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ABSTRACT

Schelling’s social segregation model has been extensively studied over the years. A major implication of
the model is that individual preferences of similarity lead to a collective segregation behavior. Schelling
used Agent-Based Modeling (ABM) with uni-dimensional agents. In reality, people are multidimensional.
This raises the question of whether multi-dimensionality can boost stability or reduce segregation in society.
In this paper, we first adopt ABM to reconstruct Schelling’s original model and discuss its convergence
behaviors under different threshold levels. Then, we extend Schelling’s model with multidimensional
agents and investigate convergence behaviors of the model. Results suggest that if agents have high levels
of demand for identical neighbors, the society might become less stable or even chaotic. Also, several
experiments suggest that multidimensional agents are able to form a stable society that is not segregated,
if agents prefer to stay adjacent to not only “identical” but also “similar” neighbors.

1 INTRODUCTION

Thomas Schelling developed a seminal agent-based model (ABM) in the 1970’s (Schelling 1969; Schelling
1971) for which the result suggests that segregation in a society can form when individuals only adopt
certain preferences of residing closer to those possessing similar attributes, but do not feel negatively towards
those who are different. This model is enormously influential because the result provides with a simple
but fundamental explanation of social segregation. Schelling modeled individuals as agents with only one
attribute of two possible values (e.g. o and +), distributing within some geometric shape that mimics the
area of a city, in which some grids are occupied by agents and some are vacant so that agents can relocate.
An agent is considered to be “satisfied” if the number of neighbors that are identical to the agent is above
certain threshold. Unsatisfied agents are given the opportunity to relocate within the area of residence, to
the nearest vacant positions that satisfy their needs. At each iteration, all unsatisfied agents can move once.
Then, some previously satisfied agents may become unsatisfied; some previously unsatisfied agents will
become satisfied. The model then goes to the next period, where currently unsatisfied agents are selected
and given the chance to move again. The model runs in iterations until an equilibrium is reached, i.e, all
agents are satisfied and no one is needed to relocate.

Many have studied Schelling’s social segregation model and its variants. Clark (1991) evaluated
Schelling’s model using data collected through telephone interview conducted in several major cities in the
U.S.. Pancs and Vriend (2007) analyzed Schelling’s model using game theory approaches and came to the
conclusion that social segregation is the result of best-responses of agents. Clark and Fossett (2008) studied
Schelling’s model under multicultural context, concluding a similar result as the original Schelling’s model.
However, their model adopted same uni-dimensional agent, where the only dimension is made possible
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to take multiple different values. Grauwin et al. (2012) utilized an analytical approach that proved the
existence of a potential function of global configuration that is maximized under the stationary state. They
also showed three analytic result: (i) that linear utility functions are the only ones that maximize collective
social utilities; (ii) Schelling’s original utility function boosts segregation at the expense of collective utility;
(iii) the model converge to perfect segregation if agents have strict preference to mixed neighborhood and
wish to stay in majority. Spaiser et al. (2018) applied Schelling’s model to a complex dynamic system to
the study of segregation in a school in Stockholm during 1990 and 2002. Thresholds regarding the school’s
ethnic composition, school quality and parents’ income are established to prevent segregation. Paolillo and
Lorenz (2018) considered the impact of shared tolerance towards ethnicity diversity, and extend Schelling’s
model by replacing two groups of agents with value-oriented and ethnicity-oriented. Results suggest that
value-oriented agents help to reduce total segregation and strong ethnic homophily exacerbates overall
segregation.

Several recent studies combined Schelling’s social segregation model with Axelrod’s culture dissem-
ination model (Axelrod 1997), which is another influential agent-based model that studied the formation
of communities in society. Differing from Schelling’s model, Axelrod gave agents multiple features as
dimensions of culture and each feature takes value from a set of traits. Agents in this model cannot
move, but are able to influence their neighbors by their own culture traits. Gracia-Lazaro et al. (2009)
combined Axelrod’s cultural dissemination model with Schelling’s social segregation model by introducing
empty sites and allowing movements of agents to those sites if the infolerance of an agent exceed certain
threshold. For small densities of sites, they showed that agents converge to a uni-cultural society quickly,
but for larger densities of sites, communities of various cultures form because isolated settlements can
no longer transmit cultural influences to each other. Neal and Neal (2014) focused more on interpersonal
relationships and social networks based on the Schelling model with people of only two types. They
explored cultural diversity and the sense of community of people in a society and defined the probability
that two people became friends on homophily and proximity, i.e., similarity of two people and the distance
between them. The result demonstrates a negative relationship between social diversity and the sense of
community. Stivala et al. (2016) refuted such negative relationship by integrating Axelrod’s model with
Schelling’s model. Specifically, they introduced multiple features for a single agent and allowed mutable
features. They showed that under sufficiently large cultural diversity and mutable agents features, diversity
and sense of community can co-exist.

In this paper, we partly combine Axelrod’s model with Schelling’s; that is, we replace uni-dimensional
agents in the original Schelling model with multi-dimensional agents and define new parameters for the
extended model so that other features of the model can be studied. We primarily focus on two aspects:
social stability and social segregation. Here, we use the convergence property of a model to represent
stability. If a model converges to some steady state, we say the model suggests a stable society; otherwise
the society is chaotic. The significance of social segregation can be directly observed from the model
output: whether agents with the same attributes are blocked together, or are they all mixed with other types
of agents. In Section 2, we define Schelling’s original model as well as our extended model using formal
mathematical notations. In Section 3, we show simulation results of Schelling’s model and our extended
model. We also discuss convergence behaviors and segregation patterns of the two model. In Section 4,
we summarize our work in this paper, draw conclusions and state future prospects of this work as well as
limitations.

2 METHODS
2.1 Schelling’s Model

We reconstruct Schelling’s original model using formal mathematical notations, while generalizing several
concepts so that the model can be easily extended. Consider a society of population M on an L X W area,
where population density can be computed as M /(L x W). Each agent i,i = 1,2,...,M is assumed to have a
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set of K attributes, denoted by A; := {ay,as,...,ax }, K € NT, and each attribute a; can take different values
as ar € {1,2,...,qx}, where k = 1,2,..,K and g, denotes the maximal number of options for each attribute.
We assume that g, can take different values for different attributes a;. In Schelling’s model, agents are
uni-dimensional, with only one attribute. In this case K =1 and A; = {a;}. Schelling also assumed that
two types of agents are present, which is interpreted as a; € {1,2}.

Initially, the population of M agents distribute among L x W area randomly, with even number of agents
for attribute a; = 1 and a; = 2 (a; is the only attribute we have in this model). We use N (i) to denote the
set of neighbors of agent i. An agents decides where it it satisfied with current location of residence based
on how many identical neighbors it has, which can be expressed as 1 — 5A,.A_/., where 5A,-A, is the Hamming
distance between A; and A}, i.e., the number of different items in two lists. The level of satisfaction can
be modeled by an utility function

. 1 if6>r;
u(i) = { (1)

0 otherwise,
where

:ZjeN(i)(l - 6AiAj) 1 ZjeN(i) 5AiA,-
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is the fraction of neighbors identical to agent i, with respect to all the neighbors of i and 7 is the threshold.
In Schelling (1971), the threshold 7 is set to be 50%. If the utility function u(i) = 1, agent i is satisfied
with its current location; if u(i) = 0, under some probability

pm()ve(i> =1- u(z), 3)

agent i move to the nearest location in the area that satisfies its demand. The same probability function
applies when agent i is satisfied. In such case pyore =1 —u(i) =1—1=0.

2.2 Schelling’s Model Extended

Schelling’s original model is an oversimplified version of relocation behaviors in society, where two groups
of people decides where to live solely on the neighborhood. However, in reality, different situations might
lead to violations of these assumptions. For example, some people may have a different preference level
than others regarding identical neighbors; some may not consider neighborhood to be the only deciding
factor for relocation and most people in society have multi-dimensional attributes. These unaddressed
issues of the original model offer opportunities to extensions that capture more realistic features of how
communities are formed during relocation. In this section, we extend the original model so that it is capable
of incorporating these new features.

People in society are rarely uni-dimensional. When interacting with each other, people evaluate different
aspects to decide whether they have something in common, or how “similar” they are. Under such scenario,
the model assumes that for each agent i, there is a set of attributes A; = {ay,as, ...ax }, where K > 1 and for
each attribute ay, there’s more than two value options, a; € {1,2,...,qx }, where g > 2. If this is the case, we
will have in total HkK: 1 9% types of agents, each with a unique attribute vector. With the expansion of agent
types, agents will find it more difficult to be surrounded by others that are “identical” to themselves. This
is analogous to what is observed in real life: people rarely find neighbors or friends that have everything
in common with them. Rather, they are satisfied when surrounding with “similar” people, i.e., people
with whom they share “something”. To incorporate this idea into our model, we use Hamming distance
(Hamming 1950) of two attribute vector to model the “similarity” between agents. For two agents i and J,
the Hamming distance 84,4; shows how many attributes that they have are different. We use this to define
similarity of agents i and j to be
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Here, different levels of threshold can be applied to reflect how people value similarity when interacting
with others. We denote such threshold by 7, and call it the similarity threshold. For an agent i, the set
of similar neighbors is S; := {j: j € N(i),0(i,j) > 1,}. We call all neighbors j in the set S; effective
neighbors of agent i, i.e., neighbors satisfy agent i’s requirements. We assume that the utility function used
in Schelling’s original model still applies, which gives

(i) = {1 if 6 > 1, )

0 otherwise,
where 6; = | Il/s(il.l)‘ and 7, is the utility threshold. When 6; > 7,,, agent i is satisfied with its current neighborhood

and does not plan to move. When 6; < 7,, agent i is not satisfied and may move to another location with
probability ppueve(i) = 1 — u(i), which is the same function as Equation 3.

3 ANALYSIS

The agent-based models were built on AnyLogic (Personal Learning Edition, version 8.3.2), in reference to
AnyLogic’s Schelling Segregation model. In our model, the L x W residential area is built by the “Canvas”
entity in AnyLogic. For connectivity, we used Moore Neighborhood, i.e., each agent has eight neighbors.
Length and width of this canvas is set to L = 150 and W = 125, which offers 18,750 empty “houses”.
Agents are built based on the “Agent” entity in AnyLogic and are distributed randomly over the canvas
in the initialization of each simulation. Attributes and colors are assigned to agents as their “parameters”.
Values for each attribute is assumed to distribute uniformly among all agents. Before presenting the result,
convergence and steady state should be defined. A steady state of the model is a state where the probability
of moving equals zero for every agent, i.e., none of the agents is relocating and all agents are satisfied with
their current neighborhood. We say that the model converges if the model can reach a steady state in a
number of iterations. Note that if a model reaches the steady state, it will there for all following iterations
unless parameters are changed. However, true convergence of a model is hard to prove without theoretical
analysis and it is impractical to run the model indefinitely. Thus, we say the model does not converge in
time limit, if after a period of time, the model cannot reach the aforementioned steady state.

In each of the experiments, we use a simple but informative indicator to measure how segregated a
society can be. Specifically, we add up the number of identical neighbors of all agents. Suppose for an
agent i, the number of identical neighbor is N/, then the total segregation level of a society is measured
by Z{-‘ilNi’ . In what follows, this indicator is applied to Schelling’s model as well as extended models,
providing a quantitative measurement of social segregation.

3.1 The Original Model

The major result of Schelling’s model is well-known: although no one has an explicit negative feeling
towards others that are different, a segregated society still forms when everyone is finally satisfied. In
this section, we focus on the convergence analysis of Schelling’s model. By using the same setting as
Schelling’s model, that is, 50% of the similarity threshold, we observed the same pattern (Figure 1a), in
an area of population density 80% (15000 agents). Model time limit is set to be 1000 iterations, i.e., we
stop the model if it cannot reach steady states within 1000 iterations. This limit is decided by running the
model multiple times using different random seeds. This limit is chosen among a set of predetermined
limits of 100, 300, 500, 1000, 5000, 10000. Under all limits larger than 1000 iteration, convergence of the
model has similar behavior, so that 1000 is chosen as the limit.

Boundaries of segregated communities change when model parameters change. Figure 1 shows the result
of three different thresholds, form 50% to 70%. Boundaries between two classes of agents become clearer,
suggesting an escalation of segregation behaviors. Under 50% threshold, agents desire four identical
neighbors, which is easily satisfied. With the threshold increasing, say, to 70%, agents are no longer
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(a) T=50% (b) T=60% (c) T=T70%

Figure 1: Illustration results of the original Schelling model, using a fixed seed. (a) T = 50%, the model
converge into a steady state, with segregated patterns; boundaries are blurry. (b) T = 60%, the model
converge into a steady state, with segregated patterns; boundaries become clear. (¢) T = 70%, the model
converge into a steady state, with segregated patterns; boundaries are most clear.

indifferent about “no neighbor” and “different neighbor”. For example, if some agent has 4 identical
neighbor and 4 adjacent areas are left blank, the agent is satisfied. Now, if two different neighbors move
into two of the blank areas, the percentage 6 drops from 100% to 66.7%, which is below the threshold
70% and the agent becomes unsatisfied.
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Figure 2: Results of 100 runs using different random seeds. Mean value of 100 runs are calculated and
plotted in the figure. (a) shows the changing of convergence iterations. When the threshold is 80% or 90%,
the model does not converge within 1000 iterations. (b) shows the changing of social segregation level
when the model is converged or reaches maximum iteration limit (1000 iterations). When the model does
not converge within 1000 iterations, segregation levels are still recorded. Although the segregation level
is low, many agents are unsatisfied and the society is highly unstable.

To evaluate the model and account for its stochastic nature, we ran 100 experiment per instance to
collect data regarding model convergence and segregation degree. Figure 2a shows how many iterations
it takes for models with thresholds ranging from 10% to 90% to converge. In the graph, lines represents
the changing in mean values of 100 instances. Confidence intervals are too narrow to see if plotted on the
figure, thus omitted. A clear increasing pattern can be observed. When agents have a higher similarity
threshold, their preference towards identical neighbors alters their indifference in such a way that they
prefer no neighbors rather than neighbors with different attributes. When the threshold is high enough, say
80%, no one can be satisfied with its current location, because everyone prefers identical neighbors over
no neighbor. Figure 2b shows how social segregation levels change with thresholds. Social segregation
level increases as threshold increases. When the threshold is high, the model does not converge within the
time limit and agents keep moving to other locations, which renders a lower segregation level.
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3.2 The Extended Model

Table 1: Agent types and corresponding colors for 2-attribute model.

Agent attributes  Color | Agent attributes  Color
(ai=1,ap=1) Green | (a; =1,a0=2) Yellow
(ag=1,ap=1) Red | (aj=1,ap=2) Blue

Table 2: Agent types and corresponding colors for 3-attribute model.

Agent attributes Color Agent attributes Color
(ag=1,ap=1,a3=1) Green | (aj =1,ap=1,a3=2) Yellow
(ar=1,ap=2,a3=1) Red (ai=1,ap=2,a3=2) Blue
(ay =2,ap=1,a3=1) Orange | (a; =2,a =1,a3 =2) Purple
(a1 =2,ap=2,a3=1) Grey | (a1 =2,ap=2,a3=2) Cyan

In order to analyze properties of the extended model but retain the convenience of visual observation,
we build two basic models with 2 and 3 attributes each, where in both models the attributes draw values
from set {1,2}. This gives 4 types of agents in the 2-attributes model and 8 types of agents in the 3-attributes
model. Note that the model can be easily extended to have more attributes and agent types. In this work,
2 and 3 attributes are adequate for several important results and smaller scale models are more suitable for
direct observation. Table 1 and 2 shows the colors and corresponding attributes for each type for 2-attribute
and 3-attribute model, respectively. In the following analysis, illustrative figures are plotted using fixed
random seeds so that they are repeatable. Indicators such as convergence iterations and segregation levels
are evaluated on 100 runs of each model with fixed parameters but different random seeds.

3.2.1 Convergence

Firstly, we investigate the convergence behavior of the extended model. In this section, different time limits
are imposed to different models. Time limits are chosen in a way similar to that of Schelling’s original
model. For 2-attribute model, we use 1000 iterations as the time limit, whereas for the 3-attribute model,
we generally use 2000 iterations, unless otherwise specified.

To find what impact the utility threshold 7, could have on convergence, we set 7, to be 100%, i.e., a
neighbor of an agent is effective if all their attributes are the same, for both 2-attributes and 3-attributes
model, and simulate on different 7,,. Figure 3 shows the changing of iterations of different 7, for 2-attribute
and 3-attribute model. To account for the stochastic nature of the model, we also ran each instance 100
times. Mean of the 100 runs are calculated and plotted on the figure. As before, the scale of confidence
intervals are too small compared to the scale of maximal iteration and are omitted in figure. When 7,
is low, both 2-attribute and 3-attribute models converge quickly. As 7, increases, models takes longer to
converge. When 7, becomes high enough, say 60%, the models do not converge in time limit.

However, for several cases, not converging in time limit does not necessarily mean that model does not
converge at all. For example, Figure 7c shows converged states of the model when 7, is 60%. To obtain this
result, utility threshold is raised twice when the model reaches a steady state for smaller thresholds. Firstly,
the model is run under 7, = 50%, until it converges. Figure 7b demonstrate the converged state of this
instance using fixed random seed. Then, using the converged state as an initial state, we increase the utility
threshold 7, to 55%. At this moment, some of the agents at the edges of color blocks becomes unsatisfied
and start relocation. These agents represents a small portion of the entire agent population, so that it is
easier to find ideal neighborhood for them under a higher utility threshold, than the entire population. This
explains why the model converged quickly for 7, = 55%, as Figure 7b. Lastly, we increase 7, to 60%,
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Figure 3: Iterations it took for models to converge. Iteration changes with the utility threshold t,, which
is analogous to the threshold in Schelling’s original model. In the figure, means are shown of 100 runs
using different random seeds. Confidence intervals are too narrow to see if plotted in the figure, so they
are omitted. (a) shows the changing of iterations of 2-attribute models. When the threshold is above 60%,
the model does not converge within 1000 iterations. (b) shows the changing of iterations of 3-attribute
models. When the threshold is above 60%, the model does not converge within 3000 iterations.

(a) 2 attributes, 7, = 50% (b) 1, increased to 55% (c) 7, increased to 60%

Figure 4: Illustrative results of the steady state of 2-attribute models, where 7, = 100% and population
density is 80%. Boundaries between communities become more clear as T, increases.

using the converged state of the last model (7, = 55%) as the initial state. The model converges within
several iteration (shown in Figure 7c).

Decreasing population density accelerates the convergence process under a high value of 7,. Mean
value of convergence iterations of 100 replications for each instance were recorded and plotted in Figure
5, for 2-attribute and 3-attribute models. Population density changes from 20% to 80%. Surprisingly, the
2-attribute model shows a “U” shaped curve as population density increases. When population is quite
scarce, although there are more vacant locations, it appears that agents are taking even longer to find a
suitable neighborhood, because of a decrease in the number of identical agents. However, for the 3-attribute
model, since we have eight classes of agents rather than four classes in the 2—attribute models, convergence
iterations increases as population density goes up, with out the “U” shaped behavior. Extra vacant locations
give unsatisfied agents more space to formulate larger color blocks before jumping to other areas.

When we relax the preference of agents by reducing similarity thresholds, convergence rates change.
For 2-attribute model, 7; ranging from 0% to 50% suggests exactly the same thing: if two agents has only
one out of two identical attributes, they consider each other similar; 7, from 50% to 100% suggests both
attributes should be identical for two agents to consider each other similar. For 3-attribute model, the ranges
are 0%-33.33%, 33.33%-66.67% and 66.67%-100%. Thus, we only choose two values (25%, 75%) of T,
for 2-attribute model and three value (25%, 50%, 75%) for 3-attribute model. Table 3 shows mean and
confidence interval (CI) of convergence iterations summarized from 100 runs per instance. Utility threshold
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Figure 5: Iterations it took for models to converge. Population density changes form 20% to 80%, with
10% step increase. For 2-attribute models, 7, is set to be 60% and 7 is set to be 100%. To acquire faster
convergence, we set T, to be 50% and 7, to be 100% for 3-attribute models.

Table 3: A comparison of convergence iterations of 2-attribute and 3-attribute models, where population
density is 80%, 7, = 50% and 7, changes.

2-attribute models 3-attribute model
Ty Mean Iter. CI Iter. Ty Mean Iter. CI Iter.
25% 6.39 (6.23, 6.55) 25% 3.20 (3.12, 3.28)
75% 69.03 (67.85, 70.21) 50% 19.62 (19.03, 20.21)

- - - 75%  1616.48  (1576.21, 1656.75)

is set to be 50% for all instances and population density is 80%. Models with lower similarity thresholds
converge faster. Under a low similarity threshold, agents have more similar neighbors. For example, in the
3-attribute model with 7, = 100%, agents with attributes {a; = 2,a, = 1,a3 = 1} would only consider the
exact same type of agents to be similar. However, if 7, = 50%, 2 out of 3 same attributes makes a similar
neighbor, suggesting 4 types of agents, with attributes {a; =2,a, = 1,a3 = 1}, {a1 = 2,a2 = 1,a3 =2},
{a1 =2,ap =2,a3 =1} or {a; = 1,ap = 1,a3 = 1}. This expanded pool of similar neighbors makes it
easier for agents to find a satisfying neighborhood. Thus the overall convergence rate drops dramatically.

3.2.2 Segregation Patterns

In this section, we investigate how segregation patterns changes if model parameters are tuned. Firstly, we
fix similarity threshold 7, to be 100% and look at model behaviors when 7, and population density varies.
When 7, = 100%, segregation patterns appears in steady states of the model. Then, we let 7, change. For
lower similarity thresholds, we observed non-segregated society, i.e., agents no long stick together according
to identical colors, rather, agents with different colors lives next to each other and remain satisfied.

We first look at how segregation level changes with utility threshold 7,. We calculate segregation
level of a society in the same way as in Schelling’s original model. The number of identical neighbors of
every agent in the canvas is added up to represent social segregation level. Figure 6 shows the changing
in segregation levels with utility thresholds increasing. For both 2-attribute and 3-attribute model, social
segregation becomes more severe under higher 7,. Agents have strict preferences regarding neighborhood
choices under high thresholds, so that identical neighbors are more prone to stay together, causing the
segregation level to go up. In the figure, mean values were recorded and plotted in the figure for 100 runs.
Confidence intervals are also omitted because they are not significant enough compared to the scale of
change of segregation levels in the figure.
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Figure 6: Segregation levels when models are converged into steady states. Segregation levels changes
with the utility threshold 7,. In the figure, means are shown of 100 runs using different random seeds.
(a) and (b) shows the changing of segregation levels of 2-attribute and 3-attribute models, respectively.
When the threshold is above 60%, models do not converge within time limit, but the segregation level is
still recorded. Although the segregation level is low, many agents are unsatisfied and the society is highly
unstable.

(a) 2 attributes, 7, = 50% (b) 7, increased to 55% (c) 1, increased to 60%

Figure 7: Illustration of steady states of 3-attribute model. 7, = 100% and population density is 80%.

Similar to what was observed for Schelling’s original model, in Figure 7, boundaries of the steady state
of models with 2 attributes and 3 attribute becomes more clear as utility threshold 7, increases, due to a
limitation of neighbors one agent can have. When 7, = 50%, color blocks of the converged model stay
adjacent to each other, without any gap between them. With a slight increase of the threshold, an agent
desires more to have no neighbors than having different neighbors. So a few agents adjacent to a different
color block leaves and a gap gradually forms. When 7, is high enough, say 60%, a clear white boundary
can be observed between all color blocks. From the last section, in Figure 4, similar behaviors can also be
observed from the 2-attribute models. Visually, with higher utility threshold, segregation becomes more
severe.

With scarce population density, the model tends to converge into smaller color blocks (communities).
Figure 9 demonstrates steady states of 3-attribute models when 7, = 50%, 7, = 100% and population density
ranges from 70% to 40%. We can still observe segregated communities, but as population density decreases,
community blocks become smaller in size. A lower population density leaves more locations blank, where
unsatisfied agents can stay with few or no neighbors and become satisfied. Thus more communities are
formulated centering around those isolated agents. With more communities, each community becomes
smaller in size. These communities absorb new members in parallel, accelerating the overall convergence
speed.
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(a) Population density (b) Population density (¢) Population density (d) Population density
70%. 60%. 50%. 40%.

Figure 8: An illustrative case of 3-attribute model, where 7, = 50%, 7, = 100% and population density
changing form 70% to 40% with 10% interval. (a) to (d) shows that community forms into smaller blocks
as population density decreases.

(a) (b) (©) (d)

Figure 9: An illustrative case of how communities disassemble if a high utility threshold 7, is imposed. In
this case, 7, = 50% at the beginning and is increased to 60%. 7, = 100% and population density is 100%.
(a) to (d) shows that communities gradually disassembles.

Interestingly, the model also interprets how a society turns from order into chaos. Consider a stable
society where everyone is satisfied with its current neighborhood, as Figure 10a shows, where 7, = 50%,
T, = 100%, with population density 80%. Now, for some reason, agents become more demanding on their
neighborhood and asks for more similar neighbors than before. Suddenly the utility threshold is raised to
60%. Firstly, agents at the edge of communities begins to move, because they are more likely to be closer
to other classes of agents (Figure 10b). With a high population density of 80%, the moving agents are
having a difficult time finding suitable neighborhoods and relocate adjacent to dissimilar agents, causing
other agents to leave. Thus communities shrink as more and more agents start to relocate (Figure 9c).
Finally no one is satisfied and the entire society turns into chaos (Figure 9).

Table 4: A comparison of segregation level of 2-attribute and 3-attribute models, where population density
is 80%, 1, = 50% and 7, changes.

2-attribute models 3-attribute model
Ty Mean Iter. CI Iter. T, Mean Iter. CI Iter.
25% 25730.74 (25686.05, 25775.43) 25% 11962.64 (11935.25, 11990.03)
75% 91891.78 (91829.31, 91954.25) 50% 22134.58 (22099.77, 22169.39)
- - - 75% 104859.92 (103641.17, 106078.67)

However, things starts to change when we change similarity threshold 7, for agents. Table 4 summarizes
segregation levels of 2-attribute and 3-attribute models when 7, = 50%, at 80% population density. We
let 7, = 50% so that all models can converge into steady states and the segregation levels are comparable.
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Obviously, as we decrease the similarity threshold, segregation level of converged societies drops significantly,
for both 2-attribute and 3-attribute model. This suggests that agents are more open to neighbors that are
not identical to them.

(a) 2-attribute model (b) 3-attribute model

Figure 10: A demonstration of non-segregated societies. 2-attribute and 3-attribute model is shown in
(a) and (b), respectively. For 2-attribute model 7, = 80%, 7, = 25% and population density is 60%. For
3-attribute model 7, = 70%, T, = 50% and population density is 60%.

Figure 10 demonstrates non-segregated societies for 2-attribute and 3-attribute model. A fixed seed was
used to generate this figure. For 2-attribute model, 7, = 80%, T, = 25% and population density is 60%; for
3-attribute model, 7, = 70%, T, = 50% and population density is 60%. High utility thresholds were used to
guarantee tighter formation of smaller communities. The figures show that although agents still form into
communities, each community is no longer composed of same classes of agents: agents with various colors
appear in the same community and all are satisfied with the current neighborhood. The reason behind a
non-segregated community pattern and low segregation level resembles that of a faster convergence rate
for low similarity threshold models. As we discussed before, an expanded agent pool enlarges the choices
of an agent may have on its neighbors. Agents are no longer asking for the exact same type of neighbors
as itself, rather, it accepts other types of agent, as long as them have some attributes in common.

4 CONCLUSION AND DISCUSSION

In this paper, we have revisited Thomas Schelling’s social segregation model and extend it by replacing
the original uni-dimensional agents with multi-dimensional agents. Two types of threshold are defined for
the multi-dimensional agents models. The similarity threshold represents the percentage of attributes two
agents should have in common to make them similar and the utility threshold represents the percentage of
similar neighbors an agent desire to have in its neighborhood.

As a special case of the proposed extended model, the results of Schelling’s original model are similar
to what was reported in Schelling (1969) and Schelling (1971), where segregated communities are observed
in the stable stage, with a moderate threshold. Further, we investigate the impact of the threshold to
the model’s convergence behavior. A high threshold prolongs the time in which the model reaches the
stable state; or even prevents it from converging. This implies that a society where individuals have high
homophily preference is prone to become unstable, because most people in such society are “perfectionist”,
that even a small violation in the neighborhood demography structure can render them unhappy. With a
high similarity threshold and a moderate utility threshold, the multi-attributes models converges to a stable
state and showed similar segregated result as the original model. However, when we lower the similarity
threshold, the model still converges but with non-segregated community patterns. Such results suggest that
a society where people are viewed as multi-dimensional beings is more likely to become stable, even when
individual homophily preferences are high, as long as people are happy to accept partial differences from
their neighbors and focus more on common interests.
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