
Proceedings of the 2019 Winter Simulation Conference
N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds.

BPMN-BASED BUSINESS PROCESS MODELING AND SIMULATION

Paolo Bocciarelli
Andrea D’Ambrogio

Andrea Giglio
Emiliano Paglia

Department of Enterprise Engineering
University of Rome Tor Vergata

Viale del Politecnico 1
Rome, 00133, ITALY

ABSTRACT

A business process (BP) can be defined a set of tasks that are coordinately performed by an organization
to achieve a business goal. M&S (Modeling & Simulation) techniques are widely and effectively adopted
for BP analysis. A BP M&S approach is typically carried out by first building a simulation model (from
a conceptual model of the BP under analysis), and then producing the software implementation of the
simulation model, so to eventually execute the simulation code and get the results of interest. The standard
language currently used to define BP models is the OMGs BPMN (Business Process Model and Notation).
This paper presents a BPMN-based M&S approach that introduces a BPMN extension to specify BP
simulation models as annotated BPMN models, and a domain-specific BP simulation language to specify
and execute simulation model implementations, which can be seamlessly derived from annotated BPMN
models by use of automated model transformations.

1 INTRODUCTION

In recent years, several organizations have shifted towards a massive adoption of process management
methodologies and tools, in order to improve the maturity level of their operational processes. The term
Business Process (BP) is used to define a set of activities that are coordinately performed in an organizational
and technical environment to achieve a business goal (Weske 2012). In this context, Business Process
Management (BPM) is referred to as a comprehensive discipline that makes use of methods, techniques
and tools to support the design, analysis, enactment and diagnosis of operational BPs (van der Aalst 2013).

The BP design and analysis activities of a BPM effort strongly rely on the use of process modeling
and simulation techniques. The combined use of process modeling and simulation techniques provides
an effective approach to analyze BPs and evaluate design alternatives before committing the necessary
resources and effort.

Several formalisms, or languages, have been introduced for the specification of BP models, such as flow
charts, activity diagrams, petri nets and event-driven process chains. Recently, the Object Management
Group has introduced the Business Process Model and Notation (BPMN) (OMG 2019a), a graphical
language for the BP representation that has rapidly become a de-facto standard in the BPM area, due to its
rich and easy to understand notation. BPMN allows business analysts to specify abstract models of BPs
that are then mapped to the execution languages of BPM systems, such as the Business Process Execution
Language (BPEL), a standard for Web Services-based BP orchestration (OASIS 2019).

The use of simulation techniques to analyze BPs specified as BPMN models requires first the derivation
of a simulation model from the BPMN model, so to provide the necessary details (performance parameters,

1439978-1-7281-3283-9/19/$31.00 ©2019 IEEE

Bocciarelli, D’Ambrogio, Giglio, and Paglia

execution resources, expected workload, etc.) that are missing in the BPMN model but required to make
the model executable. The obtained simulation model is then implemented into a software program, which
is eventually run to get the simulation results (performance indicators) of interest.

The concrete use of simulation-based BP analysis is still somehow limited, mainly due to the fact that
the simulation model building activity, as well as the implementation and execution of simulation models,
require a non-negligible effort and significant skills (van der Aalst et al. 2010; Kamrani et al. 2010; Hook
2011).

This paper presents a BPMN-based M&S approach that introduces a BPMN extension, named PyBPMN,
to annotate a BPMN model with what is necessary to specify the corresponding BP simulation model, such
as performance properties, resources, workloads, etc. The extension has been carried out according to a
lightweight profiling mechanism, not to alter the content and validity of the original BPMN model.

In addition, the approach exploits a Java-based domain-specific BP simulation language, named eBPMN,
which is used to implement BP simulation models specified in PyBPMN. The eBPMN code, ready to be
executed, can be seamlessly derived from PyBPMN models by use of automated model transformations.

The rest of this paper is organized as follows: Section 2 deals with BP modeling, presenting both the
BPMN standard and its proposed extension (i.e., PyBPMN). Section 3 presents BP simulation techniques
and introduces the proposed domain-specific BP simulation language (i.e., eBPMN). Section 4 describes
the automated generation of eBPMN-based simulation code, as well as the enabling tool-chain. Section
5 illustrates an example application of the proposed contribution and finally Section 6 gives concluding
remarks.

2 BUSINESS PROCESS MODELING

Modeling is a way to manage complexity. A model represents a given subject, with respect to a particular
scope, by abstracting from details that are irrelevant for that scope. Two main scopes for process modeling
can be identified in BPM (Desel and Erwin 2000; Dumas et al. 2013):

• Organizational design: the model is used for a complete understanding of the BP during its lifetime,
from communication with stakeholders to BP evaluation and improvement. The model is intuitive
and generally represented with a graphical notation;

• Application development: the model is more detailed and thus includes all the technical information
required for the implementation and automation of the BP.

Among all the formalisms and languages defined for the specification of BP models, the Business
Process Model and Notation (BPMN) is currently the most widely used (Weske 2012).

2.1 BPMN

The Business Process Model and Notation (BPMN) (OMG 2019a) is a standard graphical notation for the
representation of BPs that is easily readable by all the actors involved in BPM. Although BPMN allows
to effectively represent a BP at different levels of abstraction, it is more used in the early stages (analysis
and design) of the process lifecycle.

BPMN provides three basic types of diagram for the graphical description of BPs:

• Processes (Orchestration);
• Choreographies;
• Collaborations, which can include Processes and/or Choreographies.

The elements of BPMN diagram are divided in four categories as shown in Figure 1: Flow Objects,
Artifacts, Connecting Objects and Swimlanes.

Flow Objects are the fundamental elements of BPMN and include Events, Activities and Gateways:

1440

Bocciarelli, D’Ambrogio, Giglio, and Paglia

Figure 1: BPMN elements.

• Events: something that could happen and that is relevant for the BP. Events are important because
they affect the control flow of the BP;

• Activities: units of work carried out during the BP (atomic activities are denoted as Tasks);
• Gateways: decision points that alter the sequential flow between Flow Objects. A gateway can be

diverging or converging if it splits or merges the execution flow, respectively.

Artifacts are used to specify additional information and documentation about the BP. Among Artifacts,
Text Annotations are used to provide information in the model as free text.

The participants in the BP and their activities can be organized using Pools and Lanes.
Flow Objects, Artifacts and Swimlanes can be connected with each other using the following Connecting

Objects:

• Sequence Flow, to connect flow objects in sequential order within a pool;
• Message Flow, to exchange messages between participants depicted as Pools;
• Association, to link information (e.g., Artifacts) to Flow Objects.

The semantic behavior of the process model is specified through the token concept. In particular, the
behavior of each BPMN element is defined specifying how it interacts with an incoming token. The token
is an abstract element that is created by the start event of the BP, passed through the elements of the process
according to a given sequence flow, and finally destroyed at an end event occurrence.

2.2 PyBPMN

The BPMN language has some limitations with respect to the specification of non-functional properties of
the BP. To address such issues, several authors have extended the standard BPMN definition.

PyBPMN (Performability-enabled BPMN) is a BPMN extension that addresses the specification of per-
formance and reliability properties of BPs (Bocciarelli and D’Ambrogio 2011a; Bocciarelli and D’Ambrogio
2011b; Bocciarelli and D’Ambrogio 2014; Bocciarelli et al. 2014; D’Ambrogio et al. 2016).

1441

Bocciarelli, D’Ambrogio, Giglio, and Paglia

The PyBPMN extension addresses four main areas of non-functional properties:

• Workload, to model the workload for the tasks in the process (class GaWorkloadEvent);
• Performance, to specify the performance properties, i.e., efficiency-related properties such as the

service time, associated to single tasks (class PaQualification);
• Reliability, to express the reliability properties of the resources used by tasks to carry out the work

requests (class DaQualification);
• Resource management, to specify the resources involved in the BP. PyBPMN allows users to specify

atomic resources (PyPerformer), groups of resources (PySubsystem) or sets of alternative
resources (PyBroker).

2.3 Performance Characterization

PyBPMN introduces the following additional classes for performance characterization:

• PaQualification: base abstract class that can be specialized asPaService orPaResponse;
• PaService: specifies the service demand in terms of the following attribute:

– serviceTime: time demand required for the execution of a single request;
• PaResponse: specifies the performance as seen from an external user in terms of the following

attributes:
– throughput: requests accomplished per time unit;
– responseTime: time spent for the execution of the request.

2.4 Reliability Characterization

PyBPMN introduces the following additional classes for reliability characterization:

• DaQualification: base abstract class that can be specialized as DaFault or DaFailure;
• DaFault: specifies fault-related properties using the following attributes:

– rate: fault occurrence rate;
– occurrenceProb: probability of a fault occurrence (time independent);
– occurrenceDist: probability distribution of a fault occurrence in a time interval (time

dependent);
• DaFailure: specifies failure-related properties using the following attributes:

– rate: failure occurrence rate;
– MTTF: mean time to failure;
– MTTR: mean time to repair.

2.5 Resource Characterization

PyBPMN provides a resources definition which is complementary to that of the standard BPMN. In BPMN,
a resource is an abstract role involved in an activity, whereas the PyBPMN resource definition allows to
specify, at design time, the real entities that perform the activities, along with their non-functional properties.

A PyBPMN resource can model a human worker, an equipment, a functional division of an organization,
an autonomous system, a web service, or any other entity which can be used to carry out a service request.

PyBPMN introduces the following main classes for resources definition:

• PyRequest: wrapper class used to specify the fraction of the resource capacity that is required
to execute the service;

• PyBaseResource: abstract base class that can be specialized as PyPerformer, PyBroker
and PySubsystem;

• PyPerformer: actual work performer that executes the service requests;

1442

Bocciarelli, D’Ambrogio, Giglio, and Paglia

• PyBroker: complex resource that manages a set of candidate resources and delegates to one
of them the execution of the service request. The resource selection is dynamic: if the currently
selected resource is no more available (e.g., due to a failure), the broker dispatches the service
request to another available resource (if existing);

• PySubsystem: complex resource defined in terms of its elementary components (a set of correlated
resources that are all required to accomplish the service request). Differently from the PyBroker,
the PySubsystem sequentially dispatches the service request to all of the resources composing
the subsystem;

• PyDescriptor: used to associate the PyBPMN resources to standard BPMN elements.

Figure 2 shows the relations between BPMN elements and PyBPMN classes.

Figure 2: Relations between BPMN and PyBPMN classes.

1443

Bocciarelli, D’Ambrogio, Giglio, and Paglia

3 BUSINESS PROCESS SIMULATION

Business Process Simulation (BPS) is considered as the most popular and used technique for quantitative
analysis of process models (Dumas et al. 2013). BPS uses a simulation engine to generate a large number
of BP instances and to gathers data during their execution.

BPS has several advantages over other analysis methods:

• It allows to analyze complex processes, thanks to its flexibility;
• It allows to analyze several indicators at the same time such as service times, waiting times and

resources utilization;
• It can be used for what-if analysis, in order to evaluate different BP scenarios at design time before

moving to implementation.

The simulation engine can generally be programmed using:

• A language that provides simulation-specific primitives;
• A simulation package, or tool, that provides several domain-specific building blocks that are used

to produce and execute the simulation model.

The simulation language approach provides more flexibility but requires more skills and effort. The
simulation tool approach is less flexible but more user-friendly and generally provides a graphical interface
for the definition of the simulation model.

However, BPS also shows some drawbacks:

• The definition of the simulation model could require programming skills;
• The soundness of simulation results depends on the correctness and completeness of the BP model;
• The accuracy of the results depends on the number of simulation runs, so to easily lead to time-

consuming and computation-intensive simulation executions.

3.1 eBPMN

The eBPMN language is a domain-specific simulation language that has been defined to conform to the
execution semantics of the BPMN 2.0 specification. Indeed, the eBPMN language simulates the BP
execution implementing the token concept defined in the original BPMN specification. Moreover, eBPMN
provides the simulation of the resources behavior and non-functional properties defined by the PyBPMN
extension. The eBPMN language allows users to simulate either a single process or a collaboration of
processes interacting with each other by use of MessageFlow elements.

Currently, eBPMN implements only a portion of the entire set of BPMN 2.0 elements, according to
the following constraints:

• Each Pool must include a Start event element (no implicit start allowed);
• Choreographies are not supported;
• Each FlowNode must have one incoming SequenceFlow and one outgoing SequenceFlow

(multiple flows require an explicit Gateway element);
• Complex Gateways are not currently supported.

The eBPMN language exploits the SimArch layered software architecture, which provides a framework
for transparently executing discrete-event simulations in either local or distributed simulation environments
(Gianni et al. 2008).

1444

Bocciarelli, D’Ambrogio, Giglio, and Paglia

4 MODELING AND SIMULATION TOOLCHAIN

An effective approach to bridge the gap between the process model and the simulation model is the one
based on model-driven techniques for the automated generation of the simulation code (Bocciarelli et al.
2014; Bocciarelli et al. 2014). Figure 3 shows the process (in BPMN format) that allows to automatically
obtain the simulation code from the initial BP definition, so to verify if the requirements set at specification
time can be satisfied. In case of requirements not satisfied, the process can be iterated by addressing
alternative scenarios in terms of process flow or resources involved in the BP.

Business
Process

Specification

BPMN to
PyBPMN M2M

Transf.

PyBPMN to
eBPMN M2T

Transf.

Business
Process

Simulation

Business
Process

Evaluation

Functional
Requirements

Non-Functional
Requirements

BPMN Model
Annotated

BPMN Model PyBPMN Model

eBPMN
Simulation

Code

Performance
and Reliability

Prediction

Business
Process

Annotation

Requirements
satisfied

Requirements
not satisfied

Figure 3: Process for model-driven BP evaluation.

In particular, the proposed approach goes through the following steps:

• Business Process Specification: the analyst specifies the BP according to the functional require-
ments. The result is a BPMN model;

• Business Process Annotation: the BPMN model is enriched with textual annotations to specify
non-functional requirements (workload, performance, reliability, and resources), thus obtaining an
annotated BPMN model;

• BPMN to PyBPMN Model-to-Model Transformation: the annotated BPMN model is automati-
cally transformed into the corresponding PyBPMN model;

• PyBPMN to eBPMN Model-to-Text Transformation: the PyBPMN model is automatically trans-
formed into the eBPMN simulation code;

• Business Process Simulation: the eBPMN simulation code is executed by the analyst, thus obtaining
a performance and reliability prediction of the BP behavior;

• Business Process Evaluation: the analyst compares the performance and reliability prediction
with the initial requirements to verify if they are satisfied.

Once requirements are satisfied, the BP model can be actually implemented, executed and monitored
considering the configuration, in terms of process flow and resources, specified for the simulation. Moreover,
the method can also be used to improve the behavior of an existing BP or to quickly adapt the BP to
environmental changes or performance downgrades.

4.1 Business Process Annotation

The original BPMN model is annotated by using TextAnnotation elements having a specific syntax,
in order to automatically obtain the PyBPMN model.

1445

Bocciarelli, D’Ambrogio, Giglio, and Paglia

A TextAnnotation that includes a valid PyBPMN syntax is said to be a PyAnnotation. Each
PyAnnotation contains one or more definitions (i.e., PyDefinition) that conform to the following
EBNF (Extended Backus-Naur Form) formal syntax (Scowen 1993):

〈PyDefinition〉 ::= 〈PyElement〉 ‘{’ 〈PyParamList〉 ‘}’

〈PyElement〉 ::= ‘<<PyDescriptor>>’
| ‘<<PyPerformer>>’
| ‘<<PyBroker>>’
| ‘<<PySubsystem>>’

〈PyParamList〉 ::= 〈String〉 ‘=’ 〈Value〉 (‘,’ 〈String〉 ‘=’ 〈Value〉)*

〈Value〉 ::= 〈Literal〉 | 〈ComplexValue〉 | 〈CollectionValue〉

〈Literal〉 ::= 〈String〉 | 〈Number〉

〈ComplexValue〉 ::= ‘(’ 〈String〉 ‘=’ 〈Literal〉 (‘,’ 〈String〉 ‘=’ 〈Literal〉)* ‘)’

〈CollectionValue〉 ::= ‘(’ 〈Literal〉 (‘,’ 〈Literal〉)* ‘)’

In order to clarify the use of the textual annotation used for the specification of the PyBPMN elements,
some example definitions are here provided.

To define a PyPerformer with name Perf 1 and a serviceTime of 350 ms, the following
textual annotation is used:

<<PyPerformer>> {
name = Perf_1,
serviceTime = (value=350, unit=ms)

}

The specification of the resources used by a BPMN task is carried out by using a PyDescriptor
element in a TextAnnotation associated to the BPMN task:

<<PyDescriptor>> {
resources = (Perf_1)

}

4.2 Model-to-Model Transformation

The automatic generation of the PyBPMN model is carried out by using a model-to-model transformation
(OMG 2019b), named BPMN to PyBPMN transformation, which takes a BPMN model as input and
generates a PyBPMN model as output.

The transformation exploits the textual annotations that conform to the PyBPMN syntax, in order to
generate the corresponding PyBPMN elements in the target model.

4.3 Model-to-Text Transformation

The simulation code is then automatically generated through a model-to-text transformation (OMG 2019c),
named PyBPMN to eBPMN, that takes a PyBPMN model as input and produces the corresponding
eBPMN simulation code as output.

For each element in the PyBPMN model, the transformation customizes a code snippet template with
the values of the properties that are specified in the PyBPMN model.

1446

Bocciarelli, D’Ambrogio, Giglio, and Paglia

4.4 Eclipse Plugins

The aforementioned transformations for the automatic generation of the PyBPMN model and the eBPMN
simulation code have been implemented as a set of Eclipse plugins, as follows (Eclipse Foundation 2019b):

• a plugin implementing the PyBPMN conceptual model;
• a plugin implementing the BPMN to PyBPMN model-to-model transformation;
• a plugin implementing the PyBPMN to eBPMN model-to-text transformation;
• a plugin implementing the Eclipse PyBPMN contextual menu.

The Eclipse platform also includes the BPMN modeler (Eclipse Foundation 2019a) and the simulation
engine, so to provide a complete toolchain that eases the production of the simulation code from the BP
model. When the user executes a right click on the icon of a BPMN model in the Eclipse workspace, the
PyBPMN contextual menu is shown as depicted in Figure 4. In the contextual menu, a sub-menu named
PyBPMN is available with two commands:

• BPMN to PyBPMN, to execute the model-to-model transformation on the selected BPMN model
to produce the corresponding PyBPMN model. The resulting PyBPMN model can be explored and
modified using the default tree editor;

• BPMN to eBPMN, to sequentially execute both the model-to-model and the model-to-text trans-
formations. This can be useful to generate the simulation code with a one click operation, without
the explicit generation of the intermediate PyBPMN model, as illustrated in Figure 5.

Figure 4: Contextual menu with the PyBPMN commands to apply the model transformations.

1447

Bocciarelli, D’Ambrogio, Giglio, and Paglia

The PyBPMN contextual menu is model-aware and only shows the transformations that can be effectively
applied on the selected model. Thus, if the user executes a right click on a PyBPMN model, the contextual
menu only shows the PyBPMN to eBPMN transformation.

Figure 5: eBPMN simulation code generated by the model-to-text transformation.

4.5 Model-Driven Toolchain

The Eclipse Modeling Project tools and the developed plugins can be assembled together thus providing
an integrated environment that can be used by the analyst to effectively design, simulate and evaluate the
business process.

The enacting platform for the presented toolchain is the Eclipse Modeling Framework (EMF), which
includes:

• the BPMN2 Modeler, to define BPMN models with textual annotations conforming to the PyBPMN
syntax;

• the contextual menu, to execute the BPMN to PyBPMN and the PyBPMN to eBPMN transformations;
• the eBPMN simulation engine, to execute the simulation code and evaluate the business process

behavior.

5 CASE STUDY

In this section, a simple case study is introduced in order to present the actual application of the proposed
BPMN-based modeling and simulation approach.

In the case study, each of the steps presented in Section 4 are followed and described in detail.

1448

Bocciarelli, D’Ambrogio, Giglio, and Paglia

5.1 Scenario Definition

The case study refers to an emergency attendance process inspired by the process used as running example
in the Bizagi Process Modeler user guide (Bizagi 2019), which is here briefly summarized.

The emergency attendance process begins with the reception of an emergency report by the call center
agent. The call center agent gathers all the information about the person affected by the emergency, along
with the symptoms and the patient address. The call center agent transmits the report to a nurse who
analyzes the report and classifies the emergency according to its severity:

• Green code: low severity, the patient can be easily treated;
• Yellow code: medium severity, the patient requires some special attention but can be treated at the

place of emergency;
• Red code: high severity, the patient must be taken to an hospital.

The kind of emergency response depends on the severity of the classification:

• Green code: the triage is assisted by a quick attention vehicle (QAV);
• Yellow code: the triage is assisted by a basic ambulance (BA);
• Red code: the triage is assisted by a fully equipped ambulance.

For green and yellow codes, the process is completed with the arrival at the place of the emergency.
For red codes, the fully equipped ambulance takes the patient to the nearest hospital. During the transfer
a nurse prepares the paperwork that is used by the receptionist at the hospital to admit the patient.

5.2 Business Process Specification

At the first step, the business analyst specifies the BP as a BPMN model identifying the main activities
and the participants in charge of their execution.

The business analyst identifies the logical relationships and order between activities, also specifying the
following probabilities of each alternative flow (e.g., based on statistical analysis on emergency reports):

• Red codes: 50%;
• Yellow codes: 30%;
• Green codes: 20%.

5.3 Business Process Annotation

At the second step, the BPMN model is enriched with textual annotations specified by use of the PyBPMN
syntax. For the sake of simplicity, this paper only addresses performance properties.

The business analyst identifies the quantities for the available resources, as shown in Table 1.
Then, the business analyst associates activities and resources, specifying the required amount of work

for each activity, as reported in Table 2.
Finally, the business analyst specifies the aforementioned information in the BPMN model as text

annotations that conform to the PyBPMN grammar.
The annotated BPMN model is depicted in Figure 6.

5.4 Model Transformations

The BPMN to PyBPMN model-to-model transformation takes as input the annotated BPMN model, as
produced by the analyst, to automatically generate the corresponding PyBPMN model.

Such transformation creates, in the target model, the PyBPMN elements that correspond to the text
annotations in the BPMN model.

1449

Bocciarelli, D’Ambrogio, Giglio, and Paglia

Table 1: Available quantity for resources involved in the emergency attendance process.

Resource Quantity

Call center agent 2
Nurse 3

Fully equipped ambulance 3
Quick attention vehicle 2

Basic ambulance 2
Hospital receptionist 2

Table 2: Processing times and resources for the activities performed in the emergency attendance process.

Activity
Processing time

Resource
[min]

Receive emergency report 4 Call center agent
Classify triage 5 Nurse

Manage patient entry 11 Nurse
Pick up patient 20 Fully equipped ambulance

Arrive at patient place QAV 7 Quick attention vehicle
Arrive at patient place BA 10 Basic ambulance

Authorize entry 4 Hospital receptionist

According to the model-driven toolchain introduced in Section 4.5, the PyBPMN to eBPMN model-
to-text transformation takes as input the obtained PyBPMN model to eventually generate the corresponding
eBPMN simulation code.

5.5 Business Process Simulation

At the simulation step, the eBPMN code generated in the previous step is executed to predict the behavior
of the BP.

The eBPMN simulation code is used to create a large number of process instances, execute these
instances step-by-step and collect information on process measures.

The business analyst can use such measures to predict the process performance and check if the initial
requirements are met by the considered process configuration in terms of activities and associated resources.

5.6 Business Process Evaluation

The analyst can also evaluate the process behavior under various workloads, in order to verify the BP
behavior for different input conditions. The results of this what-if analysis are illustrated in Figures 7 and
8, which depict the cycle times and resources utilization for red codes, yellow codes and green codes, as
well as the average process time, when the emergency report rate varies from 0.01 per minute (one report
every 100 minutes on average) to 0.2875 per minute (about one report every 3.48 minutes on average).

Finally, if the requirements are not satisfied or the what-if analysis suggests some modifications to
the process, the business analyst can evaluate alternative configurations by reusing the toolchain with a
different amount of resources.

1450

Bocciarelli, D’Ambrogio, Giglio, and Paglia
E

m
er

g
en

cy
 A

tt
en

d
an

c
e

C
al

l C
en

te
r

N
u

rs
e

B
as

ic
A

m
b

u
la

n
ce

Q
u

ic
k

A
tt

e
n

ti
o

n
V

eh
ic

le
H

o
sp

it
a

l
R

ec
ep

ti
o

n
is

t
F

u
lly

 E
q

u
ip

p
e

d

Receive
Emergency

Report

Classify
Triage

Manage
Patient Entry

Arrive At
Patient Place

BA
Yellow Code

Arrive At
Patient Place

QAV
Green Code

Authorize
Entry

Red Code

Pick Up
Patient

Yellow code

Green code

Red code

<<PyDescriptor>>{
resources=(Call_Center_Agent[4])}

<<PyDescriptor>>{
resources=(Nurse[5])}

<<PyDescriptor>>{
resources=(Nurse[11])}

<<PyDescriptor>>{
resources=(Full_Ambulance[20])}

<<PyDescriptor>>{
resources=(Quick_Attention_Vehicle[7])}

<<PyDescriptor>>{
resources=(Basic_Ambulance[10])}

<<PyDescriptor>>{
resources=(Receptionist[4])}

<<PyPerformer>>{
name=Call_Center_Agent,
units=2,
serviceTime=(value=1, unit=min)}

<<PyPerformer>>{
name=Nurse,
units=3,
serviceTime=(value=1, unit=min)}

<<PyPerformer>>{
name=Full_Ambulance,
units=3,
serviceTime=(value=1, unit=min)}

<<PyPerformer>>{
name=Receptionist,
units=2,
serviceTime=(value=1, unit=min)}

<<PyPerformer>>{
name=Quick_Attention_Vehicle,
units=2,
serviceTime=(value=1, unit=min)}

<<PyPerformer>>{
name=Basic_Ambulance,
units=2,
serviceTime=(value=1, unit=min)}

A
m

b
u

la
n

ce

Figure 6: Annotated BPMN model of the emergency attendance process.

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275
0

50

100

150

200

Emergency report inter-arrival rate [min−1]

Pr
oc

es
s

cy
cl

e
tim

e
[m

in
]

Average
Red code

Yellow code
Green code

Figure 7: Cycle times for the emergency attendance process.

1451

Bocciarelli, D’Ambrogio, Giglio, and Paglia

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275
0

20

40

60

80

100

Emergency report inter-arrival rate [min−1]

R
es

ou
rc

es
ut

ili
za

tio
n

Call center agent
Nurse

Fully equipped ambulance
Hospital receptionist

Quick attention vehicle
Basic ambulance

Figure 8: Resources utilization for the emergency attendance process.

6 CONCLUSIONS

This paper has presented a largely automated approach for BPMN-based business process simulation.
In order to carry out the simulation-based analysis of a given business process, the proposed approach
first annotates the BPMN model with what is necessary to make the model executable (i.e., performance
parameters, execution resources, and expected workload), and then automatically maps the annotated model
into simulation code ready to be executed.

In this respect, the paper has introduced the PyBPMN extension, for BPMN model annotation, and
the eBPMN domain-specific language, for specifying and executing the simulation code.

The proposed approach allows business analysts to reduce the effort and the know-how typically
required for using simulation-based analysis techniques, thanks to a lightweight extension mechanism and
to the automation layer introduced by model transformations. A toolchain has been described that enables
business analysts to easily and effectively design, simulate and evaluate their business processes.

The paper also includes an example application of the proposed approach to an emergency attendance
process, so to concretely illustrate the various, mostly automated, steps that enact BPMN-based business
process modeling and simulation.

REFERENCES
Bizagi 2019. Welcome to the Bizagi Modeler and Modeler Services documentation. http://help.bizagi.com/process-modeler/en,

accessed 24th April.
Bocciarelli, P., and A. D’Ambrogio. 2011a. “A BPMN Extension for Modeling Non Functional Properties of Business Processes”.

In Proceedings of the 2011 Spring Simulation Multi-Conference (Symposium on Theory of Modeling and Simulation,
DEVS-TMS), 160–168. San Diego, CA, USA: Society for Computer Simulation International.

Bocciarelli, P., and A. D’Ambrogio. 2011b. “Performability-Oriented Description and Analysis of Business Processes”. In
Business Process Modeling: Software Engineering, Analysis and Applications, edited by J. A. Beckmann, Chapter 1, 1–36.
Hauppauge, NY, USA: Nova Science Publisher.

Bocciarelli, P., and A. D’Ambrogio. 2014. “A Model-Driven Method for Enacting the Design-time QoS Analysis of Business
Processes”. Software & Systems Modeling 13(2):573–598.

Bocciarelli, P., A. D’Ambrogio, A. Giglio, E. Paglia, and D. Gianni. 2014. “A Transformation Approach to Enact the Design-Time
Simulation of BPMN Models”. In 2014 IEEE 23rd International WETICE Conference, edited by S. M. Reddy, 199–204.
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

1452

http://help.bizagi.com/process-modeler/en

Bocciarelli, D’Ambrogio, Giglio, and Paglia

Bocciarelli, P., A. D’Ambrogio, and E. Paglia. 2014. “A Language for Enabling Model-Driven Analysis of Business Processes”.
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development, edited by
L. Ferreira Pires, S. Hammoudi, J. Filipe, and R. Csar das Neves, MODELSWARD’14. Setbal, Portugal: SCITEPRESS -
Science and Technology Publications, Lda.

D’Ambrogio, A., E. Paglia, P. Bocciarelli, and A. Giglio. 2016. “Towards performance-oriented perfective evolution of BPMN
models”. In 6th International Workshop on Model-Driven Approaches for Simulation Engineering, edited by F. Barros,
X. Hu, H. Prahofer, and J. Denil, 15:1–15:8. San Diego, CA, USA: Society for Computer Simulation International.

Desel, J., and T. Erwin. 2000. “Modeling, Simulation and Analysis of Business Processes”. In Business Process Management,
Models, Techniques, and Empirical Studies, edited by W. M. P. van der Aalst, J. Desel, and A. Oberweis, 129–141. Berlin,
Heidelberg, Germany: Springer-Verlag.

Dumas, M., M. La Rosa, J. Mendling, and H. A. Reijers. 2013. Fundamentals of Business Process Management. Berlin,
Heidelberg, Germany: Springer-Verlag.

Eclipse Foundation 2019a. BPMN2 Modeler. https://www.eclipse.org/bpmn2-modeler, accessed 3rd May.
Eclipse Foundation 2019b. Eclipse Modeling Framework (EMF). https://eclipse.org/modeling/emf, accessed 3rd May.
Gianni, D., A. D’Ambrogio, and G. Iazeolla. 2008. “A layered architecture for the model-driven development of distributed

simulators”. In Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications,
Networks and Systems & workshops. Brussels, Belgium: ICST.

Hook, G. 2011. “Business Process Modeling and Simulation”. In Proceedings of the 2011 Winter Simulation Conference, edited
by S. Jain, R. Creasey, J. Himmelspach, K. White, and M. Fu, 773–778. Piscataway, New Jersey: IEEE.

Kamrani, F., R. Ayani, and A. Karimson. 2010. “Optimizing a Business Process Model by Using Simulation”. In IEEE Workshop
on Principles of Advanced and Distributed Simulation (PADS), 1–8. Atlanta, GA.

OASIS 2019. Web Services Business Process Execution Language (WS-BPEL) Version 2.0. http://docs.oasis-open.org/wsbpel/
2.0/OS/wsbpel-v2.0-OS.html, accessed 17th September.

OMG 2019a. Business Process Modeling Notation (BPMN), Version 2.0. https://www.omg.org/spec/BPMN/2.0, accessed 3rd
May.

OMG 2019b. Meta Object Facility (MOF) 2.0 Query/View/Transformation. https://www.omg.org/spec/QVT, accessed 17th
September.

OMG 2019c. MOF Model to Text Transformation Language. https://www.omg.org/spec/MOFM2T, accessed 3rd May.
Scowen, R. S. 1993. “Extended BNF–a generic base standard”. In Proceedings of the 1993 Software Engineering Standards

Symposium (SESS’93), 25–34. Los Alamitos, CA, USA: IEEE Computer Society.
van der Aalst, W. M. P. 2013. “Business Process Management: A Comprehensive Survey”. ISRN Software Engineering 2013:1–37.
van der Aalst, W. M. P., J. Nakatumba, A. Rozinat, and N. Russell. 2010. “Business Process Simulation: How to get it right?”.

In Handbook on Business Process Management, International Handbooks on Information Systems, edited by J. vom Brocke
and M. Rosemann, 317–342: Berlin, Heidelberg, Germany: Springer-Verlag.

Weske, M. 2012. Business Process Management: Concepts, Languages, Architectures. 2nd ed. Berlin, Heidelberg, Germany:
Springer-Verlag.

AUTHOR BIOGRAPHIES
PAOLO BOCCIARELLI is a postdoc researcher at the University of Rome Tor Vergata (Italy). His research addresses the
application of M&S and model-driven development to software and systems engineering and business process management.
His email address is paolo.bocciarelli@uniroma2.it.

ANDREA D’AMBROGIO is Associate Professor at the Dept. of Enterprise Engineering of the University of Roma Tor Vergata
(Italy). His research interests are in the fields of model-driven software engineering, dependability engineering, distributed and
web-based simulation. His email address is dambro@uniroma2.it.

ANDREA GIGLIO is a postdoc researcher at the University of Rome Tor Vergata (Italy). His research interests include
model-driven system and software engineering and business process management. His email address is andrea.giglio@uniroma2.it.

EMILIANO PAGLIA is a postdoc researcher at the University of Rome Tor Vergata (Italy). His research interests include
model-driven engineering and business process modeling and analysis. His email address is emiliano.paglia@uniroma2.it.

1453

https://www.eclipse.org/bpmn2-modeler
https://eclipse.org/modeling/emf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
https://www.omg.org/spec/BPMN/2.0
https://www.omg.org/spec/QVT
https://www.omg.org/spec/MOFM2T
mailto://paolo.bocciarelli@uniroma2.it
mailto://dambro@uniroma2.it
mailto://andrea.giglio@uniroma2.it
mailto://emiliano.paglia@uniroma2.it

	INTRODUCTION
	BUSINESS PROCESS MODELING
	BPMN
	PyBPMN
	Performance Characterization
	Reliability Characterization
	Resource Characterization

	BUSINESS PROCESS SIMULATION
	eBPMN

	MODELING AND SIMULATION TOOLCHAIN
	Business Process Annotation
	Model-to-Model Transformation
	Model-to-Text Transformation
	Eclipse Plugins
	Model-Driven Toolchain

	CASE STUDY
	Scenario Definition
	Business Process Specification
	Business Process Annotation
	Model Transformations
	Business Process Simulation
	Business Process Evaluation

	CONCLUSIONS

