Proceedings of the 2019 Winter Simulation Conference
N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds.

THE ACTIVITY-ENTITY-IMPACT METHOD: UNDERSTANDING BOTTLENECK BEHAVIOR
OF SIMULATION MODELS DEMONSTRATED BY AN EMERGENCY DEPARTMENT MODEL

Nikolaus Furian Cameron Walker
Clemens Gutschi Michael O’Sullivan
Dietmar Neubacher

Institute of Engineering and Business Informatics Department of Engineering Science
TU Graz University of Auckland
Kopernikusgasse 24 70 Symonds Street
Graz, 8010, AUSTRIA Auckland, 1010, NEW ZEALAND
ABSTRACT

Simulation models are often used to gain a better understanding of a system’s sensitivity to changes in the
input parameters. Data gathered during simulation runs is aggregated to Key Performance Indicators (KPIs)
that allow one to assess a model’s or system’s performance. KPIs do not provide a deeper understanding of
the causes of the observed output because this is not their primary objective. By contrast, dynamic bottleneck
methods both identify elements that yield the largest gain in productivity with increased availability and also
visualize these elements over time to enable bottlenecks to be better understood. In this paper we discuss
whether dynamic bottleneck detection methods can be utilized to identify, measure, and visualize causes
of observed behavior in complex models. We extend standard bottleneck detection methods, and introduce
the Activity-Entity-Impact-Method. The practicality of the method is demonstrated by an example model
of a typical Emergency Department setting.

1 INTRODUCTION

A Bottleneck (BN) of a system is defined as the element for which an increase in availability or productivity
yields the largest gain in terms of system output for a given period of time (Chang et al. 2007). Dynamic
BN detection methods use mathematical models or algorithms to determine such BNs over time. Most BNs
are identified by using data gathered from the real system and then feeding it into the detection methods
(i.e., mathematical methods or algorithms). On the other hand, simulation models are also frequently used
to investigate the behavior of real systems, and their sensitivity to parameter changes. Hence, they are also
used to detect BN elements and assess the impact of increasing or reducing the availability and productivity
of such elements. Further, it is often implied that simulation models are useful tools to understand the
dynamics of systems. However, understanding system dynamics and identifying dynamic BNs requires
understanding and analysis of the behavior of the simulation model itself. The definition of KPIs plays an
important role in gaining a better understanding of simulation models and/or systems. KPIs allow the user
to assess the impact of changes to the input parameters on the performance of the system or individual
elements of it. However, recent literature shows that commonly used KPIs do not capture the dynamic
relations of entities within and impact on models/systems (Barrera-Diaz et al. 2018; Furian et al. 2018).
In particular, KPIs are often computed by rigorously aggregating measures over time, e.g., the average
resource utilization or throughput, but do not account for interactions between elements in the system.
This may lead to the practice where simulation models are used as black boxes to assess the sensitivity of
a system, but little support is provided by standard KPIs to understand causes of certain behavior. It has
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to be noted that this is not the main purpose of KPIs, but instead tools to gain a better understanding of a
model’s dynamic behavior may be of interest.

In this paper we investigate whether dynamic BN detection methods are suitable to gain a deeper
understanding of not only a real system’s, but also a model’s behavior. We assess if it is possible to
detect possible causes for, and gain knowledge by evaluating, the shift of a critical elements over time.
First, we apply a well-established dynamic BN method, the Active Period Method (APM) on an example
simulation model and discuss results. Based on this discussion, we introduce a new simple BN detection
and impact method, called the Activity-Entity-Impact-Method (AEIM), that is based on the main ideas of
APM. Similar to APM, the proposed approach assesses elements by distinguishing between active and
inactive periods, where inactivity is caused by blocking or starvation. However, in addition to evaluating the
length of blocked periods, AEIM attempts to identify causes for such blocking states. As APM originates
from the manufacturing industry, where often production sequences are rather rigid and causes of blocking
are obvious, its main focus is not the identification of these causes. For more complex systems, where
resources take part in a variety of activities, possibly in different combinations, the cause of inactive periods
may be less apparent. Using the example of an Emergency Department (ED) model, we demonstrate the
usefulness of AEIM to not only detect such causes, but also to measure them by various additional KPIs.
However, like APM, the method itself is domain independent and applicable to other fields such as modular
production, logistics, construction, project management, etc.

The paper is structured as follows: In the following section we provide a brief review of relevant
work on BN detection methods and simulation KPIs. Section 3 introduces the example ED model used
throughout this paper. In section 4 we apply the APM to the ED model and discuss results and insights
gained. In section 5 the AEIM is presented and its application to the ED model is outlined in section 6.
The paper concludes with final remarks and suggestions for further research.

2 BACKGROUND

In this section we give a brief overview of theories and methods that are relevant for this paper. First, we
revisit established dynamic BN detection methods. Second, common KPIs used to analyze models in the
fields of manufacturing and ED simulation are introduced. For general information on statistical analysis
for simulation modeling the reader is referred to Law (2015) and Currie and Cheng (2016).

2.1 Dynamic Bottleneck Detection Methods

Bottleneck detection methods have been well studied in the production industry. In addition to, standard
measures, such as queue length and resource utilization, dynamic methods have gained significant attention.
These include, among others, the Active Period Method (Roser et al. 2001), the Average Active Period
Method (Roser et al. 2003), Blocking and Starving Probabilities (Kuo et al. 1996), and Shifting Bottleneck
Detection (Roser et al. 2003). For comparisons and reviews of these methods the reader is referred to Roser
and Nakano (2015) and Wang et al. (2005). As the Active Period Method and Shifting Bottleneck Detection
form the basis of this paper, they are outlined in the next section and a discussion of their applicability for
more complex-systems follows in section 2.1.2.

2.1.1 The Active Period Method and Shifting Bottleneck Detection

The main idea underlying these methods is that the state of entities, e.g., machines or other resources, can
be classified into active and inactive periods. For production machines active states include, for example,
production, repair, and tool change, whereas inactive periods include blocking (e.g., a full downstream
buffer) and starving (e.g., an empty upstream buffer) states. For a given point in time the machine with
the longest current active period is denoted as the dynamic BN. However, it is assigned the BN status not
only for this particular point in time, but also for the entire active period that it is currently in. Hence, if
two active periods overlap, without one being covered entirely by the other, both machines are denoted
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as BNs (as both will be the longest active elements at some point). The Shifting Bottleneck Detection
Method (SBDM) then further classifies each machine by whether they are the sole BN or part of a shifting
BN (one of multiple machines with overlapping active periods) and reports the proportion of each state
over time.

2.1.2 Discussion of Bottleneck Methods

The APM and SBDM have been shown to detect dynamic BNs correctly for production systems. Although,
Roser et al. (2003) state that they can be applied to any system that allows the classification of active and
inactive states, the application to more complex-systems, e.g., flexible and modular production systems or
EDs, raises some questions.

In (standard) production lines or systems, the coupling between tasks and resources is usually more
rigid than in other systems. In other words, a single resource is often only responsible for one task, e.g.,
milling. In more complex-systems, e.g., an ED, resources perform multiple tasks, often in combination
with other resources. While this may be easily addressed by the APM, as long as active and inactive states
can be distinct, it can also be observed that blocking and starving of resources may occur for various
reasons. In production lines, blocking and starving occurs with respect to full or empty buffers. Blocking
in a complex system may additionally occur due to other resources being active or blocked. While this
may not be relevant for identifying which resource is the bottleneck in a specific situation, measuring
active periods only provides limited information on why this resource is crucial. Further, considering the
example of an ED, there may be multiple instances of a resource type present, e.g., more than one doctor.
Therefore, it seems more important to determine which type of resource is currently the BN, and not which
instance of it. Some of these issues will be further discussed in section 4.

2.2 Simulation Key Performance Indicators

KPIs are measures that reflect the performance of a system over a given period of time; see for example
Parmenter (2007). In the context of simulation models they are often used as tools to assess and investigate
the behavior of the model. In a previous study, a wide range of ED models were analyzed with regard to a
variety of modeling and simulation aspects, including KPIs used. Thereby, it became apparent that most
commonly used measures aggregate data gathered from the models into a single quantity. Most prevailing
examples include the Length of Stay (LOS), Time to Doctor (TTD), Resource Utilization (RU), average
waiting times, or average queue lengths. For an exhaustive list of KPIs used, the reader is referred to
Furian et al. (2018). KPIs used in other fields follow similar structures. In the manufacturing industry they
commonly include work in progress, throughput, resource utilization, lead times, or equipment efficiency;
see for example Barrera-Diaz et al. (2018).

3 THE EMERGENCY DEPARTMENT MODEL

In this section we introduce the model that serves as a basis for demonstrating the principles and use of the
AEIM method. The model is based on previous work of the authors, where they analyzed and investigated
a large number of ED models (Furian et al. 2018).

3.1 Patient Categories, Arrival Times, and Pathways

Analogue to many published models, patient categories are mainly defined over triage grades by the ESI
system: ESII denotes patients that require immediate life-saving interventions; ESI2 represents high risk
patients that should be seen immediately; ESI3 includes patients that require many resources or show
potentially threatening vital signs; ESI4 patients require one and ESI5 no resource. Further, patients are
classified by the mode of arrival (ambulance or walk-in). However, in accordance with, for example, Day
et al. (2013) here we assume that ESI5 and 50% of ESI4 patients are eligible for a Fast Track (FT) process
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through the ED. The distributions of patients over ESI grades (based on average values of models in Furian
et al. (2018)), mode of arrival (based on Abo-Hamad and Arisha (2013)) and share of patients that require
X-Ray services (based on Gunal and Pidd (2006)) are summarized by Figure 1. Patient arrival rates (per
hour of the day) are taken from Lim et al. (2013) and also reported by Figure 1.

Exp(60 ;
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Figure 1: Patient processes and data. Note that the duration of activities are either triangular (T(min, mode,
max)), or exponentially (Exp(mean)) distributed. Further, ESI denotes triage grades and FT represents the
Fast Track process.

The main patient path through the model follows common structures observed by Furian et al. (2018).
Upon arrival, patients register, get triaged, and are then placed in a bed by a nurse. This Bed Placement
activity may include preparation tasks, such as taking a blood sample. This is followed by an Assessment
activity performed by a doctor, possibly an X-Ray examination (other diagnostic tests are omitted for
simplicity reasons) and the final Treatment activity where both a doctor and a nurse are present. ESI1 and
ESI2 patients that are arriving via ambulance skip Register and Triage and further, ESI1 patients undergo
a First Treatment with both a nurse and a doctor present instead of the Assessment (in order to stabilize
the patient). For the different processes, durations, and other patient data see Figure 1.

3.2 Staffing and Physical Resources

The staff types within the model include: doctors, general nurses, triage nurses, register nurses (or clerks),
diagnostic personnel and specially trained nurses for FT procedures (equivalent to mid level providers, see
Furian et al. (2018)). We assume that three doctors, two general nurses, and one of each of the other staff
type are present during relevant hours of the day. Note that for simplicity reasons and since we analyze
the behavior model only during day hours, we did not include more realistic shift patterns that account for
the varying arrival rates of patients during the day. Physical resources include a registration desk, a triage
room, main ED rooms, acute rooms, a FT room and a X-Ray facility. Besides five main ED rooms, each
resource is represented once in the model, e.g. there is one acute room.
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3.3 Control Policies

The policies to control the logic also follow common principles for ED models. Dispatching of activities is
performed in the following order: First Treatment ESII, Bed Placement, Assessment and Treatment. This
prioritizes new patients over old patients as witnessed regularly among ED models, see for example Ghanes
et al. (2014). FT, Triage, X-Ray and Register activities are dispatched separately. Patients are selected by
triage grades and FIFO for breaking ties. Patients see the same doctor during their entire stay and occupy
their room for the entire stay (even while being at X-Ray). Resources are selected with respect to idle
times to ensure an evenly distributed workload. Whenever a FT nurse is available and no FT patients are
present, he/she assists in the main ED. In principle, ESI1 patients are assigned the acute room, however,
if it is occupied they are assigned to a free main room or whichever becomes free first.

4 DYNAMIC BOTTLENECK DETECTION TO ANALYZE SIMULATION MODELS

One of the main goals of this paper is to investigate whether BN detection methods can be used to analyze
simulation models. However, raising that question, one has to be aware that simulation models themselves
have been used numerous times to identify BNs via evaluating what-if scenarios on the availability and
productivity of entities. Hence, the sole identification of BNs may seem redundant at first glance. However,
as the APM and SBDM enable the analysis of behavior over time, they may provide insight regarding
the dynamics that cause entities to become BNs, especially because simulation models are often used in a
black box fashion when evaluating what-if scenarios.

As mentioned in section 2.1.2, some difficulties arise when applying the APM to models like the ED
model stated in the previous section. First, the APM does not define how to aggregate multiple instances
of the same resource type, e.g. doctors, to a single resource type that may act as a BN. Experiments with
the model have shown that counting discretized time intervals (e.g. per minute) where at least one resource
of a type acts as a BN (shifting or sole) is one possible approach to overcome this issue (given that the
workload of entities of the same type is somehow balanced). Second, while the definition of active and
inactive states is straight forward for human resources in the model, assigning those states to rooms raises
some questions. It is apparent that rooms are active during patient related activities. However, during Wait
In Bed or when patients are currently at diagnostics those resources are occupied but not actively used.
Experiments have shown that classifying those states as inactive leads to correct identification of BNs.
This makes also sense from a theoretical point of view as, during those times, rooms would be able to be
active but are not used due to other entities not being available.

Applying APM to the ED model of the previous section yields the following BN and resource utilization
results illustrated in Table 1. Results include simulation runs of the base scenario (D3-N3-M5 = 3 doctors,
3 nurses, 5 main rooms) and scenarios with an additional resource of each type.

Note that for this evaluation we aggregated general nurses and FT nurses into one resource type. Results
show that APM with outlined adaptions identifies BNs correctly for this model. However, this information
can also be gained by experimenting with the simulation model itself. In order to investigate dynamic BN,
Figure 2 illustrates the BN behavior of the main entities in the model and the arrival of patients over time.

One may observe that BNs are shifting in the model. However, the most dominant behavior is that
more than one resource type is acting as a BN. Moreover, no apparent correlation in the pattern of patient
arrivals and BN behavior can be observed. It is not apparent from this analysis what behavior in the model
is the major cause of blocking and/or starving. As APM focuses on entities/resources and their states
it does not provide a deeper understanding of the dynamics of models and/or systems. An appropriate
method should put more emphasis on the relationship between entities, activities and queues. Hence, in the
following section we extend the APM method to allow a more detailed investigation of complex models
and/or systems.
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Table 1: Average BN results using APM over 200 simulation runs over two days, where the first day is used
as a warm up-phase. Scenarios Dx-Ny-Mz are defined over available resources (i.e. x-doctors, y-nurses,
z-main rooms). BN denotes the number of minutes at least one resource of the specific type was BN, RU
the resource utilization of the resource between 7am and 10pm of the second day.

Doctors Nurses Main Rooms KPIs
Scenarios BN RU BN RU BN RU | LOS TTD
D3-N3-M5 | 234.51 0.61 520.52 0.71 450.62 047 | 162.05 116.10
D4-N3-M5 | 139.89 048 550.22 0.73 43356 048 | 142.36 98.95
D3-N4-M5 | 347.56 0.65 341.62 0.56 48824 0.50 | 130.00 88.44
D3-N3-M6 | 25143 0.63 536.26 0.72 38542 041 | 151.50 9948
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Figure 2: The dynamic BN behavior between 7am and Spm for most relevant entities and patient arrivals
of most relevant categories for a single run of the base scenario.

S THE ACTIVITY-ENTITY-IMPACT METHOD

To put activities as the main focus of simulation model is not new, and has been published previously, in
different forms, by (among others) Heath et al. (2011) and the authors of this paper. The Hierarchical
Control Conceptual Modeling (HCCM) framework (Furian et al. 2015) uses a slightly different terminology
and perspective to describe elements of a model or system. In particular, it extends standard queues by
instead using requests and corresponding lists that represent entities waiting for specific requests (for an
activity to take place) to be granted. Thereby, the rigid coupling of queues and resources is relaxed. While
this paper is not based on the HCCM framework, we use its terminology and refer to queues, or waiting
entities, as requests.

The main idea of the AEIM is to design KPIs that capture the dynamics resulting from inter-dependencies
of entities, activities and requests, and make them visible in a simple and intuitive way.

5.1 The AEIM Matrix

For defining the components of the AEIM matrix, let in general {ay,...,a,} be the the set of activity types
and {eq,...,e,} be the set of resource types. Further, we denote by arf;; Vie [1,...,n],j€[l,...,m]
the activity resource factor, which is 1 if resource type e; is required for activity a; (else 0), and by
aif;;j Vi, j € [1,...,n] the activity impact factor, which is 1 if a; and a; share at least one resource type
(else 0). Hence, aif; ; can be computed as aif; ; = min (1,¥}" arfiy - arf;x). For a specific point in time,
let na(a;) be the number of activities of type a; currently performed, nr(a;) be the number of requests for
activity of type a; currently present, and nae(e;) be the number of active (non-idle) resources of type e;.

We make some remarks on the definitions of aif;; and arf; ;. In some models a resource may be
attached to an entity for a period of time that stretches over multiple activities. For example a bed may be
assigned to a patient at the beginning of the stay in the ED and remain occupied regardless of whether the
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patient is in the bed during certain activities (e.g. diagnostics), or, in manufacturing, a workpiece carrier
that is assigned to a part for multiple operations. In such cases arf; ; is set only to 1 if a; is the activity
that the resource is assigned to. Considering the example used in this paper, patients are assigned to rooms
for their entire stay (except FT patients). Hence, the Wait In Bed activity shares the resource room with
the activity Bed Placement, but not with any other activity. For activities that can use multiple resource
types as one resource (e.g. the Bed Placement of non-FT patients can be performed by nurses as well as
FT nurses) both activity resource factors are set to 1.

The AEIM matrix is composed of several elements. First, the activity impact sub-matrix, A% that
reflects how activities impact each other in terms of execution and requests. In particular, if activities a;
and a; compete for at least one resource of the same type, A% measures how the execution of a; impacts
the waiting list for activity a; by multiplying associated parameters, see Table 2. The resource activity
sub-matrix, A°“  measures the impact of resource availability with respect to currently present requests (or
in other words queue lengths). Therefore, a resource type is considered blocking if none of its instances
are idle but there are requests filed that would require the participation of this resource type.

Vectors d and a denote the total influence an activity is imposing on all other activities, and the total
influence imposed on an activity by all others respectively. The vector na reports the number of activities
per type currently in progress. The vector nbe denotes the number of resources of a specific type that are
currently a sole or shifting bottle neck with respect to the APM method. Table 2 illustrates how the AEIM
matrix is composed of the previously outlined elements and how individual elements are computed.

Table 2: The AEIM matrix and its components for a specific point in time.

a ay a na (4] €m
ai ?fjl_i — d] = . na(a.) ait;l' = nr(ai).
nr(a;) -na(a;) - aif; Ljdij l [nae(e;)/ne(e;) ] -arfi;
dan
a aj=Y; ai“fj’.i nbe nbe(e;)

5.2 Aggregation over Time

The definition of the AEIM matrix enables the analysis of the behavior of a model over time or at a given
point in time. However, it might be of interest to investigate the aggregate or average behavior for a chosen
time span. Therefore, it is necessary to aggregate individual AEIM matrices. For the A% sub-matrix,
vector @ and vector @ aggregation over time can be derived by computing average values of individual

elements. In particular, entries of the aggregated sub-matrix a;}' over time steps 7 {1,...,T} are given by

/Ty, a;’?’” (analogue for d and d). For na and nbe we count the time steps where at least one activity
of a given type is active, or respectively at least one resource of a given type is BN. Hence, elements of
the aggregated vector 7@’ for time stamps ¢t € {1,...,T} are computed by 7d(a;) = ¥, min (1,nd' (a;))
(analogue for nbe). In the same fashion, for the sub matrix A we count the number of entries that are
larger or equal to 1. This is motivated by the observation that the number of unfulfilled requests is already
represented in the A% matrix and from an additional point of view the frequency of an resource showing

a blocking behavior seems more informative than its magnitude.

6 APPLICATION AND RESULTS

In this section we demonstrate the use of the AEIM method by applying it to the model outlined in section
3. The model was implemented using HCDESLIib, an open source discrete event simulation library in
C# (Furian et al. 2016). Results are based on the average of 200 simulation runs, each simulating two
days, using the first day as a warm-up period. Further, KPIs are computed on the results during 7am
and 10pm of the second day, as those are the busy hours during daytime of the ED. The analysis of the
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model is performed in two stages. In section 6.1, activities of specific types, i.e. treatment, triage, etc.,
are investigated in a summarized way over all patient categories (in the model they are still differentiated).
The impact of different triage grades is investigated in section 6.2.

6.1 Analyzing the core structures of the ED model

In order to apply the AEIM method, parameters aif; ; and arf; ; have to be defined for all pairs of activities
and pairs of activities and entities. Note that the assistance of FT nurses in Bed Placement or Treatment
activities for non FT patients may be treated different to the ones performed by standard nurses, as their
impact on the system is different. To address this behavior and limit the number of activities we summarized
those by an Assist FT activity to measure the impact of FT assistance. In particular, Assist FT has an
impact on Bed Placement FT and Treatment FT but not vice-versa and not on other main ED activities.

First, looking at standard KPIs, see Table 3, we observe typical values and behavior of LOS and TTD.
Measures are increasing for lower priority patients apart from FT patients and ESI1 patients (as those result
in significant longer treatment times). Resource utilization of main entities show that doctors are utilized
approximately 61%, nurses 68%, the FT nurse 76%, triage nurse 66%, register nurse 33%, x-ray room
55%, main rooms 47% (not counting waiting in bed times) and the acute room 23%. From these statistics
it can be concluded that patients wait for a relatively large share of their stay to be placed in a room.
However, possible reasons causing long waits for Bed Placement other than the workload of resources are
not visible from standard KPIs. Hence, we investigate the AEIM matrix of a single simulation run over
time. As the visualization of a matrix over time is not intuitive we report relevant entries (combinations
of activities and activities and entities) over time using a resolution of one minute.

Table 3: Standard KPIs in minutes.

Category Overall ESI1 ESI2 ESI3 ESI4 FT
LOS (TTD) 162.1 (116.1) 76.5 (3.6) 67.4(19.9) 1579 (105.0) 421.0 (371.3) 89.5 (70.7)

Figure 3 shows some interesting behavior of the models. First, it seems that Wait in Bed has a significant
influence on Bed Placement (significant large values in the A% matrix, leftmost red box). This means
that there are often patients waiting for a room to be placed in while other patients are blocking rooms at
the same time without receiving care. Accordingly, it can be observed that nurse (both standard and FT)
availabilities are often not the cause for delay of Bed Placement (values in the A®“ matrix (middle red
box) indicate that there are idle nurses while patients wait for bed placement), but rather blocked rooms
by waiting patients (na(a;) values in the rightmost red box indicate that patients are waiting in their rooms
at the same time). Further, looking at the aggregated AEIM matrix, Figure 4, for the time frame between
7am and 10pm (average over 200 simulation runs) this first intuition is strengthened.

From the A% matrix in Figure 4 we can observe that besides the obvious Treatment, Assessment and
Bed Placement activities, Wait In Bed has a very high influence (in particular 4.5) on patients to be assigned
to a room. Looking at the A%’ matrix it becomes apparent that rooms are the major cause for this (on
average 571 time steps (minutes) per simulation run), although they appear not to be the main BN (451
time steps (minutes) in the nbe values vs. 521 aggregated across nurses and FT nurses). Hence, there are
blocking effects in the model that lead to inactive periods of resources which possibly could be avoided.
One may remember that the incentive for dispatching activities in the order Bed Placement, Assessment
and Treatment was to ensure faster TTD times. However, it seems that this results in blocking of rooms
and resources. Indeed, aiming to get patients out of rooms before assigning new patients to rooms, i.e.
reversing the above order, results in shorter LOS and TTD times. In particular, the overall LOS can be
reduced from 162.1 minutes to 144.4 minutes and the overall TTD from 116.1 minutes to 103.9 minutes.

The AEIM matrix that results from dispatching activities in the reverse order, i.e., Treatment, Assessment,
Bed Placement, is illustrated in Figure 5. One can see that the influence of Wait in Bed on Bed Placement
was reduced by approximately 60% and the main cause for unfulfilled requests shifts to nurses (including
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Figure 3: AEIM matrices from 3pm-7pm for a single simulation run. Matrices A“ and A°“ are flattened
by reporting only relevant combinations.

FT nurses). AEIM enables the effect of BN behavior to be clearly identified when the reverse activity
dispatch order is tested.

6.2 Analyzing the impacts of triage grades

It is a well known effect that high priority patients or tasks often block lower priority patients or tasks
and cause longer LOS for the latter. Hence, priority accumulation techniques have gained more and more
interest as approaches to overcome such effects (see for example Sengupta et al. (2011)). While priority
accumulation is a suitable approach to deal with blocking based on priority, AEIM enables the detailed
assessment of the impact of blocking between different patient categories. Expanding activity definitions
to separate activities for each patient category enables measurement of such blocking behavior. Figure 6
shows the resulting AEIM matrix during day hours. It shows that in this particular setting high priority
patients are not the major cause for longer waiting times of ESI3 and ESI4 patients. Although, as expected,
they do have an influence, the major cause is the high volumes of ESI3 patients (self influence, a““ value
of 2.6), and, in particular, their blocking effect on ESI4 patients (a** value of 2.5).
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Figure 5: Aggregated AEIM matrix with reversed dispatching order from 7am to 10pm over 200 simulation
runs (relevant elements only).

7 CONCLUSION AND FURTHER RESEARCH

In this paper we introduced the AEIM to analyze the behavior of complex systems and/or simulation
models. The AEIM was developed as a consequence of existing dynamic bottleneck detection methods, in
particular APM, being unsuitable as tools for revealing blocking effects within models that do not follow
the strict resource/task couplings that are usually witnessed in line production. The main goal of the
AEIM is to identify causes of blocking and starving effects and enable a deeper understanding of emerging
behavior in models by providing simple methods to measure and visualize such effects. Hence, AEIM can
be considered as an addition to classical KPIs, that are used to measure the performance of systems/models.
Both the shortcomings of APM and the efficacy of AEIM are demonstrated on an example model of a
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Figure 6: Aggregated AEIM matrix for all patient categories with reversed dispatching order from 7am to
10pm over 200 simulation runs.

typical ED. Results demonstrate the practicality of the AEIM for identifying dynamic bottlenecks caused
by both the process sequence and prioritization. The use of the method within a real-world simulation
study is beyond of the scope of this paper and left for further research.
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