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ABSTRACT 

In recent years, grid-shaped cellular models have gained popularity in this sense. Cellular Automata (CA) 
have been widely used with these purposes. The Cell-DEVS formalism is an extension to CA that can be 
used to build discrete-event cell spaces, improving their definition by making the timing specification 
more expressive. Different delay functions to specify the timing behavior of each cell, allowing the 
modeler to represent the timing complex behavior in a simple fashion. CD++ is a modeling and 
simulation tool that implements DEVS and Cell-DEVS formalisms. Here, we show the use of these 
techniques through a formal specification, and a variety of application examples, including basic models 
using CA, and varied extensions including triangular and hexagonal topologies. 

1 INTRODUCTION 

Partial differential equations and related formalisms have been the tool of choice for studying complex 
physical systems theoretically, and different approximations based on difference equations exist to solve 
this kind of problems. In recent years, new methods consider instead a spatial representation of the system 
of interest, using a cell space for studying the system of interest. In particular, the Cellular Automata 
formalism (Wolfram 1986) has been widely used to describe many complex systems with these 
characteristics. Cellular Automata (CA) are discrete-time discrete models described as cells organized as 
n-dimensional infinite lattices. CA evolve by executing a global transition function that updates the state 
of every cell in the space. Each cell has a discrete value that is modified by a local computation function. 
The composition of these functions, which only depends on the results of a local execution in each cell, 
generate a global behavior that can be studied at the scale field. This local function uses the present value 
for the cell and a finite set of neighbor cells to compute the new state.  

 

 

Figure 1: Sketch of a Cellular Automaton. 
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Conceptually, the local functions are computed synchronously and in parallel, using the state values 
of the present cell and its neighbors. The use of discrete time can reduce the precision of the model and 
reduce the performance of the simulation of the models when they become complex. To obtain higher 
precision, smaller time slots must be used, which results in more execution cycles that are sometimes 
unnecessary. Asynchronous CA can be used to avoid these problems.  
 In this tutorial, we introduce general concepts on Cellular Automata and provide a formal 
specification, and we discuss parallel execution of CA. We then show the definition of advanced CA in 
the CD++ toolkit (Wainer 2009): a simple CA (Brian’s Brain), the Diamond-Square algorithm for 
generating terrain shapes, and we then discuss the application of triangular and hexagonal topologies. In 
this case, we discuss how to apply different topologies to excitable media CA, surface tension and lattice 
gas models.  

2 FORMAL DEFINITION OF CELLULAR AUTOMATA 

A conceptual cellular automaton can be formally defined as: 
 

CCA = < S, n, C, N, , T, c.Z0+ > 

 
Notation 1 
 CcS is the state of cell c, being c  Zn, c = (i1,...,in) the cell's position into an n-dimensional cell 

space, where  k  [1,n], ik  Z is the position of the cell in the k-eth dimension. For conceptual CA,  k 
 [1,n], ik 

 
 Using this notation, each of elements of the tuple defined above can be defined as: 

- S  R  #S <is an alphabet used to represent the state for each cell; 
- n  N is the number of dimensions the cell space has; 

- C = { Cc / c  Rn  Cc  S } is the state set for the cell space; 

- N = {Nc / c  Zn } is the neighborhood set, with Nc = { (vk1,...,vkn)c / k k  [1,c])  (i 

i  [1, n]), vki Z  }. Here, c     c = #Nc;  

- : Cc x N x c.Z0+  Cc is the local transition function, where Cc[t+c] = (Cc+v1[t],...,  Cc+vc[t]), 

and for t  c.Z0+   (k k  [1,c]), vk  Nc  c + vk = (i1+vk1, ..., in+vkn);  

- T: C x c.Z0+ C is the global transition function; and 

- c.Z0+ = { i / i  N, i = c.j  j  N } = { 0, c, 2c, 3c, ...} c.Z0+ is the discrete time base. 

 
As we can see in the definition, the model is an n-dimensional cell space (C) that progresses in 

discrete time steps: the time base is defined by c.Z0+ (a set of integer values separated by a time 

constant). The state for each cell in the space can take a value from a finite alphabet (S) whose elements 
can be Real numbers (although most CA use a limited number of Integer values). The cell's neighborhood 
is defined as a list of neighbors (. The neighbors are defined as an n-tuple of positions relative to an 
“origin” cell, using an index (k) that allows to identify the neighbor number, and a second index (i) 
indicating the dimension for each of the neighbors' positions. The neighborhoods (which can be 
homogeneous or not) are defined as an array of neighborhood lists. For non-homogenous neighborhoods, 
each cell has a  list composed of c elements, which consist of tuples of indexes relative to the origin cell. 
The cell space evolves by executing a global transition function (T) that changes the state of the cell 
space. The behavior of this function responds to the execution results of local transition functions () that 
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execute locally in the neighborhood for the cell (N). Conceptually, the computation for these local 
functions is done synchronously and in parallel for every cell in the space. The semantics of this behavior 
can be formally defined as: 

CcC   c  S  Rn, #S <;             t  c.Z0+ 

____________________________________________________________ 

C[t+c] = T(C[t]),      with Cc[t+c] = (Nc,Cc[t])  c  S  Rn;          t = t + c 
 
This definition considers that the global transition function analyzes all the cell space at the instant t 

(precondition in the rule above) and then it produces a change in the cell space for the next step 
(postcondition). The period for this step is of c time units. This change can be seen as the individual 
computation of the local transition function for each cell in the space. 

As we can see, the conceptual CA has an infinite number of cells; nevertheless, in order to run in a 
computer, we need to modify the above definition. Formally, an executable synchronous CA is be defined 
as: 

 

CA = < S, n, {t1,...,tn}, C, N, B, T, , c.Z0+ > 

 
where all the elements in the tuple represent the same sets of the previous case, two sets have been 

added. In order to have a computable CA, we need to constrain its size, as follows:  
- S  R  #S <; 
- n  N ; n <; 
- {t1,...,tn}  N, with tk <  k  [1,n] is the number of cells in each of the dimensions;  
- C = { Cc / c  I  Cc  S }, with I = { (i1,...,in) / ik  N   ik  [1, tk]  k  [1, n] }                  (1) 

- N = {Nc / c  Nn, c  [1,t1]x...x[1,tn]}, with Nc = { (vk1,...,vkn)c / k k  [1,c])  (i 

i  [1, n]), vki Z   ti - | vki |  0 }. Here, c    c = #Nc. 

- B is the set of border cells, with B = {} if the cell space is "wrapped" (that is, the cells in each 
border are connected with the cells in the opposite one), or B = {Cb / Cb C with b  I }, with I 

defined as in (1). In this case, B has the restriction that bc (Cc B)  (Cb B).  

- : Cc x Nc x c.Z0+ Cc; where Cc[t+c] = (Cc+v1[t],...,Cc+v [t]),                                                  (2) 

with t  c.Z0+   (k k  [1,c]), vk  Nc  c + vk = (i1+vk1 mod(t1),..., in+vkn mod(tn)) in the 

case that B = {}, and C
b
[t+c] = b(Cb[t]),  b  B, with t  c.Z0+. In this case, bc c  B, 

and for these ones, Cc is computed like in (2). If the cell space is homogeneous, then c =   Nc = N. 

- T: C x c.Z0+ C. 

- c.Z0+ = { i / i  N, i = c.j  j  N } = { 0, c, 2c, 3c, ...} c.Z0+ is the discrete time base. 

This definition for executable cellular automata differs in certain aspects of that of conceptual ones. 
The first difference is that the cell space is bounded in each of the dimensions (t1,...,tn). The number of 
dimensions is also finite, and the cell's indexes are bounded to finite natural numbers. Another constraint 
is due to the loss of homogeneity in the cell space. This is due to the existence of a finite number of cells. 
Therefore, it is necessary to include a set of border cells (B) with different behavior than the others in the 
cell space. All the cells in the border have different behavior that those in the rest of the automaton. When  
B {}, it is used to be defined as: B = {Cb / Cb C with b  L}, being L = { (i1,...,in) / ij = 0  ij = tj  

j  [1, n] }, and with bc c  L. When wrapped models are considered, B = {} and the rules 

defined in (2) should be used. 
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The semantics for the transition function T is that the local transition functions in the automata are 
executed simultaneously in parallel, and is defined by: 

CcC  c = { (i1,..., in) / ij [1, tj]  j  [1,n] },             t  c.Z0+ 

___________________________________________________________________________________ 
C[t+c] = T(C[t]), with Cc[t+c] = (Nc,Cc[t])     c = { (i1,..., in) / ij ij [1, tj]  j  , j  [1,n] };    

t = t + c 
 

 The meaning is similar that in the case of conceptual CA but adding boundaries to the cell space.  
 Following, we will show a simple example of a CA called “Brian's Brain” (Wilensky 2002). This is 
an extension of the Seeds pattern model (Silverman 1996) which resembles the Game of Life, but in this 
case the model’s cells can be in any of three states: firing, refractory, and off, making an analogy with the 
brain. The model uses Moore’s neighborhood (i.e. the neighbor cells are the eight adjacent cells). The CA 
follows three simple rules. At each time step, (1) an off cell turns to firing if it has exactly two firing 
neighbors; (2) a firing cell always evolves to refractory; and (3) a refractory cell always evolves to off. 
Following these simple rules, the CA shows an emergent behavior. The refractory cells tend to lead to a 
pattern that reappears after a certain amount of generations in the same orientation but in a different 
position. Although some Brian's Brain patterns explode messily and chaotically, but most of them will 
often contain diagonal waves of firing and refractory cells. These patterns cannot be predicted in advance. 
Following, we show the definition of this simple CA as a Cell-DEVS model (Ruiz-Martin and Wainer 
2016).  

 
 

 
where: 
X = Y = S ={0,1,2}   // 0 = off; 1 = firing; 2 = refractory  

,  
     
E = {(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)} 
delay: transport. d: 100ms 
: is defined by the following rules: 

(0,0)=0 if (0,0)=2 
  (0,0)=1 if ((0,0)=0) & ((number of neighbors with s=1)=2) 
  (0,0)=2 if (0,0)=1 

δint, δext, λ and D are defined using Cell-DEVS specifications. 
Once the behavior of each cell is defined, the cell space is built as a Cell-DEVS coupled model: 

 
 

 
where: 
X=Y=Xlist=Ylist=∅ 
n=2 and {t1,...,tn}={20,20}  
N= select={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)} 
C = Brian’s Brain AM 
B=∅ //wrapped 
Z={                    
               
                  
            
                 } 
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This CA can be easily implemented in CD++. To do so, we need to map the information from the 
formal model definition to define the possible cells states, the neighborhood set, the rules, the size of the 
cell space, the type and value of the delay, the type of borders and the initial value of the cells. All these 
parameters are defined as shown as in the code below:  

 
[briansbrain] 
type: cell            width: 400         height: 400 
delay: transport border: wrapped 
neighbors: (-1,-1),(-1,-0),(-1,1) (0,-1),(0,-0),(0,1) (1,-1),(1,-0),(1,1) 
localtransition: briansbrain-rule 
 
[briansbrain-rule] 
rule : 0 100 { (1,0)=2 } 
rule : 1 100 { (0,0)=1 and trueCount = 2 } 
rule : 2 100 { (0,0)=1 }  
rule: 0 100 {t} 

Figure 2: Brian's Brain CD++ model definition for a 20x20 grid. 

Figure 2 shows the implementation in CD++ of Brain’s Brain model in a 400x400 grid. First, we 
define the name of the Cell-DEVS component. Then, we define the type of model (a cell space) and its 
size (as it is a 2D model, we only need to define its width and height). The model uses a transport delay, 
and wrapped borders. After the keyword “neighbors”, we define the neighborhood set (in this case, a 
Moore’s neighborhood). Finally, the local transition function is defined as a set of rules. They are 
implemented using CD++ specifications, which have the form: 
 

rule: POSTCONDITION DELAY { PRECONDITION } 
 

These indicate that when the PRECONDITION is satisfied, the state of the cell will change to the 
designated POSTCONDITION, whose computed value will be transmitted to other components after 
consuming the DELAY. If the precondition is false, the next rule in the list is evaluated until a rule is 
satisfied or there are no more rules. 

Figure 3 shows a snapshot of the Brian’s Brain CA simulation in CD++ with a random initial 
configuration (Ruiz-Martin and Wainer 2016). Off cells are represented in black, firing cells are 
represented in white and refractory or refractory cells in blue. In the figure, we can easily appreciate 
diagonal waves of firing and refractory cells that appear as emergent behavior. Firing and refractory cells 
expand and move around the whole grid after few steps. A full simulation is available in 
https://www.youtube.com/watch?v=8MCDuRVEbeg, where we can see how diagonal waves that appear 
as emergent behavior move and change over time.  

 

          

Figure 3: Snapshot of Brian's Brian rules CA implemented in CD++. 
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CA can be executed in parallel through more or less straightforward implementations. Their 
topology and local computation rules make it ideal for multiprocessor execution and we have 
implemented various parallel versions of CA in different platforms, ranging from the Cell BE (running 
the local rules in SIMD mode) up to CUDA libraries (Ribacki and Himmelspach 2009). We used 
Conway’s life game (Gardner 1970) with different initial configurations, and the evidence showed that 
the calculation time on the given problem domain has reduced by applying the parallel solving method the 
cellular automata model. Moreover, another type of CA model such as the modified von Neumann CA 
model has been used to validate the stability of the parallel approach as well. Figure 4 shows a 
comparison between sequential and parallel execution of the Life CA on the Cell BE processor.  

 

 

Figure 4: Performance comparison for the Game of Life on multiple SPUs and different grid sizes. 

The Cell BE includes a main processor, and 8 SIMD units, called SPUs. These are Reduced 
Instruction Set Computing processors with 128-bit Single Instruction Multiple Data (SIMD) organization 
that allows it to execute single and double precision instructions. The method involves performing many 
calculations simultaneously. The transfer of data in a Cell BE is done through Direct Memory Access 
(DMA) transfers. The implementation uses an array of vectors which are simple to parallelize on the 
SPUs through DMA. As we can see in the figure, there are performance gains, but they are restricted 
because there is a need to spend time is being spent on executing PPU code (the main core of the Cell BE 
unit), which requires transferring data to buffer from the CA data structure (a matrix), and putting values 
back values from the buffer into the simulation space.  
 CUDA (Compute Unified Device Architecture), is a parallel computing platform and programming 
model that implemented by NVDIA company by providing the access to a virtual instruction set and the 
usage of the memory in graphic processing units (GPUs). By using this programming language, a series 
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of independent data could be calculated through various threads concurrently (Che et al. 2008). This 
boosts up the throughput of a general program in order to maximize the efficiency of the running program. 
The host issues a succession of kernel invocation to the device. Each kernel is executed as a grid of thread 
blocks. We organized the space in 3D array of threads using a specific id for the thread that has been 
designated to calculate the state counts for a typical cell itself. In addition, same calculation methods have 
been implemented in the kernel function including the von Neumann neighborhood calculation. The steps 
are as follows:  

 Initialize two 1D arrays in the host memory (i.e. the system memory). 
 Pass arrays to the GPU device global memory. 
 Distribute the block dimension and size for running the core function. 
 Call the global function to process the cell calculation in each thread. 
 Synchronized all the threads and record the time consuming for this iteration. 
 Copy out the data after each iteration to the host memory and continue running the program in the 

next time step until receive the interrupt signal from the user. 
 

In order to evaluate the reliability in large elements surroundings, the tests have included the scale of N2 
which is upmost to 100 million elements in single processing and two-processor processing. The initial 
values are at random. Figure 5 shows the execution time in the corresponding scales. We can see how the 
execution time executing the CA in CUDA is lesser than running in single processor or two-processor, 
which is similar to the expectation. 

 

  
         Scale (N2) 

Figure 5: Execution time in single processor (red), 2 processors (green) and multi-processors (blue). 

3 MEAN FILTER FOR IMAGE PROCESSING 

CA have been used image processing because pixels can be treated as cells and because of the 
parallelism capabilities of CA discussed above, which improves computing efficiency. Several 
image processing techniques used for solving a variety of problems, such as edge detection, 
noise reduction, have been defined using CA. In this section we show a simple mean filter 
implemented as a noise reduction technique. 
  
[meanFilter] 
type : cell    dim : (100, 100)    delay : transport 
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1)  (0,0)  (0,1) (1,-1)  (1,0)  (1,1)  
 
localtransition : filter-rule 
 
[filter-rule] 
rule : {((-1,-1)+(-1,0)+(0,0)+(-1,1)+(0,-1)+(0,1)+(1,-1)+(1,0)+(1,1))  

/ 9} {100} {t} 

Figure 6: Mean Filter implementation in CD++ 
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 A mean filter is a linear filter that preserves the borders and reduces the noise while smoothing the 
image. It replaces each pixel in the image by the average of all neighbors (using Moore’s  neighborhood). 
The mean filter could be used as the initial stage for edge detection since it smoothes the image  reducing 
the chance of getting wrong edges. Figure 6 shows the model implemented in CD++. 
 Figure 7 shows the results obtained from extracting the information of various images and printing 
the value of each pixel as a grayscale image. Grayscale images carry only intensity information which 
means that the RGB values are all the same. All the images are pictures with salt and pepper noise. As we 
can see, the mean filter reduces the amount of noise on the image, however it blurs the image therefore 
reducing its quality, which is a drawback of this technique. Other kinds of filters present some parameters 
that assist on controlling the blurring problem. 

 

                          

Figure 7: Left: image with salt-and-pepper noise; right: smooth image. 

4 THE DIAMOND – SQUARE MODEL  

In this section, we show how to define a traditional CA to implement the Diamond–Square Algorithm, 
which is used for generating height maps. To show the model’s behavior, let us give an example using a 
5x5 array. In figure 8.a) we can see a four corner "seed" values highlighted in black: 

 

 

Figure 8: The Diamond-Square algorithm. 

After this starting point, an iterative subdivision routine, is conducted in two steps: 
 
 The diamond step: taking a square of four points, we generate a random value at the square’s 

midpoint, where the two diagonals meet. The midpoint value is calculated by averaging the four 
corner values, plus a random amount. This gives you diamonds when you have multiple squares 
arranged in a grid, as seen in Figure 8b). 

 The square step: we consider each diamond of four points and generate a random value at the 
center of the diamond. We calculate the midpoint value by averaging the corner values, plus a 
random amount generated in the same range as used for the diamond step, to build squares, as 
seen in Figures 8.d) and 8.e). 

The process is repeated iteratively. A partial version of the model can be found following: 
We now show an implementation of this CA model represented as a Cell-DEVS model using CD++. 

We defined a 3D model that uses two layers: the bottom one represents the height values of the map, and 
second level represent which phase are we currently computing (even is for the diamond step, and odd is 
for the square step). The model is defined in the following code snippet. The model uses two layers (in 
this example, two layers of 17x17 cells), and we assign different rules to be executed on each of the layers 
(using the zones statement). The second layer is used for computing the current phase step and to clean 
unused values. At the beginning, all the values of the second layer are 0, and after 200 ms, they become 
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0.1 which represents that they must be cleaned (as seen in the last rule, commented as “clear”). We use 
the integer part of the state value to record the direction of the model. The second-rule switches the value 
of the cell and adds 1 or 0.1 on each step to decide if we are in the square or diamond step. 
 
[DiamondSquare] 
type: cell              dim: (17,17,2) 
delay: transport   border: nowrapped  
neighbors:(-1,-1,0)(-1,0,0)(-1,1,0)(0,-1,0)(0,0,0)(0,1,0)(1,-1,0)(1,0,0)(1,1,0)(0,0,1) 
zone: DiamondSquare-rule { (0,0,0)..(16,16,0) } 
zone: second-rule { (0,0,1)..(16,16,1) } 
 
[DiamondSquare-rule] 
rule: {trunc((0,0,0))+0.1} 200 {fractional((0,0,0)) = 0} 
rule: {trunc((0,0,0))+ 1 } 100 {fractional((0,0,0)) = 0.1} 

 
[second-rule] 
rule: {trunc((0,0,0))+0.1} 200 {fractional((0,0,0)) = 0} 
rule: {trunc((0,0,0))+ 1 } 100 {fractional((0,0,0)) = 0.1} 

 
rule: {0} 0 {fractional((0,0,0)) > 0 and (fractional((0,0,1)) > 0)}  % Clear 

 
The bottom layer contains the direction for transmission of the information in the next step, and this is 

stored in the fractional part of the value (0.1 – N; 0.2 – E; 0.3 – S… 0.8 – NW). The integer part of the 
value contains the height of the cell. We transmit the values in different directions, and then, in the 
diamond step, we send the value through its diagonal to the center of those points. This behavior is 
defined using the following rules: 

 
% send value 
rule : {trunc((-1,-1,0))+0.81} 10 { (0,0,0)=0 and (-1,-1,0) != 0 and  
  (fractional((-1,-1,0)) = 0.8 or fractional((-1,-1,0)) = 0 ) and even((0,0,1))}  
rule : {trunc((1, 1,0))+0.61} 10 { (0,0,0)=0 and (1,  1,0) != 0 and  
  (fractional((1,1,0)) = 0.6 or fractional(( 1, 1,0)) = 0 ) and even((0,0,1))}  
... 
% keep direction 
rule : {trunc((0,0,0))+0.8} 10 {fractional((0,0,0))=0.81 } 
rule : {trunc((0,0,0))+0.7} 10 {fractional((0,0,0))=0.71 } 
 

   
t = 0 t = 30 t = 150 

Figure 9: The diamond step: sending values through the diagonal. 

In the next step, we should first send the values to its up, down, left and right direction, and get to the 
center of those points. When a cell has value 0, depending on the values of the four neighbors, it will start 
to calculate its own value, as sketched in the following rule. 
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rule : {trunc(((0,-1,0)+(0,1,0)+(-1,0,0)+ (1,0,0))/4 + uniform(-1,1) * 10000 *  
   power(2,-1 *(0,0,1)))} 10 { (0,0,0)=0 and (0,-1,0) > 0  and (0,1,0) > 0 and  
    (-1,0,0) > 0 and (1,0,0) > 0 and fractional((-1,0,0)) = 0.31} 

 
Figure 9 shows the execution results of this step. 
 

   
t = 310 t = 430 t = 440 

Figure 10: Computing the square rule. 

Finally, when there are no places left to transmit values, the computation should finish, and we have 
obtained the map. The following rules are used: 
 
%last cal 
rule : {trunc(((-1,-1,0)+(1,1,0)+(-1,1,0)+(1,-1,0))/4 + uniform(-1,1) * 10000 *  
    power(2,-1*(0,0,1)))} 10 { (0,0,0)=0 and (-1,-1,0) > 0 and (1,1,0) > 0 and  
   (-1,1,0) > 0 and (1,-1,0) > 0 and fractional((-1,-1,0)) = 0 and  
      fractional(1, 1,0)=0 and fractional(-1, 1,0) = 0 and fractional(1,-1,0)=0} 
rule : {trunc(((0,-1,0)+(0,1,0)+(-1,0,0)+ (1,0,0))/4 + uniform(-1,1) * 10000 *  
    power(2,-1 *(0,0,1)))} 10 { (0,0,0)=0 and (0,-1,0)>0 and (0,1,0)>0 and  
   (-1,0,0)>0 and (1,0,0)>0 and fractional((0,-1,0))=0 and  
    fractional(0, 1,0)=0 and fractional((-1,0,0))=0 and fractional((1,0,0))=0 } 
 

 As we can see in Figure 10, at t=1520, we compute the diamond step, and then the square step. As 
there are no places left, the last computation is executed, and at t=1560 we obtain the final result. 
 

   
t=1520 t=1540 t=1560 

Figure 11: Final computation step. 

5 TRIANGULAR AND HEXAGONAL TOPOLOGIES 

Cellular models as the ones presented in earlier sections portray space a square geometry. There are 
numerous physical models that have attributes of expansion or diffusion in which a rectangular space is 
not adequate. Hexagonal topologies have shown better results in some of those cases, as it provides equal 
distances from all its neighbors, hence providing isotropic nature. Triangular topologies also are popular, 
but they are normally reserved for cases wherein a limited number of neighbors are required to observe a 
certain phenomenon. Triangular meshes permit covering zones with additional fluctuated topology, while 
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allowing each cell to have a set number of nearby neighbors. Hexagonal meshes on the other hand have 
higher isotropy which is the ability to represent identical conduct in each direction. While limiting the 
neighbors gives us data abstraction wherein the number of messages communicated from the neighbors 
are lowered, but the representation and visualization of such models become difficult.  

 

        

Figure 12. Hexagonal Mapping and Triangular Mapping. 

In order to allow triangular and hexagonal topologies, we built a lattice translator that converts 
triangular and hexagonal topologies and translates them into square compatible rules using shift mapping 
in CD++. In CD++ a cell in a 2D space is referenced as a tuple (x, y) where x denotes the row and y 
denotes the columns. The hexagonal mapping, which has been defined in (Weimar 1997)  is shown in 
Figure 11. It uses a function that shifts the alternate rows in opposite directions, at the same time 
preserving the boundary conditions. The triangular mapping, also shown in Figure 11, is done in an 
analogous way every other cell has different orientation and each row of the triangle is mapped to a row 
of square reliant on the parity x+y. 

In the rest of this section we will discuss focus on the description of various CA and their Cell-DEVS 
implementation using triangular and hexagonal meshes and their translation and simulation. 

5.1 Excitable Media 

An excitable medium is a nonlinear dynamical framework which has the ability to engender a wave of 
some specification and which cannot allow passage to another wave until the point that a specific measure 
of time has passed (Demongeot et al. 1985). For instance, magnetic fields, the heart tissue, or forest fires 
can be considered as excitable media. This phenomenon has been modeled with CA, and for every 
excitable medium a cell has been usually modelled as having one of three states: resting, excited or 
recovering. For instance, in a forest fire the states can be unburnt, burnt or burning. The model, originally 
presented in (Ameghino and Wainer 2000), is represented as a cell space with square topology as follows: 

 
[excitable] 
type : cell  width : 11    height : 11  delay : transport 
border : wrapped 
neighbors : (-1,0) (0,-1) (0,0) (0,1) (1,0)   
localtransition : excitable-rule 
 
[excitable-rule] 
rule : 0 100 {(0,0)=0 and statecount(2)=0 } 
rule : 2 100 {(0,0)=0 and statecount(2)>0 } 
rule : 1 100 { (0,0) = 2 } 
rule : 0 100 { (0,0) = 1 } 
rule : { (0,0) } 100 { t } 

 
The first rule states that the cell value is 0 when there are cell neighbors with value 0, in other words 

if there are no excited cells nearby, in which case the cell will remain in the resting state. The second rule 
says that if the cell has value 0 and there are neighbors with value 2 (excited), then it becomes excited 
(value 2). The third and the fourth rule are used to change the cell to a transient refractory period, after 
which the cell rests. A default rule allows the cell to stay in its present state.  
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In order to execute the Excitable Media Coupled model using a hexagonal neighborhood, we first 
define the model using hexagonal rules, and convert them into square compatible rules. The new 
hexagonal rules are: 

 
[excitable-rule] 
rule: 0 100 {[0]=0 and statecount(2)=0 } 
rule: 2 100 {[0]=0 and statecount(2)>0 } 
rule: 1 100 { [0] = 2 } 
rule: 0 100 { [0] = 1 } 
rule: { [0] } 100 { t } 

 
These rules should now be translated into a square meshes, using the method depicted in Figure 11. 

The lattice translation converts the rules above into the equivalent hexagonal rules as follows: 
 
[excitable-rule] 
rule : 0 100 { (  (0,0)=0 and ( if( (statecount(2)-(if((-1,1=2,1,0)) –  

(if((1,1)=2,1,0)))< 0,0,(statecount(2)-(if((-1,1)=2,1,0)) –  
(if((1,1) = 2,1,0)))) = 0 ) ) and even(cellpos(1)) } 

... 
rule : {(0,0)} 100 { t and even(cellpos(1)) } 
rule : {(0,0)} 100 { t and odd(cellpos(1)) } 
 

In a square lattice, we use 8 neighbors, against 6 used in the hexagonal mesh. Therefore, when we 
translate the rules from one topology to the other, we should ask not to count those neighbors that should 
not be included. The function statecount(n), which returns the number of cells whose value is n, is used 
with this purpose. We can see that we compute statecount(9.99) like in the previous case, and then, in the 
even rows, we subtract the values of cells ((-1,1) and (1,1)). The following rule is evaluated only in odd 
rows. The function cellpos(n), which returns the n-eth value of the tuple referencing a cell is used to 
check the cell row used. 

Figure 12 shows the simulation results for two initial scenarios (one with one seed and a second with 
two) for an excitable medium represented on a hexagonal mesh. The excitable media is set at the centre of 
the mesh and it can be seen that how it evolves over time. In the second case we show what happens when 
two excitable media are put up on a grid at a few cells apart. 

           

 

Figure 13: Simulation results for Hexagonal Mapping of the excitable media model. 

Similarly, we can apply the procedure depicted in Figure 11 and define the excitable model using a 
triangular mesh; a similar selection should be made, and the resulting rules are as follows: 

 
[excitable-rule] 
rule : 0 100 { ( ( (0,0) = 0 ) and ( if((statecount(2) - (if((-1,-1) = 2,1,0)) –  

(if((-1,0) = 2,1,0)) - (if((-1,1) = 2,1,0)) - (if((1,-1) = 2,1,0)) –  
(if((1,1) = 2,1,0))) < 0,0,(statecount(2) - (if((-1,-1) = 2,1,0))-  

(if((-1,0)=2,1,0)) - (if((-1,1)=2,1,0)) - (if((1,-1)=2,1,0)) - 
(if((1,1) = 2,1,0)))) = 0 ) ) and even(cellpos(0) + cellpos(1)) } 

... 
rule : {(0,0)} 100 { t and even(cellpos(0) + cellpos(1)) } 
rule : {(0,0)} 100 { t and odd(cellpos(0) + cellpos(1)) } 
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Figure 13 shows the simulation results of the excitable media model on a triangular geometry 
considering the nearest 3 neighbors.  

 

 

Figure 14: Simulation results for Triangular Mapping of the excitable media model. 

5.2 Surface Tension 

Surface tension can be defined as an elastic tendency of a fluid which influences it to obtain the slightest 
surface area possible. The model representing surface tension is considered as a majority voting system, 
and it was originally defined in (Ameghino and Wainer 2000). In this case, each step the new state of the 
cell will depend on most of its neighbors. Two types of states are defined to represent the cells presence 
and absence of particles corresponding to values 1 and 0. According to the majority voting system if at 
least 5 neighbors are occupied then the cell state remains the same else it changes. 
 
[surfacetension] 
type : cell      dim : (60,60)     border : wrapped 
neighbors : (-1,-1) (-1,0) (-1,1)  (0,-1)  (0,0)  (0,1) (1,-1)  (1,0)  (1,1) 
localtransition : tension 
 
[tension] 
rule : 0 100 { statecount(0) >= 5 } 
rule : 1 100 { t } 

 
We extended the surface tension rules and defined them using hexagonal geometry as done in section 

4.1, using the hexagonal neighbor referencing from Figure 11. The model uses a majority voting 
specification to calculate the tension but as it considers hexagonal geometry only 6 neighbors are 
considered hence; minimum 4 neighbors are taken which can be occupied to make the majority. Using the 
lattice translator tool, the rules will be translated into square compatible rules for CD++ as follows:  

 
[calculatetension-rule] 
rule : 0 100 { ( if((statecount(0) - (if((-1,1) = 0,1,0)) - (if((1,1) = 0,1,0))) <  

0,0,(statecount(0) - (if((-1,1) = 0,1,0)) - (if((1,1) = 0,1,0)))) >= 4 ) and  
    even(cellpos(1)) } 

rule : 0 100 { ( if((statecount(0) - (if((-1,-1) = 0,1,0)) - (if((1,-1) = 0,1,0))) <  
0,0,(statecount(0) - (if((-1,-1) = 0,1,0)) - (if((1,-1) = 0,1,0)))) >= 4 )  

and odd(cellpos(1)) } 
rule : 1 100 { t and even(cellpos(1)) } 
rule : 1 100 { t and odd(cellpos(1)) } 
 

Figure 15 shows the results for the hexagonal topology. Figure 14.a) shows the result for a 20x20 cell 
space, and Figure 14.b) shows a case for 50x50 cells. In both cases, we show the initial configuration of 
the distribution of particles, and the final scenario where the model simulation reaches a steady state.  

                                           

Figure 15: Simulation results for Hexagonal Mapping of the surface tension model. 
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As in the previous example, we also built the model using triangular rules, and translated it to a 
square lattice and executed the model in CD++. Triangular geometry considers nearest 3 neighbors hence, 
threshold of 2 neighbors are considered for calculating the majority of the votes. The following rule 
shows the modification of the generated rules generated by the lattice translator for the triangular mesh. 

 
[tension] 
rule : 0 100 { ( if((statecount(0) - (if((-1,-1) = 0,1,0)) - (if((-1,0) = 0,1,0)) –  

(if((-1,1) = 0,1,0)) - (if((1,-1) = 0,1,0)) - (if((1,1) = 0,1,0))) <  
0,0,(statecount(0) - (if((-1,-1) = 0,1,0)) - (if((-1,0) = 0,1,0)) –  

(if((-1,1) = 0,1,0)) - (if((1,-1) = 0,1,0)) - (if((1,1) =  
0,1,0)))) >= 2 ) and even(cellpos(0) + cellpos(1)) } 

... 
rule : 1 100 { t and even(cellpos(0) + cellpos(1)) } 
rule : 1 100 { t and odd(cellpos(0) + cellpos(1)) } 
 

The translated rules are now included into the coupled model. The presence of particles is randomly 
distributed, and the coupled model is build using triangular topology.  

 

                    

Figure 16: Simulation results for Triangular Mapping of the surface tension model. 

CONCLUSION 

Cell–DEVS allows describing physical systems using an n-dimensional cell-based formalism. In this case 
we have showed the definition of a number of different Cellular Automata using the CD++ tool, which 
permits defining complex cell-shaped models using a high-level specification language. We showed that 
various kinds of applications can be easily developed, allowing the study of different problems through 
simulation. Finally, the use of formal models improves the development, checking and maintaining 
phases, facilitating the testing and reuse of their components.  

The tool and the examples are the public domain and they can be obtained at: http://cell-
devs.sce.carleton.ca/  

ACKNOWLEDGEMENTS 

This work has been partially funded by NSERC. We want to acknowledge the work of V. Silva, Q. Liang, 
C. Ruiz-Martin and R. Pandey, who developed various versions of the models presented here.                                                

REFERENCES 

Ameghino, J. and Wainer, G. 2000. "Application of the Cell-DEVS paradigm using N-CD++", Proceedings of the 32nd SCS 
Summer Computer Simulation Conference, Vancouver, BC, Canada. 

Che, S., M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron. 2008. “A Performance Study of General-Purpose 
Applications on Graphics Processors using CUDA”. Journal of Parallel and Distributed Computing 68(10):1370–1380. 

Demongeot, J., E. Golés, and M. Tchuente. 1985. Dynamical Systems And Cellular Automata. New York, NY: Academic Press. 
Gardner, M. 1970. "Mathematical Games – The Fantastic Combinations Of John Conway's New Solitaire Game "Life"". 

Scientific American 223(4):120–123. 
Rybacki, S. and J. Himmelspach. 2009. “Experiments with Single Core, Multi-core, and GPU Based Computation of Cellular 

Automata”. In Proceedings of the First International Conference on the Advances in System Simulation, 62-67. Piscataway, 
New Jersey: Institute of Electrical and Electronics Engineers, Inc. 

1547



Wainer 
 

 

Silverman, B. 1996. Changing the Rules. The Virtual Computer, Mathematical Association of America. 
Wainer, G. 2009. Discrete-event Modeling and Simulation: A Practitioner's Approach. CRC/Taylor & Francis. Boca Raton, FL. 
Wainer, G. and N. Giambiasi. 2001. "Application of the Cell-DEVS Paradigm for Cell Spaces Modeling and Simulation". 

Simulation 71(1):22-39. 
Wainer, G., C. Ruiz-Martín, and A. López-Paredes. 2016. “Cellular Models for Emerging Traffic Behavior”. Cellular Automata 

Modeling for Urban and Spatial Systems. Québec City, PQ. Canada. 2016.  
Weimar, J.  1997. Simulation with Cellular Automata. Logos-Verlag, Berlin,. 
Wilensky, U. 2002. Netlogo Brian's Brain Model. https://ccl.northwestern.edu/netlogo/models/Brian'sBrain, accessed 21st Sept 

2019. Center For Connected Learning And Computer-Based Modeling, Northwestern University, Evanston, Il. 
Wolfram, S.  1986. Theory And Applications Of Cellular Automata. Philadelphia, PA: World Scientific. 

AUTHOR BIOGRAPHIES 

GABRIEL A. WAINER, FSCS, SMIEEE, received the M.Sc. (1993) at the University of Buenos Aires, Argentina, and the 
Ph.D. (1998, with highest honors) at UBA/Université d’Aix-Marseille III, France. In July 2000, he joined the Department of 
Systems and Computer Engineering at Carleton University (Ottawa, ON, Canada), where he is now Full Professor and Associate 
Chair for Graduate Studies. He has held visiting positions at the University of Arizona; LSIS (CNRS), Université Paul Cézanne, 
University of Nice, INRIA Sophia-Antipolis, Université de Bordeaux (France); UCM, UPC (Spain), University of Buenos Aires, 
National University of Rosario (Argentina) and others. He is one of the founders of the Symposium on Theory of Modeling and 
Simulation, SIMUTools and SimAUD. Prof. Wainer was Vice-President Conferences and Vice-President Publications, and is a 
member of the Board of Directors of the SCS. Prof. Wainer is the Special Issues Editor of SIMULATION, member of the 
Editorial Board of IEEE Computing in Science and Engineering, Wireless Networks (Elsevier), Journal of Defense Modeling and 
Simulation (SCS). He is the head of the Advanced Real-Time Simulation lab, located at Carleton University's Centre for 
advanced Simulation and Visualization (V-Sim). He has been the recipient of various awards, including the IBM Eclipse 
Innovation Award, SCS Leadership Award, and various Best Paper awards. He has been awarded Carleton University's Research 
Achievement Award (2005, 2014), the First Bernard P. Zeigler DEVS Modeling and Simulation Award, the SCS Outstanding 
Professional Award (2011), Carleton University’s Mentorship Award (2013), the SCS Distinguished Professional Award (2013), 
and the SCS Distinguished Service Award (2015). He is a Fellow of SCS. His email address is gwainer@sce.carleton.ca.  
 

1548


