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ABSTRACT

Wind energy is a promising technology to cover the world’s need for sustainable energy production.
Nevertheless, the construction of offshore wind farms imposes particular challenges. While about 15%
to 20% of the costs for offshore wind farms can be attributed to logistics during the construction, highly
dynamic weather conditions render accurate planning difficult. This article presents an approach for the
installation planning, which uses the model predictive control scheme to combine short-term control with
model-based simulations. The latter is used to optimize over mid- to long-term plans. Besides, the article
presents a new approach to incorporate the uncertainties of weather predictions into the operations planning
by estimating the expected duration of offshore operations. Results show increased efficiency of generated
plans with growing planning horizons, limited by the accuracy of weather forecasts.

1 INTRODUCTION

Wind energy constitutes one of the most promising technologies to cover the world’s need for renewable
and sustainable energy production. In 2017, wind farms with a capacity of around 52 Gigawatts were
constructed worldwide, increasing the total amount of energy produced by wind turbines by approximately
11% to a total of 539 Gigawatts (REN21 2018). Due to higher wind speeds and wind availabilities at
sea, offshore wind farms are capable of producing large amounts of energy (Breton and Moe 2009; Sun
et al. 2012). As a result, the amount of energy generated by offshore wind farms shows an exponential
increase over the last decade (REN21 2018). While offshore wind farms are more capable of providing
high amounts of steady energy compared to their onshore counterparts, the construction and operation of
offshore wind farms pose particular challenges due to their increased weight and dimensions. In addition,
highly specialized and expensive vessels are required for the installation process (Junginger et al. 2004;
Rippel et al. 2019). In general, about 15% to 20% of the costs for offshore wind farms can be attributed
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to logistics during the construction process, demonstrating high potentials for optimization (Lange et al.
2012; Dewan et al. 2015; Muhabie et al. 2018). While long-term plans can lead to high cost reductions,
uncertainties in forecasting highly dynamic weather conditions at sea can render mid- and long-term plans
inaccurate, thus, increasing the risk of additional costs. Consequently, a dynamic planning approach is
required, which allows for quickly adapting plans on demand to counteract the financial risks implied by
dynamic weather conditions.

In previous work, we identified several planning tasks, which together, make up the overall planning
problem for the installation of offshore wind farms. These cover different time horizons and range from an
overall long-term capacity planning for vessels and storage, over the production and transport planning of
components to the short-term operations planning at sea (Rippel et al. 2019). As most of these problems
rely on or provide constraints to the operative planning of installation activities, this article proposes a novel
approach for operations planning. Therefore, this approach applies methods from control theory, namely
the Model Predictive Control (MPC) scheme (Griine and Pannek 2017). The aim is to achieve a trade-off
between the optimality of mid- to long-term plans and the high reactivity of short-term control, minimizing
the risk imposed by changing weather conditions. MPC combines closed-loop control, which retrieves
feedback from the controlled system, and model-based, open-loop simulations to determine optimized plans
for longer planning horizons. Moreover, the proposed approach include weather dynamics and uncertainties
in forecasts during the planning. Thereby, the resulting restrictions are preprocessed to reduce the overall
optimization efforts while achieving accurate representations of their influences on the process.

2 OPERATIVE INSTALLATION PLANNING AND PRACTICAL RESTRICTIONS

This section describes the operative installation process for offshore wind farms. It provides information
derived from literature as well as information gained through interviews with process experts throughout
several previously conducted research projects.

In general, the operative installation process can be divided into three stages (Vis and Ursavas 2016):
First, the installation of founding structures and the connection to the energy grid. The second stage
comprises the assembly of the top structure. These usually consist of three tower segments, the nacelle,
three blades, and a hub. The final stage includes the commissioning of the assembled offshore wind turbines
and their ramp-up. In practice, different companies install the top structures and the foundations. Moreover,
these two stages are usually performed consecutively, i.e., the installation of top structures only commences
after all foundations are installed. This article focusses on the assembly of top structures, although the
proposed method can be applied to the installation of foundations without limitations.

As described, the top structures consist of several parts, which have to be assembled sequentially,
beginning with the tower, over the nacelle and blades and finishing with the hub. Although different
approaches for preassemblies exist in literature, these only have a small impact on the general planning
problem, resulting in different restrictions and durations. Studies of the economic effects of preassemblies
can be found in Vis and Ursavas (2016) and Sarker and Faiz (2017). During the assembly of each component,
the process requires an uninterrupted time window of specific weather conditions, i.e., a maximum wave
height and a maximum wind speed for the assembly operation to be conducted. For example, if the assembly
takes three hours, wind speeds and wave heights have to remain under specific thresholds for the three hours.
Otherwise, the assembly cannot be started or has to be aborted. In literature, there exist different categories
of installation concepts. The classical installation concept used in this article assumes that the components,
are stored at a base port. Installation vessels, so-called jack-up vessels, pick up sets of components in port
and sail for the installation site. After all components are used up, the installation vessel returns to port
and proceeds to load the next set of components (Oelker et al. 2017). In contrast, feeder concepts assume
that the installation vessel remains stationary at the construction site and specialized heavy-lift vessels take
over the transport between the base port or the manufacturing sites and the construction site. For examples
of these concepts, see Ait Alla et al. (2017) and Oelker et al. (2018).
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Jack-up barges and platforms are suitable to perform all of the mentioned top structure assembly tasks,
as they are equipped with cranes. Moreover, they are equipped with retractable pillars, which allow them
to shore up on the seafloor, rising themselves several meters above the sea level. After jacking-up, these
vessels are generally unaffected by waves, whereas high wind speeds still interfere with crane operations.
During the jack-up process, the retractable pillars dig themselves into the sea floor, loosening it during
jack-down. As a result, each position can only be used once for a jack-up in practice without risking
damage to the foundation or even to the jack-up vessel itself. This implies that the installation vessel has to
finish the construction of an offshore wind turbine in a single session. This holds true in practice: Once the
installation of a turbine has started, it is usually finished before the installation vessels jacks-down again.
If weather conditions prohibit finalizing the turbine, the installation vessel remains in place and waits until
the process can continue. As a result, uncertain weather conditions lead to high financial risks associated
with the construction of offshore wind farms. According to Meyer (2014), jack-up barges come at charter
rates between €70,000 and €145,000 per day, whereby contracts often set different charter rates for the
vessel being in port and for being out on the sea. According to the statement of experts in this field, it can
be assumed that these costs differ by approximately 30% of the base cost.

3 LITERATURE REVIEW

In the literature, only a few works deal with the installation planning for offshore wind farms. In Rippel
et al. (2019) we provided a comprehensive overview of articles in this area over the last years. Even fewer
articles explicitly deal with the generation of operative plans for offshore installation activities. This section
shortly summarizes the general state of the art and further investigates those articles, explicitly dealing
with operations planning. Therefore, approaches in the planning of offshore wind farms can be classified
according to their underlying type of model (mathematical simulation/optimization and discrete-event
simulation) as well as according to their purpose (evaluation or plan generation/optimization).

For discrete-event-based approaches, there exists no related work, which aims to generate plans for
the offshore installation in current literature. All the approaches focus on the simulation part, where the
behavior of actors (usually vessels) or a predefined plan is evaluated. Muhabie et al. (2018) present
such an approach to compare the effect of deterministic and stochastic assumptions concerning weather
conditions throughout their model. Vis and Ursavas (2016) propose a simulation model to evaluate different
preassembly strategies and to assess their impact on the overall installation process. Ait Alla et al. (2017)
propose a multi-agent-based model to compare the conventional installation concept with feeder concepts,
later extending the simulation model in Oelker et al. (2018). Whereas all of these approaches simulate the
behavior of vessels and thus, can be used to derive a plan after the simulation finished, they do not include
an optimization component to evaluate different plans or configurations. Thus, it can be stated that current
discrete-event-based approaches only focus on the evaluation, not on the generation of feasible plans.

On the mathematical side, both types of approaches can be found. The majority of literature in this
topic focuses on the generation of plans on different levels of abstraction. Only two models could be
identified, which only focus on the evaluation. Thereby, Quandt et al. (2017) propose a mathematical
model to evaluate the impact of information sharing of the overall supply chain performance. Beinke et al.
(2017) use a mathematical formulation to evaluate cost reductions for resource sharing of involved heavy-lift
transport vessels. For the generation of plans, several models using mixed integer linear programming
can be identified. Kerkhove and Vanhoucke (2017) apply a heuristic approach to plan the deployment and
decommissioning of vessels. Scholz-Reiter et al. (2010) combine a precedence-based job-shop scheduling
formulation with a multi-periodic production formulation to derive optimal plans for small scenarios with a
daily resolution. The approach was extended in Scholz-Reiter et al. (2011) by heuristics for solving larger
instances of the problem. Weather dynamics are considered in form of a randomly generated sequence
of weather classes (good, medium and bad weather), restricting the execution of operations. For these
classes, the authors propose to estimate likelihood values for each class using stochastic programming. This
approach was later extended by Ursavas (2017) to deal with probabilistic weather assumptions. Ait Alla
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et al. (2013) propose another model, which closely resembles a time-indexed job-shop formulation. For
each indexed period of twelve hours, the optimizer determines the number of foundations, cables, and top
structures to be build using a predefined vessel configuration. Similar to the approach described before,
an ordered set of weather classes is provided to indicate if the corresponding operations can occur within
this window. Irawan et al. (2017) propose a bi-objective optimization model, aiming to find a trade-off
between minimal construction times and minimal costs. The integer linear programming model thereby
relies on identifying timeslots with a daily resolution where the overall offshore operation can start and
will finish. Therefore, the optimizer uses predefined, daily weather classes to determine if an operation
can commence or not. In cases where the weather gets too bad to conduct an operation, the timeslot is
extended by this duration to represent waiting times on a daily basis. This model was later extended and
adapted for the decommissioning of offshore wind farms in Irawan et al. (2019).

In terms of a practical application, the generation of a static, holistic plan can be a drawback. Weather
predictions become more and more inaccurate with an increasing time horizon, thus rendering the overall
plan inaccurate and increasing the risk of miscalculations in terms of operational times and costs. For larger
projects, a realistic estimation of weather windows can be unachievable. Furthermore, most approaches
combine the installation of top structures, foundations, and cables into a single optimization problem. In
practice, these are considered two separate problems, as different companies conduct these tasks sequentially.
Another drawback of current approaches is the aggregation of weather conditions to discrete classes. Each
assembly operation, e.g., for tower segments or blades, imposes its own restrictions and delays. While most
approaches only plan aggregate activities, i.e., installation of top structure or foundation, when sufficient
time of good weather is available, Irawan et al. (2017) at least allow operations to commence and wait for
good weather by extending the aggregate operations’ duration. Nevertheless, this representation still does
not regard specific restrictions of delays of the underlying assembly tasks.

In order to retain the advantages of these long-term plans but to reduce the risks of these plans becoming
infeasible at later stages of the plan execution, the next section introduces a novel approach for deriving
plans using the Model Predictive Control (MPC) scheme. According to Griine and Pannek (2017) MPC
was first introduced in 1963 and has since seen several adaptations, e.g. for robust or stochastic MPCs
(Kouvaritakis and Cannon 2016) or for non-linear models (Griine and Pannek 2017). Thereby, the general
scheme underlying all of these adaptations combines short-term feedbacks from the real-world operational
system, with model predictive simulations using varying types of system models for longer planning
horizons. This article applies the MPC scheme to retrieve optimal short-term plans from simulated, longer
planning horizons. Furthermore, it presents a more detailed approach to include weather dynamics and
forecast uncertainties.

4 MPC-BASED APPROACH FOR THE INSTALLATION PLANNING

As mentioned earlier, the Model Predictive Control scheme consists of two distinct control loops, which
act on different time scales as sketched in Figure 1. The closed-loop thereby receives feedback from the
real-world system and provides a control for the system at distinct time instances, denoted as ;. These
controls, in case of this article describing plans for offshore operations, generally cover sampling steps
of length 7. To obtain these short-term plans, MPC applies a simulation-based open-loop optimization.
In contrast to the closed-loop, the open-loop does not receive feedback from the real-world system apart
from its initial state but simulates the system’s behavior and possible feedback using predictive system
models. As the open-loop acts disconnected from the real-world system, longer planning horizons can be
simulated to achieve better optimizations over mid- to long-term horizons, resulting in an optimal control
sequence. In this article, these planning or prediction horizons are selected as a multiple of the original
sampling step and are denoted as N = P+ T whereby P describes the length of the planning horizon. After
the optimal solution for the mid- to long-term plans is obtained, the first control value, in this case, the
plan for the next sampling step ¢; is extracted. After execution, the time is shifted, and the real system state
is measured, repeating the described procedure until a defined termination condition is matched.
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Figure 1: Model predictive control scheme.

Although MPC is usually applied to solve continuous optimal-control problems, the underlying opti-
mization model can be adapted for the optimization of operative plans for the installation of offshore wind
farms. As a result, the proposed approach combines both high reactivity to changing conditions while
maintaining the advantages of mid- to long-term plans. For example, if 7" is chosen as one week and P =3
is selected, the open loop would generate an optimal plan that covers P+ T = 3 weeks at time instance ?;.
From this plan, a short-term plan of length 7 =1 week would be extracted and applied to the real world
system by the closed-loop. As a result, the system would progress by one week to the second time instance
1y, and the actual state of the system would be measured and used to initiate the next open-loop simulation.
The selection of suitable values for 7' and P thereby highly depends on the dynamics and control needs of
the real-world system, as well as on the quality of the open-loop system model. For a detailed description
of the MPC scheme and applications for optimal control problems see, e.g., Griine and Pannek (2017).

The proposed approach is split up into six consecutive steps, which are repeated for every time instance
t; and cover the closed and open-loop parts of the MPC scheme as given in Figure 2. In the first step, the
current state of the system is updated by measuring the state of its real-world counterpart. This information
is passed to the open-loop simulation. In a second step, the open-loop simulation preprocesses the obtained
weather forecast, to calculate probabilities for every time step (hour) to determine, if an assembly task can
be conducted. This is performed for every task, e.g., assembly of the blades, jack-up, or sailing. Using
this information, the expected duration of aggregate operations, i.e., port operations, moving between the
construction site and the port, and the construction of a top structure, is calculated as a third step. Afterward,
an optimized mid- to long-term plan is calculated, simulating a planning horizon of N = P T time steps
(hours) as the fourth step. This plan is passed back to the closed-loop, where a short-term plan is extracted
(fifth step) and applied to the real-world system (sixth step). After application, the cycle starts again by
retrieving measurements about the state of the plan execution and updated weather predictions.

5 IMPLEMENTATION AND MODEL DESCRIPTION

The following subsections describe proposed methods and models for each of the steps described in the last
section, which are suitable for optimizing an operative installation plan, consisting of aggregate operations.
This article uses hourly, historic weather information about wind speeds and wave heights in the northern
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Figure 2: Steps of the MPC-based planning of offshore operations.

sea to emulate the real-world system. Therefore, the recorded information is used in the application part of
the planning, while forecasts are generated based on these records for the open-loop simulation. In terms
of weather restrictions, this article closely follows the restrictions given in Oelker et al. (2018) and extends
those by restrictions gained from process experts.

5.1 Scenario and State

The state comprises all static settings concerning processing times, restrictions, vessel configurations,
weather data, and information on the current state of the installation process. Therefore, the current state
is summarized by the number of turbines already built, the current time instance, the current location of
each vessel (in port or offshore) and its current loading state, i.e. components for how many turbines are
currently loaded on each vessel. For the static parameters, Table 1 summarizes the non-aggregate operations
considered in this scenario together with their respective duration and weather restriction.

For the plan generation, aggregate tasks are defined as given below. Therefore, an aggregate operation is
defined by the cumulative duration of all its non-aggregate operations at the given time step. The procedure
to calculate the duration of aggregate operations is further specified later in this section.

1. Port operations: Refers to the non-aggregate task Loading in port. During the execution of port
operations, the installation vessel loads all required components to build one offshore wind turbine.

2. Move to port: Directly refers to the non-aggregate task Move to port/site.

Move to site: Directly refers to the non-aggregate task Move to port/site.

4. Install top structure: The installation of top structures is represented as a sequence of non-aggregate
tasks given as Reposition in Field, Jack-up, Assemble Tower, Assemble Nacelle, Assemble Blade,
Assemble Blade, Assemble Blade, Assemble Hub, Jack-down.

(98]

In addition, to these definitions, the state describes how many installation vessels are used — for this
article only a single one — and how much capacity for components these vessels provide, i.e. how many
turbines can be assembled in a single offshore trip. Moreover, the state describes the sampling step and
planning horizon length, used for closed-loop and open-loop planning.

Table 1: Basic operations with base duration and weather restrictions.

Task name Base duration in h | Max. wind speed in m/s | Max. wave height in m
Assemble Tower 3 12 *

Assemble Nacelle 3 12 *

Assemble Blade 2 10 *

Assemble Hub 2 12 *

Move to port/site 4 21 2.5
Reposition in Field 1 14 2

Jack-up / Jack-down 2 14 1.8

Loading at Port 2 - -

* Operation unaffected by wave height as the vessel is jacked-up
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5.2 Generation of Weather Forecasts

As only historic measurements of actual wave heights and wind speeds were available, an intermediate
step was introduced to emulate weather forecasts as part of the state update. Using this data, increasingly
wide intervals of probable weather conditions are generated as illustrated in Figure 3 (left). These forecasts
follow the assumption of increasing uncertainties between provided fix points, as shown in Figure 3 (right):
At 5 days into the future, the forecast has an uncertainty of 10%. At day 7, it increases to 20%. Until the
14" day, the uncertainty increases to about 50% and grows strongly from this point. These values resemble
common weather forecasts as given on weather websites. For the generation of the forecast intervals, this
uncertainty is used as a factor, multiplied with the average wave height or respectively the average wind
speed for the planning period and is added/subtracted from the measurement as interval bounds.

Forecast: Wind Progression of Forecast Uncertainty

£ s
10 L‘%
-§ ‘2‘05
& 3
2 ° B
2 5 ol

0 L L L 1 L L L

Q '\90 q;p %QQ @Q 0 5 10 15 20

. . Days into Forecast
Time Step in Hours

Figure 3: Left: Forecast for the next 336 hours of wind speed with the black line as measurement, and the
gray area as the forecast interval. Right: Development of the uncertainty factor for 20 days.

5.3 Calculation of Probabilities for Successful Operations

In preparation of the open-loop simulation, the forecast intervals are converted into a probability matrix. For
each non-aggregate operation and each time step (hour), the probability of meeting the weather requirements
is calculated. For wind and wave values, the minimum of these probabilities is selected for that particular
hour. To calculate the probabilities, the algorithm assumes a uniform distribution within the provided
forecast-interval. Consequently, the probability can be expressed as the fraction of the forecast-interval,
which is below its respective threshold, given in Table 1. For example, a forecast interval for wind speeds
of [10,14] would result in a probability of 1.0 for Reposition in Field (max 14), 0.5 for Assemble Tower
(max 12) and close to O for Assemble Blade (max 10).

5.4 Estimation of the Duration for Non-Aggregate and Aggregate Operations

In a final preparation step, the duration of aggregate and non-aggregate operations is estimated for each time
step (hour) of the planning horizon. Therefore, the algorithm first calculates the expected duration of each
non-aggregate operation for each possible starting hour. For aggregate operations, the expected duration
is represented as the sum over the sequence of its non-aggregate operations, considering their respective
durations and starting dates as given in the gray cells in Figure 4 on the right side. The left side of Figure
4 depicts the process of estimation for the duration of non-aggregate operations. Therefore, the algorithm
first retrieves the operations base duration (in this example 3 hours). Starting from the currently selected
starting hour (here 0), the algorithm calculates the probability of this time slot for success as product of
individual probabilities (given inside the gray time slots). If the probability is higher than a user-specified
value o, the time slot is accepted, and the duration is returned as the index of the last cell. If the time
slot is rejected, the window is shifted forward by one hour and reevaluated. In the figure’s example, these

1725



Rippel, Jathe, Liitien, Szczerbicka, and Freitag

shifts are shown as rows. @ thereby denotes the minimal probability for a successful operation that a user
is willing to accept and thus, allows to generate more robust (higher @) or higher-risk plans (lower ®).

Hour 0 1 2 3 4 5

Probability || 5 | 6 [ 75 9 [ 1 [ 1 | [Hour fJoJr[2]3[4]5]6[7]..]
Duration 3 0.225 \ Reposition [[ 21 [:1 [ 1T [1[3]2]]1
Duration 4 0.405 Jackup 4 | 3 Y2422 | 43 ]2
Duration 5 0.675 Tower 4 | 3|3 |3 [¥34433
Duration 6 ‘ 0.9 . v | | | e | e ] e P

Base Duration = 3 hours o =0.75

Figure 4: Left: Estimation of the duration for non-aggregate operations. Grey cells provide the joint
probability. Rows depict shifted time frames if the probability is too low. Right: Duration of aggregate
operations at a given starting time 0. Gray cells mark the selected durations to be summed up.

5.5 Generation of Long-Term Plans

Finally, the open-loop plan is generated using the expected duration for aggregate operations. Therefore, the
optimizer simulates different sequences of activities for evaluation. As described earlier, the optimization
problem for this step can be implemented as a mixed integer linear program. Therefore, a time-indexed
formulation of the problem was chosen as given below. The used variables are summarized in Table 2.

In addition to the actual schedule Ynj Zb, the optimizer uses two utility variables, describing the number of

loaded components Xkcap at each hour, and the location Yk"’c of the vessel at each time step.

Q=2

o,k

Table 2: Variables used in the mixed integer linear program.

Integer

{1...5)

Integer
Integer
Integer
Integer
Integer
Indices

Decision variables:

cap
X
oc
gb
]()
Yu,k

Integer
Binary
Binary

Length of the planning horizon N =P T

Set of all operations as {1: Start Installation, 2: Start Move to
Port, 3: Start Move to Site, 4: Start Port Operations, 5: Vessel
is Busy}

Estimated duration of operation o at hour k.

Cost for being offshore per hour

Cost for moving between port and construction site per hour
Cost for port operations per hour

Benefit for installing a turbine

Indices for operations (0 € N*,0 <|&|) and time instances (k €
N,k <N)

Amount of currently loaded components.

Denotes if the vessel is in port (0) or offshore (1)

Matrix of size |O|xN. Denotes for every time step (hour) if a
vessel is currently starting an operation or is still busy.

The cost function J aims to minimize the time at sea for each vessel. Thereby, it is defined as the sum
of costs for being offshore, fuel costs for moving between the construction site and the base port, and the
cost for port operations. For each installed turbine a predefined benefit is subtracted from the cost.

N
=Yy
k=1

loc %

3N N N
job job job
c0+ZZYOJ,k *Dmk*cm—&—ZYj’k *D47k*cp—ZY1{k xb
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The optimization is subject to the following constraints:

o
Yy =1 Vke{l...N} 1)
o=1

) ) job job
X = X{ vy Vke {2...N} 2
Ykloc — Yklicl _ Y2](lib _|_Y3];(]ib Vk € {2 . N} 3)
Y% < max(0,(N—k) — D, y) Vke{l...N};Yoe O @
/H»Do)kfl ) )

Z YSJ,(t)bZY()],Zb*D()’k Vke{l...N};Yoe {1...4} &)

t=k+1

Constraint (1) ensures that the vessel is not involved in more than one activity concurrently. Constraint
(2) defines the amount of loaded component as equal to the preceding time step minus one for the installation
of a turbine and plus one for port operations. Constraint (3) defines the location of the vessel similarly,
referring the movement operations. Constraint (4) ensures that only operations are scheduled, which can be
finished within the current planning horizon. Constraint (5) defines that the vessel is busy for the respective
duration if an operation is commenced.

5.6 Short-Term Plan Extraction, Application, and State Update

After the long-term plan is generated, the algorithm extracts all aggregate operations that have been started
between the current time instance #; and the closed-loop sampling step t; + 7. As the short-term plan relies
on started operations, the actual length of these plans can differ. For example, if the last operation finishes
some time before t; + T, the plan will end up shorter.

To emulate the application of this plan in the real-world system, each operation is checked against
the recorded, non-forecast weather conditions. Therefore, the steps proposed for the duration-estimation
are repeated for the actual weather data. This changes the probability matrix to only containing 1 or O to
indicate if the weather is good enough or not. After calculating the duration matrix, each planned operation
is applied sequentially by comparing the planned duration d, and the real duration d, as follows: If both
durations are equal, the algorithm proceeds to check the next planned operation. If the real operation
took longer than expected, the algorithm evaluates if the next operation can still commence as planned.
If not, the plan execution is aborted, and a new closed-loop iteration is initiated. If the real operation
was faster than expected, the current implementation aborts the plan execution. As described, the primary
objective is to minimize offshore times and costs. Therefore, the algorithm derives a new, optimized plan.
Nevertheless, other scenarios could be implemented and evaluated to determine the best behavior.

After the plan application, the state is updated. Therefore, the current date, location, amount of loaded
components, and the number of built turbines are updated to the last time index of the last applied aggregate
operation. Afterward, new forecasts are generated, repeating the cycle given in Figure 2.

6 SIMULATION RESULTS

This section shows the results of the proposed approach as proof of concept. Therefore, the initial state
is set to June, 1* 2000, with a single vessel in port, no loaded components, and a capacity of 4. The
closed-loop sampling step is set to a week while the open-loop simulation’s horizon is varied. An overall
time frame of 5 weeks is considered. The approach was implemented in MATLAB r2018 on an office
computer (i7-3770K, 8GB RAM). The maximum optimization time was limited to one day. As MATLAB
does not support parallelization for mixed integer problems, the results can be improved drastically by
choosing a different optimizer. A single optimization never exceeded a CPU load of approximately 13%
on a single core.
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Figure 5: Planning results for the first week of P = 1.

The optimizer generates optimal sequences of aggregate operations, as shown in Figure 5. Gray scales
depict operations from dark to light as port operations, movement, installation. The blue line shows the
expected duration of the installation operation if started at a given time. Red markers indicate the starting
hour of planned installation activities. Figure 6 shows the results for different open-loop planning horizons
of 1 to 5 weeks (P =1 to P =5). For plans marked with *, the optimizer was not able to find the optimal
solution in time. As can be seen, this holds particularly true for P = 4, where the plans for the last two
weeks were strongly sub-optimal. For P =35, the plans were not optimal but close to it. In general, it can
be seen that even small planning horizons result in comparably dense and efficient plans. The right side of
Figure 6 shows the incurred cost for each scenario (dashed) and the number of finished turbines (solid). It
can be seen that the cost, as well as the increase in built turbines, start to flat-out with a planning horizon of
approximately three weeks. This can be explained by the currently implemented way to generate weather
forecasts. At around two to three weeks, the uncertainty of these forecasts becomes so high, that no more
time slots for offshore operations can be determined. Thus, longer planning horizons do not lead to better
results, but instead, only increase the computational requirements.

Activity and L ocation

Installed Top Structuresvs. Cost xllg;

8
s LTI F ] R 5 2
e IETTECE T 5,
gt LA IV I - s
o= (TN I 3
e [OOCIE0 [ 0 Bty
200 400 600 800 B P=1 P=2 P=3 P=4 P=5
Time Step in Hours Scenario

Figure 6: Planning results. Left: Applied operations for different open-loop planning horizons. Red lines
additionally indicate offshore times. Right: Comparison of costs (dashed) to finished turbines (solid).

7 CONCLUSION AND FUTURE WORK

This article presents a novel approach for the planning of offshore activities for the installation of offshore
wind farms. This approach uses the Model Predictive Control scheme to achieve high reactivity to
changing weather conditions during the closed-loop control cycle while allowing for mid- to long-term
plan optimization using weather forecasts during the open-loop simulation. Results show that even short
planning horizons result in good plans, while long-term plans are restricted by the inaccuracy of forecasts.
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Future work will focus on the extension of the optimization model to cover additional planning tasks
as sketched in Rippel et al. (2019). Moreover, different strategies to compute weather forecasts and to
estimate the duration of operations will be evaluated to quantify the impact of involved uncertainties on the
overall operations planning. For example, Guo et al. (2017) propose a fuzzy-based approach to estimate
the duration of offshore projects using a so-called empirical productivity loss, or Leontaris et al. (2016)
propose a probabilistic method to provide more accurate forecasts. Besides mathematical optimization,
discrete-event simulation-based approaches for the stated planning tasks will be implemented and evaluated
to determine a combination of approaches to achieve the best results for specific tasks. In terms of the
integration of these planning approaches with a real-world system, methods from the area of Dynamic
Data Driven Application Systems (DDDAS) (Blasch et al. 2018) will be evaluated to enable integration
with existing planning systems, as the underlying scheme is similar to the MPC scheme.
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