
Proceedings of the 2019 Winter Simulation Conference
N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds.

FROM PETRI NETS TO COLORED PETRI NETS: A TUTORIAL INTRODUCTION TO NETS
BASED FORMALISM FOR MODELING AND SIMULATION

Vijay Gehlot

Department of Computing Sciences and
Center of Excellence in Enterprise Technology (CEET)

Villanova University
800 E. Lancaster Avenue

Villanova, PA 19085, USA

ABSTRACT

Petri Net, a widely studied mathematical formalism, is a graphical notation for modeling systems. Petri Nets
provide the foundation for modeling concurrency, communication, synchronization, and resource sharing
constraints that are inherent to many systems. However, Petri Nets do not scale well when it comes to
modeling and simulating large systems. Colored Petri Nets (CPNs) extend Petri Nets with a high level
programming language, making them more suitable for modeling large systems. The CPN language allows
the creation of models as a set of modules in a hierarchical manner and permits both timed and untimed
models. Untimed models are used to validate the logical correctness of a system, whereas timed models
are used to evaluate performance. This tutorial introduces the reader to the vocabulary and constructs of
both Petri Nets and CPNs and illustrates the use of CPN Tools in creating and simulating models by means
of familiar simple examples.

1 INTRODUCTION

Petri Net is a widely studied mathematical formalism (Reisig 1985). From a modeling perspective, Petri
Nets provide a graphical modeling language for describing systems that are distributed and concurrent
with synchronous as well as asynchronous communication mechanisms and resource sharing constraints.
Historically, Petri Nets originated in the PhD dissertation work of C. A. Petri (Petri 1962) aptly titled
Kommunikation mit Automaten (Communication with Automata). Over the decades, researchers have
focused on both the theoretical aspects as well as practical applications of Petri nets. In particular, many
software tools have been developed that allow the creation and analysis of Petri Nets without delving into
the theoretical details.

The basic syntax and semantics of Petri Nets is extremely simple. Thus, instead of resorting to formal
definitions, this tutorial paper introduces the key concepts of Petri Nets by means of illustrative examples.
We then take a running example with increasing complexity to explain how Petri Nets and its extensions
can be used in the modeling and simulation of systems. Readers interested in a full and formal treatment
of Petri Nets may refer to (Peterson 1981) and (Reisig 1985). A comprehensive and detailed survey of
early works on Petri Nets appears in (Murata 1989). A good online resource is Petri Nets World.

A Petri Net consists of places (depicted as circles or ovals), transitions (depicted as rectangles or
bars), and arcs (depicted as arrows) that connect a place to a transition or a transition to a place (Reisig
2013). Thus, Petri Nets are also referred to as Place/Transition Nets. The only syntactic restriction is that
two places cannot be directly connected without an intervening transition and two transitions cannot be
connected directly without an intervening place. A net can have any number of places, transitions, and
arcs. It is not required that the entire net be one single connected graph. Figure 1 shows a very basic

1519978-1-7281-3283-9/19/$31.00 ©2019 IEEE

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/complete_db.html
https://www.informatik.uni-hamburg.de/TGI/PetriNets/index.php

Gehlot

P1 T1 P2

Figure 1: A basic Petri Net with two places and one transition.

Figure 2: Petri Net before and after the firing of transition T1.

Petri Net consisting of two places (P1 and P2) and one transition (T1). The interpretation of these net
elements depends on the system being modeled. For example, we can interpret P1 as “Printer Available”,
T1 as “Print Job Arrives”, and P2 as “Printer Busy”. However, the same net may be given a different
interpretation with P1 as “Healthy”, T1 as “Bug Bites”, and P2 as “Sick”. Therefore, a net gives us an
abstraction mechanism to see similarities among seemingly different systems. Thus, from a design and
analysis perspective, it is possible to transfer interesting properties and results from one system to another.
In fact, several sub-classes and structural properties of Petri Nets have been studied that provide insights
into system behaviors (Reisig 1985). For example, if we restrict the net structure so that every transition
has exactly one incoming arc and exactly one outgoing arc, then the resulting Petri Net is equivalent to a
finite state machine.

Places may have tokens, which are traditionally depicted by dots residing in a place. A place with
a token is termed marked and describes a local state of the system. Distribution of tokens across places
in a given net is called a marking and describes the collective global state of a system. The dynamics
(semantics) of a Petri Net is defined by the firing rule where the firing of a transition removes tokens
from its input place and adds tokens to its output place. If more than one token is to be removed or
added, the outgoing and/or incoming arcs may have an optional inscription denoting the number of tokens
to be removed and/or added. A transition is termed enabled if all of its input places have a number of
tokens that is greater than or equal to the associated arc inscriptions. Note that per the semantics described
above, only an enabled transition may fire. The firing of a transition is an abstraction of the occurrence
of an event and the movement of tokens describes state changes. This small basic vocabulary and simple
semantics render Petri Nets very flexible in terms of application domains for modeling systems of varied
nature. Note that there is no explicit notion of time in the original Petri Nets as described above. However,
there do exist extensions of Petri Nets with an explicit notion of time (Ramchandani 1974; Wang 1998;
Popova-Zeugmann 2013). One extension we cover later in this paper also incorporates time.

Figure 2 shows a Petri Net with 5 tokens in place P1. Instead of dots, the software tool (described
later) we are using depicts tokens with a single dot and an associated integer count. When the transition T1
fires, it removes 2 tokens from place P1 and deposits 1 token in place P2, as determined by the associated
outgoing and incoming arc inscriptions, respectively. Under a different interpretation, the given Petri Net
captures a basic step (or requirement) of a vending machine whereby one needs to supply 2 quarters for it
to dispense 1 candy bar.

The basic execution semantics of Petri Nets in terms of the firing rule above, gives rise to several
interesting net configuration interpretations useful in modeling system behaviors. Figure 3 depicts some
net configurations useful for expressing various communication and coordination activities of a system.
Considering a healthcare application domain, the Sequential configuration is useful in capturing, say, the fact
that a patient must see a primary care physician before consulting a specialist. The Concurrent configuration
captures the independence of events. For example, taking blood pressure is totally independent (thus can
be concurrent) of the arrival of an ambulance. The Choice configuration is useful in capturing, say, opting

1520

Gehlot

Figure 3: Useful Petri Net configurations for systems modeling.

for treatment A vs treatment B. The Join configuration as well as Synchronous Communication depicted
in the figure are useful in modeling coordination where, say, the clinical team must come to a unanimous
decision before sending the patient to the next stage of care. The Asynchronous Communication easily
captures the fact of a test sample being delivered to a lab and then the lab processing it asynchronously.
Finally, the depicted Mutual Exclusion is useful in expressing resource sharing constraints such as a single
infusion pump which cannot be hooked to two different patients at the same time.

The rest of this paper is organized as follows. In Section 2 we give details of constructing a model
of a simple print job system. Section 3 gives an overview of Colored Petri Nets (CPNs). Following this,
in Section 4, we present a CPN version of the model which we extend to a timed version in Section 5.
We present a hierarchical version of the model in Section 6. We present an overview of the CPN Tools
software in Section 7. Finally, we present our conclusions in Section 8.

2 FIRST EXAMPLE

We start with a simple system consisting of print jobs and printers. User print jobs arrive at printers.
If a printer is available, then a job is accepted for printing. During this period, the associated printer is
unavailable. Once the printing is done, the printer becomes available for another print job. Figure 4 shows
a Petri Net model of such a system. On the left is the net with initial marking showing three available
printers (green circle with 3) in the place Printers and the place Jobs showing five jobs (green circle with 5)
queued for printing. A simulation of the model consists of a sequence of transition firings. By simulating
a model, it is possible to investigate different scenarios and identify desired and undesired behaviors of the
system. Note that multiple transitions may be enabled in a given state. The underlying simulation engine
for the Petri Nets may fire these non-deterministically. Extensions of Petri Nets do allow probabilistic as
well as priority-based selection of transitions to fire (Haas 2002; David and Alla 2004).

The initial marking is created via the inscriptions 3‘() and 5‘() shown next to the two places.
Although we have included only a fixed number of print jobs here, it is very easy to incorporate continuous
arrival of jobs in the net shown, which we will do in a refinement of this example. The transition StartJob
is highlighted in green indicating that it is enabled in the current marking and can fire. The net on the
right depicts a possible marking reached after a sequence of firings. It shows two possible actions, that is,

1521

Gehlot

Printers

3`()

Busy

JobsStart
Job

Done

5`()

3

5

Printers

3`()

Busy

JobsStart
Job

Done

5`()

1

2 2`()

3

Figure 4: Petri Net model of a print job system—initial marking (left) and an intermediate marking during
simulation/execution (right).

step transition data counter step
------------------- -----------------
1 Start_Job 3 1 0
2 Start_Job 2 2 1
3 Start_Job 1 3 2
4 Done 0 4 3
5 Start_Job 1 5 4
6 Done 0 6 5

Figure 5: Sample simulation report (left) and token count data log for place Printers (right).

a new job can be started as well as a currently active jobs can be finished. Thus the two transitions are
concurrent in the shown marking. For analysis purposes, the simulation software used here generates a
simulation report, which gives details of various transition firings, as well as permits a highly customizable
automatic data logging facility. For example, if we were interested in knowing whether the modeled system
can reach a state where none of the printers is available, we can do so easily by logging the number of
tokens in place Printers. A sample simulation report and log of tokens for this example net, as generated
by the software, is shown in Figure 5.

Although with the small vocabulary of Petri Nets we have been able to capture the structure and
behavior of our system of interest, the language is limited in terms of level of details one may want to
include in a model. For example, if we wanted to distinguish an HP printer from an Epson printer or a
Canon printer, we cannot do so easily. Also, we may want to keep track of jobs via username or job ids
and these details are not directly representable in the language of Petri Nets we have described so far.
Fortunately, extensions of Petri Nets exist that make it convenient to capture the variety of details and
constraints associated with a realistic system. One such extension is Colored Petri Nets (CPNs), which we
describe next.

3 COLORED PETRI NETS

Colored Petri Nets (CPNs) extend the vocabulary of ordinary Petri Nets and add features that make them
suitable for modeling large systems (Jensen and Kristensen 2009). CPNs combine the graphical components
of ordinary Petri Nets with the strengths of a high-level programming language called CPN ML which is
based on the functional language SML (Ullman 1998). Thus, in the CPN extension, Petri Nets provide
the primitives for process interaction and the foundation for modeling concurrency, communication, and

1522

Gehlot

synchronization, while the programming language provides the needed primitives for the definition of data
types and the manipulations of data values.

The CPN language permits the models to be represented as a set of modules, allowing complex nets
(and systems) to be represented in a hierarchical manner. CPNs allow for the creation of both timed and
untimed models. Simulations of untimed models are usually used to validate the logical correctness of a
system, while simulations of timed models are used to evaluate the performance of a system. Time plays
an important role in the performance analysis of concurrent systems. If we were to think of Petri Nets as
an assembly language, then CPNs would correspond to a high-level language. In fact, CPNs and many
other extensions are referred to as high-level nets (Jensen and Rozenberg 1991).

According to Jensen and Kristensen (2015), “The goal of the CPN modeling language has been to
develop a formally founded modeling language for concurrent systems that would make it possible to
formally analyze and validate concurrent systems and that, from a modeling perspective, scale to industrial
systems. A main motivation behind the research into CPNs (and many other formal modeling languages)
was that the engineering of correct concurrent systems is a challenge due to their complex behavior that
could result in subtle bugs if not designed with care. As concurrent systems become still more pervasive
and critical to society, formal techniques for concurrent systems were (and still are) a highly relevant
technology to support engineering of reliable concurrent systems.”

It should be clear that the tokens in the Petri Nets described above do not carry any data value. In
programming terms, such tokens can be thought of as objects of type void in languages like C and Java.
The CPN extension of Petri Nets imparts the ability to define tokens of a variety of datatypes by adopting
CPN ML as its inscription language. In fact, the qualification colored in Colored Petri Nets is synonymous
with types in programming languages. In Petri Nets, tokens are conventionally depicted as black dots, and
therefore in the CPN extension tokens may have many different colors (types) apart from just black. Thus
in a CPN model, tokens can be coded as data values of a rich set of types (called color sets), and arc
inscriptions can be computed expressions and not just constants.

CPN ML includes predefined data types such as integers, booleans, reals, strings, and the equivalent
of void called unit. Note that there is only one value of type unit and is denoted by (), which can
be thought of as a concrete representation of black tokens in Petri Nets. In fact, the example Petri Nets
described above were created using the CPN software called CPN Tools which defaults to type unit for
all places and tokens.

In addition to predefined data types, CPN ML provides facilities for user defined type construction
including enumeration types, subrange types, product types, record types, union types, and list types.

As with Petri Nets, we introduce key concepts and constructs of CPNs by means of extensions of
our running print job example. Readers interested in details, including formal definitions and theoretical
foundations, may refer to (Jensen 1981), (Jensen 1994), and (Jensen and Kristensen 2009). A condensed
introduction to CPNs is available in (Jensen et al. 2007).

4 SECOND EXAMPLE

Let us extend our print job example with the ability to distinguish different types of printers. Although all
modeling should be at some level of abstraction, the model should include enough details of the underlying
reality so as to be able to answers questions of interest. For example, if we are interested in an accurate
estimate of the turnaround time, we would want to be able to distinguish various printers not just by name
but also their print speed, capacity, etc. Using the rich type declaration (colset or color set declaration
in CPN parlance) facility of CPNs, it is possible to define a printer as a token with all the attributes of
interest.

As an example, let us say we want to be able to distinguish three printers: HP, Epson, and Canon.
Furthermore, we want to be able to assign and track each job via a unique job identifier. Thus, a job request
would consist of a job id together with a printer name. Also, an active job is a pair consisting of a printer

1523

Gehlot

Printers

PRINTER

1`HP ++ 1`Canon++1`Epson

Busy

PRINTERxJOB

Jobs

JOB

NextID

JID

1`1

Start
Job

[#2(j)=p]

Done

NextJob

p

(p,j)

(p,j)

j

p

i i+1

genNextJob(i)

3

1`HP++
1`Canon++
1`Epson

1
Printers

PRINTER

1`HP ++ 1`Canon++1`Epson

Busy

PRINTERxJOB

Jobs

JOB

NextID

JID

1`1

Start
Job

[#2(j)=p]

Done

NextJob

p

(p,j)

(p,j)

j

p

i i+1

genNextJob(i)

2

1`HP++
1`Canon

1 1`(Epson,(1,Epson))

3

1`(2,Epson)++
1`(3,Canon)++
1`(4,Epson)

1 1`5

Figure 6: A CPN model of the print job system with initial marking including a generator for jobs (left).
An intermediate marking of the net during simulation (right).

and a job. The color set declarations shown below achieve this refinement:

colset PRINTER = with HP | Canon | Epson;
colset JID = INT;
colset JOB = product JID * PRINTER;
colset PRINTERxJOB = product PRINTER * JOB;

With these declarations, a job with id 5 and printer Epson would be denoted by (5, Epson). Of
course, a further refinement could include the number of pages in addition to the name of the printer and
is left as an exercise for the reader.

Since tokens reside in places, every place in a CPN is required to declare the associated color set via an
inscription. A place may contain a multiset (or bag) of tokens over its associated color set. For example,
the CPN ML expression 2‘HP++1‘Epson defines a multiset with 2 HP printers and 1 Epson printer.

Figure 6 shows a CPN model of the print job system under discussion. The multiset inscription on the
top right of the place Printers defines the initial marking for it. The green box and circle depict the details and
count of current tokens residing in the place during simulation. The inscription PRINTER on the lower right
side of this place declares the color set for the place. As a generalization from Petri Nets, arc inscriptions in
CPNs may be expressions which are evaluated using the current markings of input places of a transition. A
transition is enabled in CPNs if the variables in the arc expressions of all input places to the transition can be
bound consistently from the current markings of those places, and the resulting arc expression evaluates to a
multiset which is a submultiset of the current marking of the corresponding input place. Firing of an enabled
transition with a given binding removes from each input place the multiset of tokens to which the correspond-
ing input arc expression evaluates. Similarly, it adds to each output place the multiset of tokens to which
the corresponding output arc expression evaluates. All variables in arc expressions must be declared using a
var declarations. The net in Figure 6 has four variables and the corresponding declarations are given below:

var p: PRINTER;
var j: JOB;
var i: JID;

1524

Gehlot

Table 1: Auto-generated report for token count in place Printers over 50 steps of simulation. The table
shows count as 51 since it includes the initial marking which is at step 0 of simulation.

Name Count Sum Avrg Min Max
AvailablePrinters 51 70 1.372549 0 3

Transitions in CPNs may have an optional guard, which is a list of boolean conditions. These provide
additional control over the firing of the associated transitions. Let us focus on transition StartJob. It has
two input places and one output place. The arc inscription of place Printers is simply the variable p. Thus,
p can be bound to any one of HP or Canon or Epson. The variable j on the arc from place Jobs will be
bound to a token of type JOB and would be a pair consisting of an id and a printer. The guard #2(j)=p
would evaluate to true only when the second component of the pair, namely the printer, is the same as the
printer associated with variable p. Thus, the guard guarantees that if the print job requests, say, HP printer
then only the HP printer will be selected. Note that if in the current marking, no HP printer is available,
then the current job with request for HP printer will not get started since the transition will not get enabled.
However, if there is another job for a different printer, then that job may be started and the job for HP
printer would wait until an HP printer becomes available.

Let us consider the transition NextJob in Figure 6. Its input place NextID serves as a generator for
next job id in sequence starting from the initial marking where it contains integer value 1 as described
by the initial marking 1‘1. Its associated color set is JID, which is an integer per color set declarations
above. Each time the transition fires, it removes an integer (value bound to variable i) and puts back
the next integer in sequence (computed value of expression i+1) on the outgoing arc. Additionally, each
firing of this transition puts the result of function call genNextJob(i) into place Jobs. The user-defined
function genNextJob generates a random printer request for a given job id. It makes use of one of the
built-in facilities of CPNs where, for any enumeration type T, the function T.ran() returns a random
value of that type, and is declared as follows:

fun genNextJob(i) =
(i, PRINTER.ran());

To complete the description of the model, once a job is started, the associated token of type
PRINTERxJOBS, which is a pair (p, j) consisting of a printer and a job will get added to place
Busy. When the transition Done fires, token associated with the busy printer will get returned to the pool
of available printers in place Printers.

Figure 6 shows the marking of the net after some steps of simulation. In particular, it shows three
jobs waiting in place Jobs. Focusing on transition StartJob, the variable p has two possible bindings given
that the current marking of the place Printers is 1‘HP++1‘Canon. On the other hand, the variable j has
three possible markings based on the current marking of the place Jobs. However, with the binding of j to
(2,Epson) the guard on the transition cannot evaluate to true and enable the transition for either of the
bindings of p. In other words, based on our description of enabling of transitions in CPNs above, the job
with id 2 cannot be started since there is no printer Epson available in place Printers. However, either of
the other two jobs may be started at the next step of simulation. Since there are no additional constraints,
the underlying simulator will pick one at random. Note that in absence of the guard, there are six possible
bindings that will enable the transition StartJob.

Similar to what we did in the first example, we used the built-in monitoring and data logging facility of
the CPN Tools software to keep track of the number of tokens in place Printers. The auto generated report
is shown in Table 1. The weakness of the current model is our ability to do some performance analysis
and answer questions like how long a job waits or what is the utilization of printers, etc. To do this, we
need to incorporate a notion of time into our modeling language. Fortunately, CPNs do include a built-in
notion of time. The basic idea behind the time extension is to allow each token to carry a time stamp in

1525

Gehlot

Printers

PRINTER

1`HP++1`Canon++1`Epson

Busy

PRINTERxJOB_T

Jobs

JOB_T

NextID

JID_T

1`1

Start
Job

@+procDel()

[#2(j)=p]

Done

NextJob

p

(p,j)

(p,j)

j

p

i (i+1)@+expDel()

genNextJob(i)

3

1`HP++
1`Canon++
1`Epson

1 1`1@0 Printers

PRINTER

1`HP++1`Canon++1`Epson

Busy

PRINTERxJOB_T

Jobs

JOB_T

NextID

JID_T

1`1

Start
Job

@+procDel()

[#2(j)=p]

Done

NextJob

p

(p,j)

(p,j)

j

p

i (i+1)@+expDel()

genNextJob(i)

3

1`HP++
1`Canon++
1`Epson

1 1`(2,Canon)@21

1 1`3@35

Figure 7: A timed CPN model of the print job system (left). An intermediate marking of the model during
simulation (right).

addition to the data value. A global clock (counter) is used to advance time. Semantically, the time stamp
specifies the global clock time at which the token becomes available to be consumed by a transition firing
any time after that. Similar to many discrete event systems, the CPN Tools software does not advance
time by one clock tick. Instead, it advances the time by the smallest step that makes at least one transition
enabled. We discuss the details of a timed version of our current CPN model in the next section.

5 THIRD EXAMPLE

We now describe how to incorporate timing information to a CPN model. As mentioned before, this
enrichment is crucial if we want to evaluate the efficiency of a system and its operations. Timed models
are also useful in validating real-time systems, where the correctness of the system relies on the proper
timing and deadlines of events and not just outputs.

As mentioned above, CPNs introduce the notion of time by associating a time stamp with a token.
Thus, a token carries not only a value of its associated color set but a second value denoting its time stamp.
This is achieved by declaring the color set of interest to be timed. In general, for any color set C, one
can create a timed version by the declaration C timed. Assuming we have declared a timed version of
the integer type, then a token belonging to this type would be written 1‘5@20, where 5 is the value of
the token and 20 is its time stamp. This token will not be available for transition enabling and firing until
the global clock reads at least 20. Depending on the context, one may interpret this time stamp as the
execution time of the activity associated with the affected transition. In CPNs, both timed and untimed
tokens may coexist. In other words, not all token types need to be declared timed for the entire model to
be timed. One implication of this property is that if both timed and untimed activities are enabled in a net,
then the transitions associated with untimed activities will fire before the transitions associated with timed
activities.

Figure 7 contains the timed extension of the model in Figure 6. In this model the places NextID, Jobs,
and Busy have been declared to have timed version of their original color sets by adding the following
colset declarations:

colset JID_T = JID timed;
colset JOB_T = JOB timed;
colset PRINTERxJOB_T = PRINTERxJOB timed;

1526

Gehlot

1 0 NextJob @ (1:ExtendedPrintJobSystemTimed)
- i = 1
2 0 Start_Job @ (1:ExtendedPrintJobSystemTimed)
- j = (1,Epson)
- p = Epson
3 12 Done @ (1:ExtendedPrintJobSystemTimed)
- j = (1,Epson)
- p = Epson

Figure 8: Sample entries from the generated simulation report for the timed CPN model of the print job
system during a simulation run.

With these changes, a job in place Jobs will have a time stamp indicating its arrival at the printers.
Similarly, an active job in place Busy will have a time stamp indicating the processing time. Thus, the
transition Done will not fire until the global clock reads a time which is greater than or equal to the time
stamp on an active job. In the model we have assumed that arrivals of print jobs are exponentially distributed
with parameter 10.0. We achieve this as follows. When the transition NextJob fires, it removes a token
representing the current id from the place NextID and puts back the timed token with next id. The timed
token is generated via the inscription (i+1)@+expDel() on the outgoing arc. The function expDel()
shown below returns an exponentially distributed integer value and is essentially a wrapper around the
built-in exponential distribution function which returns a real number. Similarly, we associate a ran-
dom processing delay for each job. This is achieved via the arc inscription (p,j)@+procDel() on the
outgoing arc from transition StartJob. The function procDel() is a wrapper around the built-in uniform
distribution function discrete as shown below.

val ARR_DELAY = 10.0;
fun expDel() =

let
val v = exponential(1.0/ARR_DELAY)

in
floor (v+0.5)

end;
fun procDel() = discrete(5,25);

Figure 7 shows the marking of the timed net after some steps of simulation. The given marking shows
that the job with id 2 and time stamp 21 is about to be started and the next job with id 3 will arrive at
time 35. In a timed model, the simulation report provides the log of transition occurrences and the time at
which a transition fires in addition to the step count. There is also an option to save bindings at each step.
Figure 8 shows the first few lines of a simulation report generated for this model from a simulation run.
For a row, the first number is the step count and the second number is the simulation clock time. Indented
below each row are the bindings of the variables associated with the transition mentioned in that row.

As mentioned before, one may be interested in selected and/or refined data to be collected during
simulation. This is achieved using the extensive monitoring facilities available in the CPN Tools software
for data collection (Wells 2002; Lindstrøm and Wells 2002). A monitor is a mechanism in the CPN Tools
that is used to observe, inspect, control, or even modify a simulation of a CPN. A variety of monitors can
be defined for a given net. Monitors can inspect both the markings of places and the occurring binding
elements during a simulation, and they can take appropriate actions based on the observations. Monitors
can be used for each of the activities mentioned above. A monitor is associated with a relevant subnet
consisting of places and/or transitions from a net. If a monitor is associated with one or more transitions,

1527

Gehlot

Job 1 arrived at 0
Job 2 arrived at 7
Job 3 arrived at 8
Job (1,HP1) finished at 9

Figure 9: Sample monitoring log file generated during a simulation run.

then the monitor can check if some relevant condition is fulfilled after any one of the transitions occurs.
If the relevant condition is fulfilled, the monitor can extract and record information from the subnet. If a
monitor is associated with one or more places, then the monitor can examine the tokens on each of the
places. The monitor can examine the markings of the places before a simulation starts, during a simulation,
and when a simulation stops. If the monitor is associated with at least one transition, then the monitor can
examine the tokens on the places only when one of the associated transitions occurs during a simulation.
If the monitor is associated with zero transitions, then the monitor can examine the tokens on the places
after every simulation step.

The code required for data extraction is automatically generated by CPN Tools when a monitor is applied
to a subnet within the CPN Tools software by a user. In some cases, the user may have to override the default
value for an auto-generated monitoring function. Typically, it would be the observation function that extracts
information from the net. As an example, let us say we are interested in logging the arrival and completion
of a print job. In this case we can associate a write-in-file monitor with the subnet consisting of transitions
NextJob and Done of the CPN model in Figure 7. The auto-generated code with user-specified string to
write out is shown below. The function intTime() returns the current simulation clock time as an integer.

fun obs (bindelem) =
let

fun obsBindElem (ExtendedPrintJobSystemTimed’Done (1, {j,p})) =
"Job " ˆJOB.mkstr(j)ˆ" finished at "ˆINT.mkstr(intTime())ˆ"\n"

| obsBindElem (ExtendedPrintJobSystemTimed’NextJob (1, {i})) =
"Job " ˆJID.mkstr(i)ˆ" arrived at "ˆINT.mkstr(intTime())ˆ"\n"

| obsBindElem _ = ""
in

obsBindElem bindelem
end

With this monitor in place, when we run a simulation, we will get a log file similar to one shown in
Figure 9. Next we extend our print job example and introduce the hierarchical construction of CPN models.

6 FOURTH EXAMPLE

We now extend our example to have several printers connected over a network. Each printer will maintain
its own queue of jobs and when a job is finished, a response is sent to the user. The creation of hierarchical
nets is based on the idea that a transition can be replaced or substituted by a (sub) net that details the
activities underlying the associated transition. Such transitions are called substitution transitions in the
CPN parlance. Pictorially, a substitution transition is drawn with double rectangles. Thus at the top level,
we can view this system as consisting of three components (substitution transitions), namely, Printers,
Network, and Print Jobs, connected together as shown in Figure 10.

At the next level, we assume we are going to manage the three printers independently and similarly
we will separate the requests for three printers into separate print jobs categories. Figure 11 shows the
expansion of the substitution transitions Printers and Print Jobs. There is no restriction on how deep one
may go in terms of expanding a substitution transition. From a modeling perspective, one can fill in the

1528

Gehlot

Jobs
In

JOB

Done
Out

DONE

Jobs
out

JOB

Done
In

DONE

Printers

PrintersPrinters

Network

NetworkNetwork

Print
Jobs

Print JobsPrint Jobs

Figure 10: The top module (page) of the hierarchical CPN model of the print job system.

Jobs
In

In JOBIn

Done
Out

Out
DONE

Out

HP

HPHP

Canon

CanonCanon

Epson

EpsonEpson

Done
In

In DONEIn

Jobs
out

Out JOBOut

HP Print
Requests

HP Print RequestsHP Print Requests

Canon
Print

Requests
Canon Print RequestsCanon Print Requests

Epson
Print

Requests
Epson Print RequestsEpson Print Requests

Figure 11: The subpages associated with substitution transitions Printers and Print Jobs.

details iteratively. In fact, it is not required that the details of all subpages be filled in for one to start
simulating.

Each of the substitution transitions for the individual printers would expand to a net similar to the
one in previous examples. However, one difference is that we will queue up jobs for each printer in an
associated queue. In CPN, places are holders of a multiset and do not behave as a queue. However, it
is easy to introduce a queue using the list type construction facility. We use the net shown in Figure 12
to illustrate how define and use a queue in CPNs. The declared type of place Queue is INT_Q which is
defined to be list INT. For the enqueue operation, the transition Enqueue removes the current list xs
and puts back this list appended with the new element, which is given by CPN ML expression xsˆˆ[x].
Similarly, for the dequeue operation, the transition Dequeue removes the queue with head (front) x and
tail xs and puts back the tail xs. The CPN ML expression x::xs is called a pattern and matches against
a non-empty list with x bound to the head of the list and xs bound to the tail of the list.

Another change in the hierarchical model from the previous examples is that we save the current time
as part of the token value itself. This allows us to directly compute the total wait time of a job upon

Queue

INT_Q

1`[]

Items
In

INT

4`5++3`6++3`7
Items
Out

INT

Enqueue Dequeue
xs^^[x]

x::xsxs

xs

x x
1 1`[5,7,7,6]

5
3`5++
1`6++
1`7

1 1`6

Figure 12: Illustration of queues in CPNs.

1529

Gehlot

Done
Out

Out DONEOut

Jobs
In

In JOBIn

Printer
Available

PRINTER

1`HP

Busy
Printing

PRINTERxJOB_T

Printer
Queue

JOBS

1`[]

Start
Job

Done
Printing

Add To
Queue

[#2(j)=HP]

p

(p,j)@+procDel()

(p,j)

p

j

js

js^^[j]

j::js js

(#1(j),#2(j))

1

1`HP

1

1`[]

Figure 13: Subpage for HP Printer.

Table 2: Auto generated performance report when simulation replications are run.
Name Avrg 90% 95% 99% StD Min Max

Canon Queue
count iid 64.000000 9.700014 12.630037 20.946935 10.173495 52 79
max iid 5.400000 1.977135 2.574356 4.269574 2.073644 3 8
min iid 0.000000 0.000000 0.000000 0.000000 0.000000 0 0
avrg iid 2.300330 1.565843 2.038828 3.381399 1.642276 0.500000 4.516899

Canon Utilization
count iid 58.400000 7.615748 9.916189 16.446014 7.987490 47 69
max iid 1.000000 0.000000 0.000000 0.000000 0.000000 1 1
min iid 0.000000 0.000000 0.000000 0.000000 0.000000 0 0
avrg iid 0.892382 0.108807 0.141673 0.234965 0.114118 0.750520 1.000000

completion via a suitable monitor rather than having to do a post processing of a log file that records the
two events separately. The relevant colset declarations for the hierarchical net are given below, and the
subpage detailing the HP printer is given in Figure 13.

colset AT = INT;
colset JOB = product JID * PRINTER * AT;
colset JOBS = list JOB;
colset PRINTERxJOB = product PRINTER * JOB;
colset PRINTERxJOB_T = PRINTERxJOB timed;
colset DONE = product JID * PRINTER;

The subpages for remaining printers and their requests are similar. CPN does include a facility to
create instances of a subpage as long as all instances use the same inscriptions. If all inscriptions are not
the same, then one has to use a copy and not an instance.

To collect meaningful data, we associated monitors to compute various queue sizes and utilization of
printers. As suggested in (White, Jr. and Ingalls 2009), we ran simulation replications using the built-in
function CPN’Replications.nreplications. The auto-generated performance report is given in
Table 2. For brevity, only data for Canon printer is shown.

1530

Gehlot

Figure 14: Screenshot of CPN Tools.

7 CPN TOOLS SOFTWARE

CPN Tools is a free software that supports editing and construction of CPN models, interactive and automatic
simulation, monitoring facilities, external process communication, simulation based performance analysis,
as well as state space-based model checking. It has an intuitive and flexible graphical user interface.
Figure 14 shows a screenshot of CPN Tools. The software can be downloaded from the CPN Tools website.

Referring to the screenshot, the left column is called the index and contains a hierarchical list of objects.
Expanding the Tool box gives a list of all the available. Any of these tools can be dragged to the section
on the right, called the workspace. Dragging an item into the workspace creates a view of its contents.
Expanding on the name of a net in the index displays all the information associated with that net, including
all declarations and monitors. In the shown screenshot, the Simulation, Net, and Create tools have been
dragged onto the workspace.

In CPN Tools a net is organized into binders in the workspace. Each binder may contain any number
of tabbed pages. Each page contains a single (sub)net. Figure 14 shows that the overall net is currently
organized in two binders. Additionally, there are three binders containing tools for creating and simulating
a net. Similar to pages for nets, tools themselves may be organized as tabbed binders. Multiple nets and
binders may be open at the same time. Pages may be dragged from binder to binder without changing the
execution aspect of the model. Dragging a page into the workspace will create a new binder for that page.

Figure 14 also shows various tools that are useful when creating and editing a net. Technically, each
is referred to as a tool palette. A tool in a tool palette can be picked up by clicking on the appropriate
tool cell. The tool remains attached to the mouse pointer and can be applied multiple times by clicking
the mouse. To drop a tool, simply press the ESC key. From the Net tool, the New Net and Load Net
tools are used to create a new model and load an existing model, respectively. When a model is created
or loaded, its model overview will be added to the index. Another way to create a net or load a net is
to simply right click on a blank space in the workspace and a context sensitive menu will pop up with
various options. In general, right-clicking in the CPN Tools interface anywhere will bring up a context
sensitive menu applicable to where the mouse is pointing. For example, right clicking on a page will bring
up options to create a transition, place, arc, etc. Or one can use the Create tools.

The Sim tools are used for running interactive or automatic simulations. It contains video tape player-like
controls used to manipulate the model. Next allows the user to select a transition to fire. Play randomly fires

1531

http://cpntools.org

Gehlot

enabled transitions until the end of the simulation is reached or the user hits the stop button. Fast-forward
runs the simulation for a specified number of steps set by the user, while Rewind resets the simulation to
its initial state.

The color sets, variables, and functions that are used in inscriptions must be defined in Declarations
for the model. The declarations that belong to a model can be seen in the index in the model overview.
New declarations are added by right clicking in a declaration section and selecting the option from the
menu that pops up. Declarations can be grouped in declaration blocks.

Inscriptions must be added to nodes and arcs. After creating a new place, transition, or arc, text-edit
mode will be entered, and it will be possible to add the first inscription to the element. Arcs have only
one inscription, while places and transitions have several kinds of inscriptions. The TAB key is used to
cycle between the different inscriptions for a node.

8 CONCLUSIONS

Petri Net is a widely studied mathematical formalism and provides a graphical notation suitable for
modeling distributed and concurrent systems. Petri Nets provide the foundation for modeling concurrency,
communication, synchronization, and resource sharing constraints that are inherent to many systems.
However, Petri nets do not scale well when it comes to modeling and simulation of large systems. Colored
Petri Nets (CPNs) extend Petri Nets with a high level programming language, making them more suitable
for modeling large systems.

The focus of this paper has been to introduce the audience to vocabulary and concepts of Petri Nets
and Colored Petri Nets (CPNs) and illustrate their use in modeling and simulation of systems. Rather than
focusing on formal definitions of these frameworks, we took an example-based approach to incrementally
introduce the reader to the details of Petri Nets and Colored Petri Nets. We discussed important features
including hierarchy, color sets, and both timed and untimed nets. Thus, there are enough details in this
paper so that even a reader who is not at all familiar with either of the two formalisms should be able
to get started with the CPN Tools software to create and simulate models. As a starting point, interested
readers may download all the models discussed in this paper. To practice and become more familiar with
the CPN Tools software, readers may want to extend these models by incorporating following additional
details and features:

• Include number of pages for each job and compute processing time based on number of pages.
• Include printers with multiple tray sizes and capacities.
• Include possibility of printers running out or paper and paper getting jammed and printers running

out of ink.
• Include a monitor in the hierarchical model to compute waiting time for jobs.

These models can also serve as base models for some other applications. For example, jobs arriving
at printers is not different from patients showing up at a hospital or doctor’s office. Instead of jobs with
preference for printers, we’d have patients with preference for doctors or even include a list of ailments to
be treated.

In addition to simulation-based analysis, CPN Tools also supports state-space based analysis. Simulation
can only be used to consider a finite number of executions of the model being analyzed. However, simulations
cannot cover all possible executions of a modeled system in general. State-space based analysis complements
simulation-based analysis and deals with all reachable states of a system. This paper does not focus on state-
space based analysis. A high-level introduction to state-space analysis and its use is discussed in (Jensen
et al. 2007). Finally, A CPN model of the example discussed in (White, Jr. and Ingalls 2009) is described
in (Gehlot and Nigro 2010) and can serve as an additional resource.

1532

http://www.csc.villanova.edu/~gehlot/wsc2019/VGehlotWSC19Models.zip

Gehlot

REFERENCES
David, R., and H. Alla. 2004. Discrete, Continuous and Hybrid Petri Nets. Berlin: Springer-Verlag.
Gehlot, V., and C. Nigro. 2010. “An Introduction to Systems Modeling and Simulation with Colored Petri Nets”. In Proceedings

of the 2009 Winter Simulation Conference, edited by B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan,
104–118. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Haas, P. 2002. Stochastic Petri Nets: Modelling, Stability, Simulation. New York: Springer-Verlag.
Jensen, K. 1981. “Coloured Petri Nets and the Invariant Method”. Theoretical Computer Science 14(3):317–336.
Jensen, K. 1994. “An Introduction to the Theoretical Aspects of Coloured Petri Nets”. In A Decade of Concurrency, edited

by J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, Volume 803 of Lecture Notes in Computer Science, 230–272.
Berlin-Heidelberg: Springer-Verlag.

Jensen, K., and L. M. Kristensen. 2009. Coloured Petri Nets. Modelling and Validation of Concurrent Systems. Berlin-Heidelberg:
Springer-Verlag.

Jensen, K., and L. M. Kristensen. 2015. “Colored Petri Nets: A Graphical Language for Formal Modeling and Validation of
Concurrent Systems”. Communications of the ACM 58(6):61–70.

Jensen, K., L. M. Kristensen, and L. Wells. 2007. “Coloured Petri Nets and CPN Tools for modelling and validation of
concurrent systems”. International Journal on Software Tools for Technology Transfer 9(3):213–254.

Jensen, K., and G. Rozenberg. (Eds.) 1991. High-level Petri Nets—Theory and Application. Berlin-Heidelberg: Springer-Verlag.
Lindstrøm, B., and L. Wells. 2002. “Towards a Monitoring Framework for Discrete-Event System Simulations”. In Proceedings

of the Sixth International Workshop on Discrete Event Systems (WODES’02), 127–134. IEEE Computer Society: Institute
of Electrical and Electronics Engineers, Inc.

Murata, T. 1989. “Petri Nets: Properties, Analysis and Applications”. Proceedings of the IEEE 77(4):541–580.
Peterson, J. L. 1981. Petri Net Theory and the Modeling of Systems. New Jersey: Prentice-Hall.
Petri, C. A. 1962. Kommunikation mit Automaten. Ph. D. thesis, Institut für Instrumentelle Mathematik, Bonn. English Translation,

1966: Communication with Automata, Technical Report RADC-TR-65-377, Rome Air Development Center, Air Force
Systems Command, Griffiss Air Force Base, New York.

Popova-Zeugmann, L. 2013. Time and Petri Nets. Berlin: Springer.
Ramchandani, C. 1974. “Analysis of Asynchronous Concurrent Systems by Timed Petri Nets”. Technical Report Project MAC,

TR-120, MIT.
Reisig, W. 1985. Petri Nets—An Introduction. Berlin: Springer.
Reisig, W. 2013. Understanding Petri Nets. Berlin-Heidelberg: Springer-Verlag.
Ullman, J. D. 1998. Elements of ML Programming. New Jersey: Prentice-Hall.
Wang, J. 1998. Timed Petri Nets—Theory and Application. Boston: Kluwer Academic Publishers.
Wells, L. 2002. “Performance Analysis using Coloured Petri Nets”. In Proceedings. 10th IEEE International Symposium

on Modeling, Analysis and Simulation of Computer and Telecommunications Systems (MASCOTS’02), 217–222. IEEE
Computer Society: Institute of Electrical and Electronics Engineers, Inc.

White, Jr., K. P., and R. G. Ingalls. 2009. “Introduction to Simulation”. In Proceedings of the 2009 Winter Simulation Conference,
edited by M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and R. G. Ingalls, 12–23. Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers, Inc.

AUTHOR BIOGRAPHIES
VIJAY GEHLOT is Professor and Graduate Program Director in the Computing Sciences Department at Villanova University.
He is also a research faculty member with Villanova’s Center of Excellence in Enterprise Technology (CEET). He received his
PhD in Computer and Information Science from the University of Pennsylvania. His current research focus is applications of
Colored Petri Nets (CPNs) in modeling and analysis of systems, including system of systems and system dynamics. Specific focus
of his research works include healthcare applications pertaining to workflow and patient safety issues; enterprise service-oriented
architectures and scalability issues; emergent behaviors of cyber-physical systems; broadband networks architecture, modeling,
measurement, and analysis; systems biology and signaling pathways modeling. He is a member of the ACM, ACM SIGSim,
and Sigma Xi. His email address is vijay.gehlot@villanova.edu.

1533

mailto://vijay.gehlot@villanova.edu

	INTRODUCTION
	FIRST EXAMPLE
	COLORED PETRI NETS
	SECOND EXAMPLE
	THIRD EXAMPLE
	FOURTH EXAMPLE
	CPN TOOLS SOFTWARE
	CONCLUSIONS

