availability of container at k at the start of time period
u, are denoted by Au

k . Thus, at every time period t, rt
k is updated as rt+1

n = |gt
n + ŝt

n− d̂t
n|

+
+At+1

n , ∀n ∈ N.
The pending demands are added to the demands in the next time period as mentioned in Section 4.2.

6.1 Demand Rejection Criteria

The model proposed in Section 5 is simulated and the empty containers are allocated to demand locations
at each time period with the aim of maximizing the profits. If the supply is constantly less than demand,
pending requests at some locations accumulate with time. In these cases, containers have to be imported
or leased from other companies. This also affects the service levels provided to the customer that are
remotely located or place demands later in the time. To avoid these situations, a policy to reject incoming
demands is evaluated. Consider that each container demand has a time window L and the demands not
served within L are cancelled by the customers. The effect of cancelled demands can be seen as a lesser
number of served demands at the depots. The containers are assigned to demand locations only if it can be
available within a specific time window or the pending requests are not already queued at the given depot.

Service Time: To ensure sufficient service level to the customers, the requests that will not be served
within the desired time have to be rejected. Considering this, if the travel time between two locations is
greater than ti j +L, the containers are not assigned from that location.

Pending Requests: Cancellation of demands that could not be served on time may lead to loss of
goodwill. For this, the incoming demands at a depot are also accepted or rejected depending on the pending
demands at that depot. Thus, the customers are informed immediately if the containers cannot be supplied
so that they can make alternate provisions. If the number of excess demands at a location is more than
certain parameter C we immediately reject the new demands at this location.

6.2 Analysis

The final model for realistic container repositioning problem with multi-period travel time and the demand
rejection is studied under varying C and L parameters. In this case, all demands are either served or rejected
when they are received or cancelled after waiting for a fixed time period.

Figure 2: Empty repositioning cost. Figure 3: Total demands served.

An inland network with 30 depots is constructed for this study. The demand and supply values are
generated as explained in Section 5. The travel time between nodes is proportional to the distance between
them. The simulations for the ADH-MP are performed over this data with L varying from 1 to 5 and C
from 1 to 20 for 50 time periods. The total empty distance travelled by containers is shown in Figure
2. The smaller distance at low values of L are observed as the overall number of demands that is served
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Figure 4: Total demands rejected. Figure 5: Total demands cancelled.

is small as compared to higher L represented in Figure 3. At smaller C’s large number of demands are
rejected and the containers have to move larger distances to serve future accepted demands. At values
of C > 6, the number of demands served is stabilized and thus the distance travelled decreases gradually.
The number of rejected demands is very high at low values of L and C (Figure 4) but fewer demands are
cancelled (Figure 5). As the value of C is increased, the number of demands rejected is reduced but that
of cancelled demands increase. This is due to the pending requests being automatically cancelled after
L time periods. Hence at lower L, the number of cancelled demands is high as compared to the higher
values. With increasing L, the number of rejected demands increases and the number of cancelled demands
decreases.

From the above results, it can be concluded that while applying the model to real networks, demands
with larger time windows are preferred so that maximum demands can be catered. Further, C could be
set to some medium value to avoid rejection of demands at lower C values and cancellation at higher C’s
such that while serving maximum demands, majority of demands can be rejected rather than cancelled if
service is not provided on time.

7 CONCLUSION

The inland empty repositioning of containers between depots is described in this paper. The inter-depot
repositioning is necessary to maintain the inventory levels at each depot in order to ensure empty container
availability for demands arising in the neighbourhood regions. However, this problem is not described
extensively in the literature.

Initially, Container Allocation Model (AP) is presented which is used traditionally to solve the problems
of this type. However, as this model does not consider the effect of decisions on current demands at the
supply node a Value Approximation (VA) Model with a single-period lookahead is proposed. To reduce
the complexity of the VA model, a heuristic is derived by node wise decomposition of this model (ND-SP).

A comparative study of the models is done by simulating demand and supply over a certain time
horizon. By conducting Wilcoxon signed rank test it is observed that the SPL-VA and NDH-SP give better
solutions as compared to the AP Model. Also, NDH gives comparable results to the SPL-VA with respect
to the repositioning costs over the time horizon by solving ILPs of smaller dimensions. These models are
based on a single-period travel time assumption. The NDH-SP model is further generalized by allowing
multi-period travel times, by approximating the number of available containers at the future time periods.
A demand rejection policy is introduced to govern the demands to be catered such that the service time
of customers is not affected based on their location and time of placing the request. This is studied under
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different time windows and an upper limit on the number of queued requests. The benefit lies in allowing
moderate queue size at each depot.

The above models make allocations based on demand and supply predictions. The state at each t can be
updated based on the observed values during each time period. However, all the simulations in this paper
are performed assuming that the supply and demand information is deterministic. We recommend analysis
of the effects of uncertain data on the inter-depot container repositioning decisions. Further, a study over
the realistic container data to observe the benefits from inter-depot repositioning and cancellation policy is
also proposed.
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