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ABSTRACT

Pancreatic cancer is a low-incidence disease, where tumor progression studies using patient longitudinal data
had limited sample sizes. Estimating the tumor inverse growth rate and its distribution are a challenge. Using
a tumor progression model that incorporates the distribution of the inverse growth rate as the underlying
assumption of the model, pancreatic cancer progression models were built assuming two distributions for
the inverse growth rate: Uniform and Gamma. This study uses simulation to evaluate the effect of the
tumor inverse growth rate distribution on the tumor progression models by examining tumor timelines.
It was found that the tumor timeline is about nine months longer under the assumption that the inverse
growth rate follows Gamma distribution. It was inconclusive whether tumor progression is faster or slower
in older patients as the tumor progression models with the different underlying assumptions on the inverse
growth rate yielded opposite results.

1 INTRODUCTION

Pancreatic Cancer (PC) is the fourth leading cancer cause of death in the United States, and it is projected
to be the second by year 2030 (Rahib et al. 2014). Pancreatic cancer tends to be asymptomatic leading to
late symptomatic detection often after the cancer has metastasized to other organs (Xu et al. 2014). As
a result, metastasis is common in PC, accounting for up to 90% of its mortality and the dismal 5-year
survival rate of 8% (Yachida and Iacobuzio-Donahue 2013). Initially, it was thought that PC is aggressive,
fast growing in nature, and hence unlikely to be caught at an early stage. However, it was found that
there is an average of 6.8±3.4 years from the first parental clone to metastasis in the progression of PC
(Yachida et al. 2010). The resulting time window allows for the discussion of pancreatic cancer screening
to increase early detection before patients reach metastasis.

In order to produce effective screening policies, a pancreatic cancer progression model needs to be
developed. Progression models exist with the general underlying assumption that growth is exponential

1044978-1-7281-3283-9/19/$31.00 ©2019 IEEE



Abu-El-Haija, Ivy, Ozaltin, and Park

with a growth rate per unit time to describe the speed at which the tumor progresses. Plevritis et al. (2007)
derived probability models of symptomatic detection and the transition between stages of cancer with an
underlying assumption that the inverse growth rate is Gamma distributed (Plevritis et al. 2007).

There are studies that measure the doubling time of pancreatic cancer which can be linearly transformed
to the inverse growth rate of the tumor (Furukawa et al. 2001; Sun et al. 2014). Furukawa et al. (2001)
studied the pancreatic cancer tumor growth rate in nine patients before metastasis. Their sample yielded a
doubling time of the tumor that ranged between 64 and 255 days (Furukawa et al. 2001). Sun et al. (2014)
developed a mathematical model to replicate pancreatic cell mutations from the first lesion to cancer (Sun
et al. 2014). Sun et al. (2014) used Yachida et al. (2010) patient summary data with their model and
estimated the tumor doubling time to range between 84 and 105 days (Yachida et al. 2010; Sun et al.
2014). However, a distribution of the result could not be inferred due to the small sample of patients used
to estimate tumor doubling time. This distribution can significantly influence the overall progression of
the tumor.

There are studies that reveal the importance of understanding the growth rate of tumors. Mehrara et al.
(2007) performed a Monte Carlo simulation to evaluate the current use of the tumor doubling time as the
measure of tumor growth (Mehrara et al. 2007). The result of Mehrara et al. (2007) simulations indicate
that there are advantages in using the reciprocal of the inverse growth rate instead of the tumor doubling
time when describing the growth rate of a tumor (Mehrara et al. 2007). Weedon-Fekjær et al. (2008)
estimated the growth rate of breast cancer using almost 400,000 women and evaluated that the growth rate
follows a log-normal distribution (Weedon-Fekjær et al. 2008). The study compared their resulting tumor
progression model with existing Markov models in the literature and found that their model has a higher
predictive value of breast cancer progression (Weedon-Fekjær et al. 2008). This highlights the importance
of accurately modeling the growth rate of a tumor. In breast cancer, there is a higher number of patients
and screenings in effect where both lead to large databases that were used to estimate the growth rate of
the tumor. However, pancreatic cancer is less prevalent with a shorter lifespan after detection due to the
late symptoms. Therefore, the challenge of accurately estimating pancreatic cancer growth rate and its
distribution is of higher importance until the distribution can be represented with patient data.

In previous work, we utilized the progression model presented by Plevritis et al. (2007) and adopted
the findings of Furukawa et al. (2001) and Plevritis et al. (2007). In this paper we utilize our progression
model to characterize the effect of the underlying assumption made about the inverse growth rate on tumor
progression. We employ discrete-event simulation to quantify the difference between the models as a
function of various underlying assumptions of the inverse growth rate.

2 METHODS

For this study, we utilized the progression model developed by Plevritis et al. (2007) (Plevritis et al.
2007). We modified the progression model by changing the underlying assumption of the distribution that
inverse growth rate follows. We parameterized the models using patient level data from the Surveillance,
Epidemiology, and End Results (SEER) databases for pancreatic cancer (National Cancer Institute 2015).
We use the cancer stage definitions provided by SEER, where local stage cancer is one that is confined
within the pancreas; regional stage cancer is one that has grown out of the pancreas into neighboring organs;
and distant stage cancer is one that has metastasized and reached distant organs. We define symptomatic
detection as the event of a cancer patient naturally showing symptoms due to the cancer. We created
discrete-event simulation for each progression model created. The simulation models were implemented
using Python 3.6. The remainder of this section summarizes the use of SEER data within the simulation
models and the progression model by Plevritis et al. (2007) with our modifications.
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2.1 Progression Model

The simulated progression models are discussed in detail in (Abu-El-Haija 2019). The framework of each
progression model is characterized by three main events: (i) tumor volume at which symptomatic detection
occurs; (ii) tumor volume at which the transition from the local stage to the regional stage occurs; and
(iii) tumor volume at which the transition from the regional stage to the distant stage occurs. The base
assumption of the models is that tumor volume grows exponentially according to:

V (t) = c0et/R, (1)

where c0 is the spherical initial tumor volume with a diameter of 2mm. The inverse growth rate of the
tumor, R, was originally assumed to follow a Gamma distribution (Plevritis et al. 2007; Atkinson et al.
1983):

ΓR(α,β ) =
β α

Γ(α)
rα−1e−β r,

where the parameters α and β are solved for using the method presented in Plevritis et al. (2007). The
tumor volume doubling time is proportional to the inverse growth rate R, where doubling time (DT) is:

DT = ln(2)×R.

The inverse growth rate, R, defines the underlying behavior of the tumor progression. It is the condition
on which the three main events distributions depend and defined as follows:

1. Distribution of tumor volume at symptomatic detection, D:

FD|R(d|r) = 1− e−γr(d−c0) (2)

2. Distribution of tumor volume at transition from local stage to regional stage of cancer, N:

FN|R(n|r) = 1− e−ηr(n−c0) (3)

3. Distribution of tumor volume at transition from regional stage to distant stage of cancer, M:

FM|N,R(m|n,r) = 1− e−ωr(m−n) (4)

The parameters γ , η , and ω are estimated using SEER data, where the unconditioned distributions
are used instead. To personalize our model to pancreatic cancer, we used the findings of Furukawa et al.
(2001). As the study was based on nine patients only, we could not infer about the distribution of the tumor
doubling time and hence the distribution of the inverse growth rate. Therefore, we first assumed that the
inverse growth rate follows a Uniform distribution, where:

R∼ Uniform(a,b), where a =
64

365 · ln(2)
and b =

255
365 · ln(2)

.

We then assumed that the inverse growth rate follows a Gamma distribution. We used the limits of the
uniform distribution a and b to be the 10th and 90th percentiles, respectively. We also assume the same
mean for both distributions. We iteratively solved for the corresponding parameters of the distribution,
where:

fR(x) =
β α

Γ(α)
xα−1e−βx where α = 5.1590 and β = 8.1832.
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We study the effect of the distribution of the inverse growth rate on the tumor progression model
output. Using the findings of Furukawa et al. (2001), we perform two analyses where we assume the
inverse growth rate follows (i) a Uniform distribution, and (ii) a Gamma distribution. We incorporated the
range of the tumor doubling time and maintained the mean to reduce the variability of the two assumed
distributions. The progression model was assumed to be dependent on race, gender, and age. Considering
gender, two races (Black and White), and four age groups by percentile, we developed sixteen growth
models that were parameterized individually under the two different distribution assumptions of R using
SEER data. We used the Kullback-Leibler divergence measure to evaluate the performance of the two
models compared to the SEER data used, and we found that the model with R∼ Gamma to be a closer fit
to the data than the model with R∼ Uniform.

2.2 Simulation Model

We used the SEER data to build distributions of cancer initiation age. The SEER patient records are
diagnosis records where the given tumor size is at diagnosis. We utilized the inverse of Equation 1,
expressed as:

T (V ) = R ln

(
V
c0

)
(5)

where the T (V ) is the time it takes for the tumor to grow from volume c0 to volume V . Using the age at
diagnosis, tumor diameter, race, and gender, for every patient we:

1. Sampled an inverse growth rate, R.
2. Calculated the time from tumor volume c0 until the indicated volume in SEER using Equation 5.
3. Calculated the age at diagnosis minus the time calculated previously, and record the age of cancer

initiation.
4. Generated a total of ten cancer initiation ages per patient and record the average.

By race and gender, we fit the distributions of age of cancer initiation under both assumptions of R
using Johnson SB. We simulated experiments to study the impact of the inverse growth rate distribution on
the resulting tumor progression timeline. We estimated (i) the population’s average tumor progression; (ii)
a subpopulation of race and gender average tumor progression; and (iii) a subpopulation of race, gender
and age average tumor progression. Patients for every experiment were randomly generated, and the tumor
was created simultaneously using the two distinct progression models.

2.2.1 Patient Creation

To create a cancer patient in the general pancreatic cancer population, we estimated the ratio of White
male to White female to Black male to Black female and found it to be 446:419:65:70. Using the random
uniform number generator, we generated a probability p and compared:

1. if p < 0.446, we set the race and gender to White male, or
2. else, if p < 0.865, we set the race and gender to White female, or
3. else, if p < 0.930, we set the race and gender to Black male, or
4. else, we set the race and gender to Black female.

Based on the generated race and gender, we generate a cancer initiation age from the race/gender specific
distributions created. For the second set of experiments, we wanted to evaluate the average tumor progression
by race and gender. We created patients in a certain race and gender by setting the race and gender rather
than random generation, and we generate a cancer initiation age. For the last set of experiments, we test the
tumor progression by race, gender, and age. For every patient, we used the race, gender, and age specific
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tumor growth parameters that we solved for in Abu-El-Haija (2019) when simulating their tumor growth
(Abu-El-Haija 2019).

2.2.2 Tumor Creation

To simulate tumor progression for a patient, we first simulate an inverse growth rate, either following a
Uniform or Gamma distribution. We utilize the built-in random generation functions in Python. Given an
inverse growth rate, we create the tumor timeline by simulating the tumor volume at the transition from the
local stage to the regional stage, the transition from the regional stage to the distant stage, and symptomatic
detection. To simulate the transition events, we use the inverse of Equations 2, 3, and 4 expressed as:

GX |R,Z(x|r,z) = z− ln

(
1− x
y · r

)
(6)

where R is the inverse growth rate, X is a randomly generated probability from Uniform(0,1), Z is the
starting volume c0 or n, and Y is the distribution parameter γ , η , or ω .

• Step 1 Create a Patient:
– For a heterogeneous population: Using the distribution of race/gender in the SEER data, sample

a race and gender.
∗ Using the race/gender sampled, identify the appropriate distribution of cancer age initiation.
∗ Sample an age.

– For a homogeneous population of race and gender: Specify a race and gender.
∗ Using the race/gender sampled, identify the appropriate distribution of cancer age initiation.
∗ Sample an age.

– For a homogeneous population of race, gender, and age: Specify a race, gender, and age group.
• Step 2 Using the patient’s race, gender, and age from Step 1, retrieve the appropriate progression

model parameters γ , η , and ω .
• Step 3 From the distribution of the inverse growth rate, R, generate a sample r.
• Step 4 Create Tumor:

– Generate a random probability pD to generate a tumor volume at symptomatic detection, d,
using Equation 6.

– Generate a random probability pN to generate a tumor volume at transition from local to
regional, n, using Equation 6.

– Generate a random probability pM to generate a tumor volume at transition from regional to
distant, m, using Equation 6.

• Step 5 Translate tumor volumes generated to time in years using the Equation 5 and record the
time stamps of the events generated.

The model assumes that cancer stages progress from local to regional to distant. We assume that it
is not possible to move from local to distant without passing through the regional stage. The model also
assumes that the event of symptomatic detection is independent from the tumor stage transitions from local
to regional to distant. Figure 1 shows the flow of a simulation run where cancer patients are created, and
the tumor grows based on the patient’s race, gender, and age.

3 RESULTS

For every experiment, we generated 100,000 patients and estimated the average and the 95% confidence
interval around the mean of the time between tumor initiation and transitions in the tumor progression.
We estimated the average effect of the underlying distribution of R by creating a heterogeneous population
of pancreatic cancer patients and simulated their tumor timelines. Figure 2 shows the times from cancer
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Figure 1: Flow diagram of a simulation run of tumor progression.

initiation until transition to regional, transition to metastasis, and transition to symptomatic detection.
The tumor progression was found to be generally slower under the assumption R ∼ Gamma when the
average time until regional, time until metastasis, and time until symptomatic detection of a heterogeneous
population. However, the time span of the regional stage is shorter when R ∼ Gamma, and this trend
continues as we investigate further. Consistently, the average time until symptomatic detection is longer
than the time until metastasis. This indicates that the tumor is often symptomatic at the metastatic stage
under both assumptions of R, which is in agreement with the literature that pancreatic cancer is a late
symptom disease.

We found that there is a trend in the timelines, where the time until transition to regional is longer, the
time in the regional stage is shorter, and the total time until transition to metastasis is longer under R ∼
Gamma. This trend remains in both the progression models by race and gender and the progression models
by race, gender, and age. Figure 3 shows the time until metastasis of pancreatic cancer by race and gender
with R∼ Uniform and R∼ Gamma. Black males have the longest timelines under both distributions of R,
and White females have the shortest timelines, with a difference between of one and a half to three months
between their timelines. There is also a difference of approximately nine months between the progression
timelines of the models under the different assumptions of R when comparing the time until metastasis
within each race and gender group. R ∼ Uniform causes the tumor progression to be more conservative
with the shorter timelines, which consecutively would call for a more aggressive screening policy to detect
the tumor before metastasis.

We further investigated the effect of the distribution of R by generating the tumor timelines by race,
gender, and age group. Figure 4 shows the resulting time until metastasis of the sixteen different subgroups.
The tumor timelines of Black males still remain to be the longest under R∼ Gamma, but they are not under
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Figure 2: Heterogeneous population tumor average timeline.
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Figure 3: Time from cancer initiation until metastasis by race and gender.

R∼ Uniform. The time until metastasis decreased (making the tumor faster in growth) as the patients got
older under R ∼ Gamma for every race and gender group. However, the time until metastasis increased
(making the tumor slower in growth) as the patients got older under R∼ Uniform for White male, White
female, and Black female. Essentially, as the patients got older, the time until metastasis for each of the
different models became closer to each other. Other than the time until metastasis consistently being shorter
under R∼ Uniform, there did not seem to be other differences in the progression.

Time until other generated transitions in the tumor progression among the race, gender, and age groups
were also considered. We analyzed the transitions from local to regional to distant in both models. Figure
5 details the times until transition from local stage to regional stage and transition from regional stage to
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Figure 4: Mean time from cancer initiation until metastasis by race, gender, age group, and under different
inverse growth rate distribution assumptions, labeled in years with 95% confidence interval.
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Figure 5: Mean time in years until tumor transitions from local to regional and from regional to distant by
race, gender, age group, and under different inverse growth rate distribution assumptions.
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distant stage. The time spent in the regional stage across all models with R∼ Gamma is about 0.64 years
(7.68 months). Therefore, only the time spent in the local stage reduces as patients get older leading to
the shorter time until metastasis in the R ∼ Gamma based models. On the other hand, the length of the
regional stage reduces from over a year to less than a year as patients get older in all models with R ∼
Uniform, as patients get older the length of the local stage increases by up to nine months.

4 DISCUSSION AND CONCLUSION

We developed a pancreatic cancer progression discrete-event simulation model to estimate the effect of
the distribution of the inverse growth rate on the output of the progression model. The progression model
consisted of probability distributions of tumor volume at symptomatic detection, transition from local to
regional, and transition from regional to distant. The probability distributions are conditioned on the inverse
growth rate, R. In some literature, the inverse growth rate was assumed to follow a Gamma distribution.
However, studies that estimated the tumor doubling time of pancreatic cancer only used a small sample of
patients. Therefore, when using their result, we could not conclude a distribution that R follows.

We conducted simulation experiments of two growth models where they only differed by the distribution
that R followed: Uniform or Gamma. Generally, we found that the tumor progression models with R ∼
Gamma yielded longer tumor timelines than the progression models with R∼ Uniform. Without knowledge
of the true distribution of R, we cannot conclude on the tumor progression behavior with older versus
younger patients. The progression models with R∼ Gamma indicated that the tumor grows faster in older
patients, while the progression models with R∼ Uniform indicated that the tumor grows faster in younger
patients. This type of information can be extracted from literature on other cancers, yet it remains unclear
in the pancreatic cancer realm.

There is value in accurately modeling the distribution of the inverse growth rate since it is the underlying
distribution of the tumor growth model. There are measures of accuracy, such as the Kullback-Leibler
divergence, that evaluate the performance of the model compared to existing data. In our previous work,
we found that the model with R∼ Gamma as the underlying assumption of the model to be a closer fit to
the data that was used to fit the parameters of the model. However, there can be another distribution of R,
or a Gamma distribution with more appropriate parameters, such that the model would be an even closer fit
to the data. We can conclude that the inverse growth rate drives the tumor progression model, and without
a higher accuracy in estimating R, our models would not well represent pancreatic cancer patients.

We have introduced the problem of scarcity of data in pancreatic cancer and how we used simulation
techniques to show the effects it has on tumor progression modeling. Given the limitation of the doubling
times of pancreatic cancer in the literature, simulation can be used to populate data points to increase the
sample size. In future work, we can extend this model to evaluate the value of information in estimating
tumor doubling time or growth rate. We hope to drive the conversation to recruiting pancreatic cancer
patients and estimating the tumor growth rate such that we can build higher accuracy models.
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