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ABSTRACT 

Hybrid simulations can take many forms, often connecting a diverse range of hardware and software 

components with heterogeneous data sets.  The scale of examples is also diverse with both the high-
performance computing community using high-performance data analytics (HPDA) to the synthesis of 
software libraries or packages on a single machine.  Hybrid simulation configuration and output analysis is 
often akin to analytics with a range of dashboards, machine learning, data aggregations and graphical 
representation.  Underpinning the visual elements are hardware, software and data architectures that execute 
hybrid simulation code.  These are wide ranging with few generalized blueprints, methods or patterns of 

development.  This panel will discuss a range of hybrid simulation development approaches and endeavor 
to uncover possible strategies for supporting the development and coupling of hybrid simulations.   

1 INTRODUCTION 

The ability to analyze an ever growing sea of data is clearly important in many domain islands, from 
financial analysis and subsequent trading to migrant movement analysis and humanitarian response.  The 
computational capability that can be used to analyze this ‘big’-data has also facilitated the level at which 

this analysis can take place.  Simulations are now more likely to operate at near realistic levels of 
representation and generate vast amounts of data.  Analytics is a term that is widely used to describe the 
process of data analysis, with Davenport (2006) describing a process of adapting systems that produce data, 
making data available, selecting analytical approaches and deploying architectures to operationalize this 
process. Lycett terms this new data-centric approach as ‘datafication’ and highlights a number of challenges 
including the manner in which data is conceptualized, analyzed and visualized. Here we extend 

‘datafication’ challenges to include coupling and the normalization of consumed and generated data. 
Simulation is also able to respond in part to these challenges and also offer causation and sensitivity 
analysis. Hybrid simulation typically applies a number of techniques in the model implementation phase of 
a simulation study in order to gain further insights (Mustafee and Powell 2018).  These insights may emerge 
from the use or generation of additional input or output data and additional analytical perspectives.  Figure 
1 positions this operationalization of hybrid simulation as a number of models are implemented, integrated 
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and verified.  Importantly, the integration also requires a robust coupling strategy and design in order to 
manage the complex operation. 

 

 
 
 
 
 
 

 
 
 

 
 
 

 
 
 
 

Figure 1: Stages of a hybrid simulation study - adapted from Mustafee and Power (2018). 
 

Integration and coupling of simulation models is particularly complex and covers a varied number of 
patterns. Five popular approaches include: 1) Semantic integration, 2) Multi-scale integration, 3) multi-
paradigm integration, 4) Multi-platform integration and 5) Multi-processing integration (including 
parallelization).  Semantic integration provides the underpinning of simulation models with common or 
related conceptual language. Alowayyed et al. (2017) highlighted computational challenges when coupling 
across a range of scales that include near realistic representations.  Multi-paradigm is more typical in the 

hybrid community, where a number of techniques (e.g. System Dynamics and Discrete Event Simulations) 
are applied in model implementation phase of a simulation study in order to gain further insights (Mustafee 
and Powell 2018). Multi-platform connect across hardware or software platforms (typically between 
commercial software packages).  Finally, multi-processing coupling covers both parametric studies with 
looser coupling and MPI style tight coupling. 

Implementation(s) is the translation from more abstract conceptual models into computer executable 

models - enabling data analysts or scientists to experiment with different perspectives of the problem in a 
dynamical way (Eldabi et al. 2018). The focus of this panel is on this translation from both process and 
resulting simulation model perspectives. Eldabi et al. (2018) previously examined: 1) Commercial 
packages, 2) programming languages, 3) model integration process and 4) model input sources.  Model 
integration was categorized from more manual techniques through to the tools and programming interfaces.  
It is this integration process that underpins positions presented in this paper. The panelists will be invited 

to answer the following questions:   
 

1. How does hybrid simulation differ from analytics?   
2. What does a hybrid simulation design look like and how does it link to more conceptual 

Modeling?   
3. How can machine learning better support hybrid simulation development?   

4. What are the challenges in hybrid experimentation? 
 

 The four panelist present a range of views.  Mustafee starts with a focus on types of analytics and their 
relationship to Hybrid Simulation (HS) and Hybrid Modelling (HM).  Strassburger discusses the 
opportunities offered by machine learning (ML) and argues the benefit of a single execution environment.  
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Both Groen and Ozik then explore the scaling and coupling of required computation in high performance 
settings.   

2 HYBRID MODELING WITH SIMULATION AND DATA-DRIVEN ANALYTICS 

(NAVONIL MUSTAFEE) 

The panelists were asked the following question – “How does HS differ from Analytics?”. In responding to 

this question, I will first present my definition of analytics and distinguish between hybrid simulation and 

hybrid Modeling. These definitions will then frame my response on the intersection of analytics with 

conventional one-technique simulations (e.g., DES model, ABS model), hybrid simulation (e.g., SD with 

DES) and hybrid Modeling. 

Analytics Definition: Analytics, as a term, is gaining increasing prevalence in areas such as HR (people 

analytics), marketing (marketing analytics, behavioral analytics), social media (social learning analytics) 

and teaching/Higher Education (learning analytics). In most cases, analytics encompasses data-driven 

decision making that is reliant on historical datasets, Big Data (Big Data analytics), and increasingly, real-

time data (real-time analytics); the specific method of analysis could be classical OR/statistical techniques 

(e.g., mathematical models, regression Modeling), methods from data science and AI (e.g., machine 

learning approaches), computer science (e.g., distributed computing approaches and frameworks for large-

scale data processing), or indeed computer simulation. I am using the terms ‘analytics’ and ‘data analytics’ 

as synonyms, categorizing the latter as either descriptive analytics, predictive analytics or prescriptive 

analytics. Mustafee et al. (2018) have presented the following definitions:  

 

 Descriptive analytics analyses and presents data using techniques such as descriptive statistics, data 

summaries and real-time reporting;  

 Predictive analytics, in its most general sense, refers to any method which can support predictions 

about what might happen including data mining, forecasting, mathematical approaches (Delen and 

Demirkan 2013; Waller and Fawcett 2013; Shao et al. 2014) and machine learning (Barga et al. 

2015); 

 Prescriptive tools inform decision making by suggesting a solution path, for example, simulation 

can anticipate the consequences of unforeseen interactions and prescribe interventions on the basis 

of tested scenarios (Marshall et al. 2015). 

 

Hybrid Simulation and Hybrid Modelling Definition: HS is the combined application of multiple 

simulation techniques (e.g., SD, ABS, DES) for the purposes of achieving a better representation of the 

system under scrutiny. Powell and Mustafee (2017) introduce a wider definition of hybrid simulation, which 

is characterized by its focus on interdisciplinary research, where techniques and methods from various 

disciplines may be combined with traditional simulation methods in different stages of the simulation life-

cycle (conceptual Modeling, input/output data analysis, model development, experimentation, V&V). This 

is referred to as Hybrid Modeling (HM). Unlike HM, the focus of HS is mostly confined to the M&S 

community. Although HS has made a notable contribution in the development of our discipline, in 

particular, it has been successful in reducing the silos specific to Modeling methodologies (From: “I am an 

SD modeller and my expertise is in holistic analysis” and “I do DES and I excel in the detailed analysis of 

the system”; To:“I offer analysis at multiple resolutions and often choose a combination of techniques that 

best answers the questions at hand”), it can be critiqued as it fails to engage with other disciplines. For our 

community to be more “external” focused and to learn from research approaches and paradigms, 

methodologies and techniques that have existed/being developed in other fields of study, it is important for 

the M&S community to take a leap from “Hybrid Simulation to Hybrid Modeling” (Mustafee and Powell 

2018). 

 How does Hybrid Simulation differ from Analytics?  In my view, this will depend on whether 

descriptive, predictive or prescriptive analytics, or indeed a combination of them, is being considered. 
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Descriptive analytics is usually defined as Business Intelligence (BI) (Chen et al. 2012). One key element 

of BI applications is the use of real-time data. The focus of my panel piece is also on analytics-based 

approaches that churn real-time or near real-time data (Big Data analytics, real-time analytics), and how 

they differ from HS. Also, and perhaps more importantly and in keeping with the stated future direction of 

research on HM (rather than only HS), how do we conceptualize an HM that combines data-driven analytics 

and computer simulation? 

Simulation models (including HS) use statistical distributions that are usually derived from historical 

data. For a simulation to benefit from real-time data (for example, to change input distributions based on 

data feeds that are continuously updated), would generally require integration of a real-time data-acquisition 

engine with the simulation model (Mustafee et al. 2018; Ongoo et al. 2018). Such integration is arguably 

outside the core expertise of OR/simulation researchers and practitioners (who are experts at model 

development, experimentation and analysis). Thus, in relation to both descriptive and predictive analytics, 

neither the conventional one-technique simulation nor HS will benefit from real-time data and the analytics-

based approaches supporting it (Table 1). A combined application of data-driven analytics with simulation 

can, however, be achieved through an HM, wherein simulation researchers extend their models using 

methodologies, standards, tools and software from the field of Computer Science, Applied Computing, 

Industrial Engineering, Data Science, etc. (based on the choice of specific descriptive and predictive 

techniques). A simulation is a form of prescriptive analysis, and therefore any form of simulation (whether 

hybrid or not) can be considered as prescriptive analytics (Table 1; last row). 

Table 1: Intersection of data-driven analytics (with a focus on real-time data) with simulation approaches. 

 

Data-Driven 

Analytics 

Conventional 

Simulation  

Hybrid 

Simulation 

Hybrid Model 

Descriptive 
Analytics 

No  No Yes (e.g., real-time data feeds can be integrated with 

the model) 

Predictive 

Analytics 

No No Yes (e.g., forecasting approaches from CS, OR and 

Data Sciences can be used for better representation of 

future scenarios as distributions based on forecasts will 

better reflect what is likely to happen; forecasts can 

trigger automatic execution of simulation experiments 

for short-term decision making) 

Prescriptive 

Analytics 

Yes Yes Yes 

 
HM model in practice: A conceptualization of an HM that combines the various forms of analytics with 

computer simulation is the Right Hospital-Right Time (RH-RT) framework for urgent care services 

(Mustafee et al. 2018). An application of this framework is the NHSquicker digital platform 

(https://nhsquicker.co.uk). Near real-time data on Emergency Department (ED) and Urgent Care Centre 

(UCC) wait times are received from ~24 centers of urgent care (including six hospitals with 24/7 ED) 

operating in Cornwall, Devon and Somerset. The descriptive analytics combines wait time information with 

travel times (retrieved from Google Maps API), to “nudge” users to visit centers of urgent care that may 

further away but where they will be seen quicker. As ED departments tend to be very busy, the descriptive 

analytics approach tries to level demand for urgent care, by nudging non-acuity patients (non-life-

threatening conditions) away from hospitals to other centers of urgent care. The predictive analytics 

component of RH-RT uses forecasting models on time-series data (downloaded every 30 minutes through 

a back-end system) to make short-term predictions (1-4 hours) on how busy an ED/UCC is likely to be 

(Harper and Mustafee 2019). The prescriptive analytics component is a DES model of ED/UCC. Figure 2 
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identifies several feedback elements (represented as dashed circles) that underline the need for a joined-up 

approach when using the descriptive, predictive and prescriptive analysis and the potential of using the 

output from one form of analysis as the input to subsequent analysis. Yet another feedback loop intersects 

the input (near real-time data) and the analysis components of RH-RT. This loop highlights the need to 

constantly monitor the predictions with real-time data, to calibrate the analytical models. 

 
 
 

 
 
 
 
 
 

 
 
 
 
 

Figure 2: The RH-RT framework for conceptualization of HM comprising of data-driven analytical 

approaches and computer simulation (Mustafee et. al. 2018). 

3 MACHINE LEARNING AND SIMULATION (STEFFEN STRASSBURGER) 

Simulation is a well-established tool for planning, monitoring, and controlling complex systems. For a 
computer simulation of a real system it is indispensable to create a model of this system. Simulation models 
are generally abstractions of the real-world system under observation and focus on its most relevant 
components and attributes. In traditional, monolithic modeling approaches, the modeler is bound to and 

potentially limited by the chosen modeling paradigm. As these monolithic modeling approaches have been 
explored and investigated for many years, no groundbreaking innovations in the respective methodologies 
themselves are to be expected. 
 On the other hand, simulation as an analysis and prediction tool is nowadays often challenged by 
emerging new technologies like machine learning and artificial intelligence (AI). These technologies are 
often used to handle massive amounts of data and to answer complex analysis questions.  

 In order to stay relevant, simulation has to address these challenges. We foresee two paths for achieving 
this. Both can be considered “hybrid”.  
 The first path is the combination of simulation with machine learning techniques to improve the 
analysis of simulation output. The concept of Data Farming is the prototype of this idea. Within Data 
Farming, a simulation model serves as data generator (Brandstein and Horne 1998; Horne and Meyer 2005). 
By using efficient experimental design alongside high performance computing, one is able to maximize the 

data yield and corresponding information gain. The goal is to cover the whole experimental bandwidth of 
the possible model behavior. The farming metaphor describes how the data output can be maximized by 
experimental designs like a farmer that cultivates his land to maximize his crop yield (Sanchez and Sanchez 
2017). Originally developed for military applications, Data Farming has far more potential to reinvent how 
simulation studies are conducted and has been proven successful for example in domains like 
manufacturing (Feldkamp et al. 2015). It enables us to connect the simulation model with a wide range of 

tools and analysis methods in order to investigate the large amount of simulation data. For this purpose we 
developed a process called Knowledge Discovery in Simulation Data (Feldkamp et al. 2015). This process 
allows us to use the Data Farming concept alongside Data Mining and Visual Analytics (Keim et al. 2008) 
in order to discover complex relations in the model and ultimately gain knowledge. We have shown in 

Descriptive 
Analytics

RH-RT Conceptual Framework

Data 
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Analysis Predictive 
Analytics

Prescriptive 
Analytics

Output

Structured 
Data

Unstructured 
Data

Computation & 
Storage
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Time Data
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Data
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several real world case studies (Feldkamp et al. 2016; Feldkamp et al. 2017) that this approach can indeed 
uncover hidden relations in the model. While this approach constitutes a hybrid method in the sense that 
multiple analysis methods are used in combination with simulation, the simulation model itself does not 

necessarily have to be a hybrid system model (HSM) for this; on the contrary it is most often a traditional 
model using a monolithic modeling approach. 

The second path for advancing the area of simulation is the idea of combining different modeling 
approaches to build a simulation model. The general idea of this concept is not new: combining discrete-
event simulation and continuous simulation has long been known as “combined simulation” and could be 
considered the prototype of a hybrid simulation method.  

In the best case the construction of a hybrid system model can be done within a single simulation tool 
that supports multiple modeling paradigms or world views. An example of such a hybrid system modeling 
approach for depicting the energy consumption in production simulations is given in (Wörrlein et al. 2019). 
Here, we use the simulation system Anylogic and all three Modeling methods that Anylogic offers to build 
a model of a production system and its energy consumption. Using a process-oriented world view we model 
the general production process with its resources. For the detailed operation logic of machines with their 

different operation modes (warmup, fast-warm-up, standby, idle, …) we use the agent based modeling 
approach with its state charts for modeling machine behavior. For depicting energy consumption, we apply 
systems dynamics with its stock and flow diagrams to replay previously measured fine-granular energy 
consumption data of each individual energy consumer. For building such a hybrid system model, it is 
beneficial to have some kind of blueprint that guides the user in the decision which modeling method should 
be used for which aspects of the model. For modeling manufacturing systems with their energy 

consumption, such a blueprint has been suggested in (Wörrlein et al. 2019).  
In general, it will be highly beneficial to stay within the boundaries of a single simulation system even 

when performing multi-method modeling. Although distributed simulation based on the  High Level 
Architecture (HLA) (Strassburger 2001) in principle offers a solution for interoperability between 
heterogeneous simulation systems (Taylor et al. 2012), and thus also enables hybrid systems modeling, the 
ease-of-use argument still weighs heavily when deciding which modeling tools to use. For some scenarios, 

especially when existing and complex model components shall be reused and brought together, distributed 
simulation may be the best choice for enabling hybrid simulation, for others, especially when building 
models from scratch, it may not. 

We currently see another important trend for hybrid systems modeling that typically cannot be 
performed within the boundaries of a single simulation system: the combination of traditional simulation 
modeling approaches with machine learning. Such a combination is well suited for problems in which some 

behavioral aspects of the real system are difficult to model within the modeling paradigm of the chosen 
simulation system, but where enough data from the real system exists to have some machine learning 
method try to emulate the behavior represented in the data. We applied this approach in several scenarios. 
In (Bergmann et al. 2017) a proof of concept shows how manufacturing control rules can be obtained from 
adequately trained artificial neural networks (ANN). Here, all behavioral aspects except a decision rule 
were modeled in a process-oriented world view in the simulation system. Only a single type of decision 

was obtained from an ANN that was coupled online via appropriate interfaces to the simulation system. 
This approach is highly relevant, because the determination of exact decision rules (such as FIFO, LIFO, 
…) is in practical scenarios often very difficult. Using an ANN to approximate the decision rule based on 
observed data sets is an elegant solution to solve this problem. 

A more complex scenario is introduced in (Wörrlein et al. 2019). Here, entire time series data of energy 
consumption of machines is predicted by deep neural networks and injected into a traditional discrete-event 

simulation model. While the setup and the training of these networks is highly complex, the combination 
of simulation and deep learning brings together the best of both worlds concerning state of the art analysis 
and prediction tools. 

1357



Bell, Groen, Mustafee, Ozik, and Strassburger 

 

 

In summary, we argue that in the era of big data and machine learning, and in order to stay relevant, 
simulation must evolve. Hybrid modeling and simulation offers a good way to enhance the capabilities of 
simulation. It can even be used to bring simulation modeling and machine learning together in various ways. 

4 HYBRID SIMULATION PROTOTYPING (DEREK GROEN) 

Simulations are a simplified representation of reality, capturing a subset of its enormous range of physical 
processes and features, constructed and applied for a specific purpose, using a computer (though exception 
exist (Holmberg 1941). Though simulations can be used to represent a single process, it is much more 
common for simulations to approximate a behavior where multiple processes contribute and/or interact, 
possibly across different time and space scales (e.g, as formalized by Borgdorff et al. 2013). As an example, 

see Figure 3, which provides an overview of the process couplings we are trying to establish as part of the 
EU-funded VECMA and HiDALGO projects. 
 In a simulation, processes may be approximated using mathematical models, heuristics, data 
collections, or even hardware devices, e.g., GRAPE (Makino and Daisaka 2012) or ANTON (Shawe al. 
2014). While hybrid analytics may concern the synthesis of data sources and learning or analysis procedures 
to achieve a particular purpose, hybrid simulation extends beyond that. It encapsulates the human scientific 

knowledge of how processes work in computational sub models, combines this with other observations or 
models, and uses the knowledge embedded in these models to pursue new scientific discoveries. When 
aggregating sub models, a key factor is the contribution of an individual model’s output to the overall 
outcome of the simulation in the regime of scientific interest. That contribution is not always known in 
advance, and the developer needs to be aware of the need to incorporate new models previously unthought 
of, due to emerging behaviors or requirements. As a result, a good way to look at hybrid simulation design 

and development is from an exploratory research perspective. Simply put: when developing an approach, 
expect to rewrite it a few dozen times, and adapt your design and implementation approach accordingly. 

 
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

 

Figure 3: Envisioned model couplings for a full-featured hybridized model of forced migration, mapped to 
a scale separation map (Borgdorff et al. 2013). This image is an evolution of the diagram originally 
presented in Groen (2016).  
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 Much of the current simulation literature focuses on the execution and analysis around a single 
simulation code, and this can be a limiting factor when re-using such works in a hybrid context. By 
accounting for all the major activities required to develop a simulation (e.g., as we have done in our 

simulation development approach (SDA) here (Suleimenova et al. 2017) we explicitly position the 
simulation code in the wider context of research, validation and simulation development. This wider 
awareness is useful, because one can easily observe whether the existing validation setting is preserved 
when integrating a second model, and to what extent the data sources and the problem definitions need to 
be modified. For instance, when combining a migration model with a conflict evolution model in a hybrid, 
one may be still be able to construct a simulation using the inputs for a migration model, but will have to 

define a new validation setting to validate the conflict evolution model against historical conflicts. In 
summary, to improving our ability to create hybrid simulations I suggest to: 1) Take an evolutionary 
prototyping approach to simulation building (Boehm et al. 1988), keeping individual models small and 
anticipating a frequent re-composition and re-definition of the hybrid problem, 2) keep careful track of the 
relevance of individual sub models to the overarching challenge, and be prepared to leave them out (or add 
other ones) if the need arises and 3) use simulation development approaches to position simulation codes 

in the context of research, validation and simulation development - this will help new researchers to use 
codes appropriately, and gives them a starting point from which they can evolve their own approach. 
 In the case of our migration simulations (see Figure 3), this is also the approach we apply. We initially 
developed an agent-based model of people escaping violent conflicts in search of safety abroad, and are 
currently prototyping models for e.g., food security and local escape. We fit these into our existing SDA, 
and will perform a two-fold validation. For instance, we will first check whether any food security mode 

[e.g., as first investigated in Vanhille et al. (2019)] produces outcomes that are close to the observed 
outcomes, and then check whether the incorporation of food security models provides a significant accuracy 
benefit to the application overall.  
 As a final remark, in terms of technical design and development I advocate a light-weight approach, 
but what that entails is largely in the eye of the beholder. Having coded in Python for 15 years, light-weight 
constitutes for me a slim program with 100-1000 lines of core logic while ready-made tools with abstraction 

layers and GUIs introduce needless overheads and restrictions in my case. But when I consult one of my 
students, or indeed some of my colleagues who have interacted in GUI environments for decades, the 
opposite may well be true for them. But whether your weapon of choice is code or click, one thing is certain: 
any coupling approach that works is likely to be simple and at least reasonably flexible. And fortunately 
for us, a lot of such approaches are now in existence, catering for the full spectrum of developer needs 
(Groen et al. 2019). 

5 MODEL EXPLORATION OF AGENT-BASED (AND OTHER BLACK-BOX) MODELS AT 

HPC-SCALES (JONATHAN OZIK) 

Advances in high performance agent-based modeling (ABM) have enabled the simulation of a variety of 
complex systems. By developing increasingly realistic models, intricate aspects of the modeled systems 
can be encapsulated, including agent activities and decision-making, agent interactions over social 
networks, demographic and geographic heterogeneity, and agent adaptation and learning. For ABMs to be 

trusted as research and policy-relevant electronic laboratories, it is necessary to robustly characterize their 
possible model behaviors, a process we have referred to as model exploration (ME), through heuristic 
methods. As ABMs have become more complex and their parameter spaces have grown in size, brute force 
methods for model exploration have necessarily given way to iterative and adaptive approaches, that 
strategically explore the large model behavior spaces, e.g., Genetic Algorithms (Holland 1992), Active 
Learning (Settles 2012; Binois et al. Ludkovski 2018) or sequential Approximate Bayesian Computing 

(ABC) (Beaumont 2010). Implementing dynamic model exploration at the requisite scale is a challenge, 
and this has led to a proliferation of smaller scale and ad hoc approaches due to the expertise impedance 
mismatch that exists between general computational science and the HPC realm. In many cases, this 
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mismatch creates off-limit areas of research which are abandoned due to the perceived prohibitive time, 
effort, or computational expenditures required. 
 The Extreme-scale Model Exploration with Swift (EMEWS) framework (https://emews.github.io) is 

aimed at lowering the barriers for utilization of advanced, large-scale model exploration (Ozik et al. 2016). 
It does this by allowing the direct integration of multi-language ME algorithms to control the evolution of 
ME workflows that can run on the largest computing resources, while coordinating existing, native-code 
models (i.e., without the need to port or re-code models). The rise of artificial intelligence (AI) has been 
instrumental in driving the development of statistical and machine learning software that can be applied to 
ME, resulting in vibrant ecosystems of free and open source libraries that are continually added to and 

updated as research frontiers are expanded. EMEWS enables the use of these sophisticated heuristic 
algorithms (written in R or Python) to control large and complex ME workflows. Furthermore, since 
EMEWS is built on top of the Swift/T parallel scripting language (Wozniak et al. 2013), which is a multi-
language-enabled workflow engine, analytics pipelines, e.g., for simulation data pre and post processing, 
are easily integrated. In Figure 4 we demonstrate an example of the high-level architecture of an EMEWS 
workflow.  Here a Python-based GA algorithm that was developed with the use of the DEAP toolkit (Fortin 

et al. 2012) is the ME component and C++-based Repast HPC models (Collier and North 2013) are being 
dynamically launched and their outputs evaluated. We note that the Repast HPC models themselves can be 
distributed (via MPI) and therefore we exploit the available concurrency at multiple scales. 

Figure 4: EMEWS workflow showing the Model Exploration (ME) components in green and Models 
components in blue for a workflow applying a Python-based GA algorithm to the C++-based Repast HPC 
model. The only ME algorithm modification for integrating with EMEWS is highlighted, while the Repast 
HPC model is unmodified. 

 We have applied EMEWS to ABM in many areas of research, including infectious disease modeling 

(Ozik et al. 2018), healthcare interventions (Kaligotla et al. 2018), and in silico cellular modeling for cancer 
(Ozik et al. 2018; Ozik et al. 2019). However, these large-scale ME methods are applicable to any black-
box modeling paradigm and so we have applied EMEWS to other modeling approaches as well. These 
include microsimulation (Rutter et al. 2018) and large-scale deep learning (Wozniak et al. 2018a; Wozniak, 
et al. 2018b; Zaki et al. 2018). 
 An important thrust of our work is focused outward, i.e., in improving the capabilities and ease-of-use 

of the framework to enable the adoption of large-scale ME approaches across the computational modeling 
community. One aspect of this is our philosophy of integration through aggressive reuse of existing 
software and cutting-edge open-source tools. We are also creating user on-boarding resources such as 
immersive tutorials (https://www.mcs.anl.gov/~emews/tutorial/) and use-case repositories 
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(https://github.com/emews/mela). Finally, recognizing that access to computational resources varies, we 
are developing methods for simple deployment of EMEWS workflows to cloud computing platforms. 

6 SUMMARY 

This paper presents views of four panelist, uncovering the range and scope of hybrid simulation in an era 
of big data and high performance computing.  The paper itself focuses on the integration and coupling 
challenges in a range of contexts.  The benefits of hybrid simulation with a single platform are clear, with 
integration support embedded.  Complexities around scale are also presented – typically leading to 
distributed or high performance architecture choice.  Near realistic representation of a domain is driving 
this requirement for exascale computational power.  Software architecture that support this migration are 

discussed from both domain specific and technical perspectives.  The scale and scope of near realism in 
modelling and simulation requires new methods of analyzing and utilizing data at different points in the 
workflow. 

 

 

Figure 5: Analytics across a simulation and modeling workflow. 

 Figure 5 synthesizes the varied viewpoints presented into a hybrid simulation-analytics platform. 
Traditional analytical approaches that use empirical data have a long tradition in model building.  Artificial 
Intelligence, machine learning and other statistical approaches (termed analytics in Figure 5) are able to 
process larger data sets in order to support a model building process (1), including heuristic rule induction.  

Consequently, once built and deployed, analytics can be used to explore the execution as it progresses and 
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interim results as they are generated – directing the exploration in near real-time (2 & 3).  Finally, analytics 
are able to process the substantial data resulting from simulations (7) and both present results to the user or 
scientist and also direct further exploration (or hybrid interaction between simulations – 5 & 6).  

Unsurprisingly, the normalization and staging of data underpins much of the looser coupling approaches 
(1-4), but also important within tighter coupling between executing simulations (5 & 6).  
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