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ABSTRACT

Providing quality emergency care is one of the biggest challenges faced in healthcare today. This article
lays the groundwork for operating and planning emergency care provision in metropolitan environments
using a system approach that goes beyond studying each emergency department in isolation. The approach
consists of the development of an agent-based simulation using a bottom-up approach modeling patients,
doctors, hospitals, and their interactions. The simulation is validated against real historical data of waiting
times in the Stockholm region. Through experimentation with the simulation, changing the way patients
choose emergency departments in metropolitan areas through the provision of information in real-time is
shown to have generally a positive effect on waiting times and the quality of care. The simulation analysis
shows that the effects are not uniform over the whole system and its agents.

1 INTRODUCTION

Demographic changes and high urbanization pose challenges to urban environments to satisfy the demands
of populations for efficient healthcare services. Healthcare systems are consequently growing in size,
complexity, and connectivity. Emergency Departments (EDs) are a part of healthcare systems that are
known to experience the highest levels of uncertainty. EDs encounter difficulties dealing with very
turbulent flows of patients and a significant range of patient conditions (McCarthy et al. 2008). Due to
these difficulties, EDs often experience high levels of crowdedness, which result in long waiting times
(WTs). Long WTs are often related to decreasing the quality of care, patients’ satisfaction, and medical
staff efficiency. Scholars and planners often studied EDs as single entities often isolated from the rest of
the healthcare system. In highly connected metropolitan environments, where there are numerous options
for getting care, the negligence of the context in which EDs operate can have significant effects in planning
and managing healthcare services.

The view of healthcare systems as a small set of components; hospitals, insurers, patients, health
workers, nurses, doctors, managers or even lawmakers, behaving in isolation from each other is abandoned
to embrace new system approaches (Carey et al. 2015). System approaches treat healthcare provision as
networks and components interacting and exchanging flows of information, goods, and transactions. This
paradigm shift is bringing new ways of studying, operating, managing, and designing healthcare systems.

This work views EDs as part of metropolitan environments that are complex adaptive systems (Batty
2013). We propose an agent-based simulation (ABS) that models the system as simple components with own
agency. The ABS investigates the interaction between these components and their effects on the components
themselves and the system overall. WTs, as the primary dependent variable of the simulation, are used
to validate and experiment with the simulation. We use a combination of low-dimensional mathematical
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models and aggregated data for developing and running the simulation for specific scenarios. The simulation
is instantiated with the use-case of the Stockholm Region and its highly connected hospitals. Through this
simulation, we investigate the effects of implementing an information system that can inform patients in
real-time the emergency department (ED) that can provide the fastest emergency care (EC) in the Stockholm
Region.

The remainder of this article contains six sections. The background section shows the relevance of the
study. The third section presents the agent-based approach at a conceptual level and the implementation of
the simulation for the Stockholm Region. Section 4 shows the experiments run with the model, including a
verification against known scenarios. We discuss the results in Section 5. Finally, we present the conclusion
of this work in addition to potential future work.

2 STUDY OF EMERGENCY CARE IN LITERATURE AND INTENDED CONTRIBUTION

EDs have been studied carefully for their crucial role in healthcare systems. EDs experience high levels of
crowdedness and are challenged to be flexible, rapid, and accurate. EDs overcrowding affects negatively
both doctors and patients (Derlet and Richards 2000). Patients have to deal with prolonged WTs, causing
high dissatisfaction, possible pain, and even higher risks of mortality (Guttmann et al. 2011). Doctors, on
the other hand, find themselves obliged to rush to respond to high demands, which worsen the quality of
care received by patients at EDs (Sun et al. 2000). Overloaded doctors tend to rush some of their patients’
related tasks impacting the overall quality of care (Hollingsworth et al. 1998). Hoot and Aronsky’s literature
review of EC outlines possible causes and effects of the overcrowding of EDs (Hoot and Aronsky 2008).
According to the review, inadequate staffing and unfitting patients who do not need EC going all the same
to EDs are amongst the causes of overcrowding.

A measure of overcrowding of EDs is the average or the median WTs at EDs. The WT of a patient is
the time the patient waits at an ED from the moment they arrive into an ED to the moment they interact
with a doctor. WTs are often used to evaluate EDs due to their importance from the patient perspective.
Sun et al. (2000) found evidence of WTs as a source of dissatisfaction for patients. Gerard et al. (2004)
found in a study that the length of the WTs in EDs are the second factor patients care the most about,
just after being consulted by medical staff (doctor or a nurse). Moreover, Mowen et al. (1993) found
that merely informing patients about WTs during their visit increases their satisfaction, regardless of the
accuracy of the information they receive.

Ways to reduce long WTs have been carefully studied in the literature. Operations research models
have been used to evaluate different ways of dealing with WTs at a single ED (Bagust et al. 1999; Stainsby
et al. 2009; Monks and Meskarian 2017). These methods had their shortcomings as they often focused
on steady states and did not consider the chaotic nature of EDs’ flows. Simulations, either agent-based
or discrete event, are amongst the methods used to investigate possible solutions to EDs crowdedness.
Simulation were used for instance to show the effects of manipulating functions such as patient diversions,
staffing, interactions between doctors and patients on the general functions of EDs (Laskowski and Mukhi
2008; Wang 2009).

Most studies of WT and EDs usually limit the scope of their studies to a single ED despite the evidence
that EDs can influence each other in some situations through diversion of an ambulance for example (Hoot
and Aronsky 2008). Laskowski and Mukhi (2008) present an ABS which intended to help ambulance
diversion in a real-life setting. The simulation was designed to provide real-time help concerning scheduling
and diversion in a study similar to Aringhieri et al. (2018). Moustaid et al. (2018) took this further and
built a simple ABS that explores the potential of using a bottom-up approach to model EDs and their WTs
in urban areas. The simulation despite relying on simple building blocks showed a good fit with real-data.

The study of WTs is not only limited to investigating processes taking place inside EDs, but also to
the nature and the drivers of the demand for EDs. McCarthy et al. (2008) shows the unpredictability of
ED flows through a statistical analysis of 1-year data, in the form of flows by hours that show flows to
follow the Poisson distribution. This means that flows per hour are not determined by past hours flows,
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which makes it harder for anyone to predict flows every hour based on recent observations. Patient flows
can also be affected by seasonal factors as Knowlton et al. (2009) found the number of visits to EDs in
California as well as their severity has changed following a heat wave in 2006.

Some studies went further to investigate the characteristics of patients seeking care and the nature of
their visits. Suruda et al. (2005) found that insurance and other socioeconomic factors are significant to
whether or not patients choose to go to an ED. When presented with the choice between multiple EDs as
is the case often in urban areas, Chen et al. (2015) show that distance contributes to the choice of an ED
by patients. Distance alone cannot, however, explain that choice as Brown et al. (2015) found that in some
areas, some patients often drive to EDs that are not necessarily the closest to their location.

This paper intends to present a model that simulates the EDs in metropolitan areas as part of one
englobing system. We see EDs as a complex system subject to phenomena such as emergence and adaptivity,
and in which simple interactions and rules can be at the origin of considerable effects. By capturing relevant
aspects that can affect WTs, we build an agent simulation that can show the effects of small changes in
patient behaviors, or ED organization on the rest of the system. Through the manipulation of the simulation
parameters, we test the effect of information sharing on WTs and the quality of care in multiple EDs at
once. We use the Stockholm Region to showcase the model and its manipulation. The Stockholm Region is
a metropolitan area where healthcare is centralized, and there is a multitude of choice for getting emergency
care in the Region. An advantage of this approach, compared to previous literature of the study of WTs in
EDs, is its ability to show the potential of dealing with crowdedness by manipulating processes and outside
the boundaries of a single ED and seeing their effects over the EDs and the patients. The experiment with
the use of information to choose EDs in metropolitan areas shows the potential of such a development to
decrease WTs in EDs.

3 APPROACH

3.1 Emergency Care Provision as a Complex Adaptive System

Complex adaptive systems are characterized by their large number of components and their non-linear
interactions. EC provision in metropolitan environments is a complex system as they are the space of
interaction between patients, healthcare staff, ambulances, insurers, technology, and different rules and
guidelines. Agent-based simulations are a very efficient tool to model such systems as they can represent
these systems at a microscopic level allowing for the emergence of complexity and adaptivity from the
interaction of the system components. Viewing EC provision as a complex adaptive system, the first step to
model it is to define the scope of the simulation. The scope of this simulation model is limited to patients,
doctors, and EDs. While other factors and agents can affect WTs, the simulation focuses solely on these
three components. By limiting the scope in such a way, the simulation focused on the essentials; WTs, and
quality of care. Patients are at the origin of the demand for care. Doctors are the clinical decision-makers.
Finally, EDs are the place at which the care takes place and often have their modes of functioning. For the
scope of this model, each of these three agents is characterized by its attributes as follows.

• Patients are characterized by their coordinates, symptoms, priority, and other descriptive proprieties.
• Doctors are characterized by their specialty, shift hours, and the ED in which they work.
• EDs are characterized by their location, resources (number of doctors), specialties and their queuing

systems.

The simulation model can be described through the patient journey illustrated in Figure 1. The journey
Figure 1 presents the following.

• Patients are created through a patient creation model. The number of patients and the times of their
appearance are determined through a definition of a demand scenario.

• Patients are given characteristics using models based mainly on data to mimic specific scenarios.
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• Patients with own characteristics choose an ED based on their characteristics and other information
in their environment. The choice is made through a discrete choice model called the hospital
assignment model.

• Patients check into a hospital after a transportation time. They find themselves in a queue depending,
on their priority. Their priority is determined based on their symptoms. Patients then wait until a
doctor meets them.

• A treatment time model determines the amount of time a doctor spends on a patient. The treatment
time model describes the amount a doctor spends on a patient to be dependant on the patient injury,
and the crowdedness in the ED. In such a way, patients who do not require advanced treatments,
will get less treatment time in case the ED is crowded. This model is also a contribution of the
paper, and it is explicitly detailed in the implementation Section 3.3.3. This model is a simple way
of capturing the interaction that takes place between two of the agents in the simulation; doctors
and patients.

• The patient is then out of the ED where they are going back home, to another care establishment,
or a different department in the hospital.

Patient Generation Patient Proprieties ED Assignment

Transportation to EDArrival to ED
Check-in and

Placement in a Queue

Waiting Room
Interaction

with a Doctor

Discharge or Referral

to other Departments

Figure 1: The simulation conceptual model.

The model simulates hence not only EDs, but also the demands and its origins, the assignment of an
ED to a patient and the process that takes place in an ED for patients to get care. This conceptual model
detailed description and implementation for the Region of Stockholm is further explained in Section 3.3.

3.2 Stockholm Region

Stockholm region is the most populated county in Sweden with about 2 million inhabitants living in 26
municipalities. Besides five major hospitals, there are numerous options to access care services. Such options
include primary care centers, telemedicine options, telephone assistance, and specialty care. According
to the Swedish National Board for Health and Welfare (Socialstyrelsen) reports, the five major hospitals
(Danderyd Hospital, New Karolinska Hospital, St-Göran Capio, Södrasjukhuset, Huddinge Hospital) of
the region provide most of the EC serving around 75-100.000 patients each year. While all the hospitals
follow Stockholm Council County (SLL) directives for the provision of care, they have different sizes,
capacities, processes, management styles, and ways of dealing with their patient flows. Stockholm Region
has a very connected healthcare infrastructure characterized by the high exchange of flows of patients and
information between the five hospitals. Stockholm region through annual evaluation reports provides a
details account of the functioning of EC with often a high emphasis on the length of WTs, demographics,
details of the demand for care, and the length of patients stays. We use these reports in combination with
geographic and population data over the past years to implement, run, and verify the simulation.
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3.3 Specification and Implementation of the Models

Through a set of equations describing the models Figure 1, we show the details of the models and the
implementation for the Stockholm Region. As we experiment with different assignment models, their details
are described in Section 4. The simulation is implemented in Matlab R2018a, and the implementation is
tested and validated through unit testing of all its components and equations.

3.3.1 Patient Generation and Patient Proprieties

Generating a patient is a two-step process. First, we determine the number of patients to generate at each
point in time; then we instantiate the patients with their characteristics. The average number of visits to
major hospitals in Stockholm and its distribution has been studied in recent years (Ekelund et al. 2011).
We draw from those studies to build a realistic time distribution of the patients seeking EDs shown in
Figure 2. Figure 2 is based on Stockholm County Council (2013) report. Let sĥ be the share of patients
seeking EDs at the hour ĥ, ĥ ∈ {0,1,2, ...,23}, and N be the total number of patients seeking emergency
care for a day, the average number of patients per hour mĥ is then mĥ = Nsĥ
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Figure 2: Distribution of hourly demand in the Stockholm Region.

A multi-site study of McCarthy et al. (2008) found the hourly arrivals to an ED to follow a Poisson
distribution. As Poisson distribution is often used to simulate arrival rates, we assume this is also the case
for Stockholm. Let rpoiss be a generator of random variables following a Poisson distribution, the number
of patients appearing for each simulated hour ĥ is np(ĥ) defined by np(ĥ) = rpoiss(mĥ).

The choice of a random number generator instead of using a fixed average value is to provide the
simulation with a more dynamic profile of demand. The exact minute each patient is created is a random
minute within the time [ĥ, ĥ+1) drawn from a uniform distribution.

To determine the coordinates of a created patient, first, the patient is assigned a municipality based
on real population data. For this study, two municipalities (Norrtalje and Sodertalje) are not considered
since most patients from these municipalities choose care centers other than the ones considered for this
study (Stockholm County Council 2013). Let popm be the population of a given municipality m of the
considered 24 municipalities of Stockholm Region (m ∈ {1,2, . . . ,24}), a patient is affected a municipality
m with the probability popm

∑l popl
. For a patient p, the patient home municipality pm is determined through

a function pm = mun(po) where po = ( pop1
∑l popl

, pop1
∑l popl

, ..., pop24
∑l popl

) and mun is a random number generator
for the discrete probability distribution P(X = i) = poi, where poi is the ith element of the vector po. The
population data for each year is obtained through SCB (Sweden Statistics).
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Second, a latitude and a longitude in an inhabited area in that municipality are affected to the patient
through a function xy. xy provides a random longitude and latitude in a habitable area within that municipality.
Hence, the exact coordinates are then determined as follows (plon, plat) = xy(pm)

The patient p is affected a symptom ps. We simplify the category of the injuries into two categories,
ps ∈ {1,2}, where 1 refers to extremely urgent conditions, while 2 refers to the rest of injuries. For the
experiments run in Section 4, 6% of the patients are created with extremely urgent conditions. This is
drawn from a Stockholm region report Stockholm County Council (2013). It is important to note that
the process of affecting a geographical location to patients relies on the assumption the all the demand
originates from populated areas.

3.3.2 Hospital Processes and Doctor Assignment

The five major hospitals in Stockholm, Dandyred Sjukhus (DS), New Karolinska Solna (NKS), St-Goran
Hospital (St-Goran), Sodrasjukhuset (SoS) and Karolinska Huddinge (KH) are referred to as hospital 1,2,3,4,
and 5, in the same order indexed by the variable h ∈ {1,2,3,4,5}.

The hospitals are created based on historical data profiles. The hospitals, and hence their EDs, have a
geographical location consisting of its coordinates (hlong,hlat). Furthermore, each ED is given a dynamic
capacity defined by several active doctors per hour, as shown in Figure 3. Figure 3 is based on Stockholm
County Council (2013) reports. Each doctor is characterized by their active shift hours. The doctor shifts
are created in such a way that the simulated number of doctors active per hour corresponds to the average
doctors active per hour counted over the year 2013 (Stockholm County Council 2013).
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Figure 3: Hourly staffing of different EDs in the Stockholm area.

Upon the ED arrival, the patient is placed in a queue, depending on their priority. The ED is composed
of two priority queues, high priority, and low priority. This is rather a simplification as ED queues are
often composed of more than the two. This simplification allows distinguishing priority 1 as the major
priority often for trauma and life-threatening conditions, while 2 is for the rest of injuries. We assume
that all doctors can treat all conditions. The process of assigning a patient to a doctor in all the EDs is as
follows. If a doctor is free, they are assigned the next patient in the high priority queue. If there are no
patients in that queue, they take the patient that waited longest in the low priority queue.

3.3.3 Treatment Times Model

We define the treatment time as the total amount of time spent by a doctor on a patient, including all the
tasks related to that specific patient. We propose the model equation (1). We assume that the treatment
time of a patient decreases when an ED crowdedness reaches a certain threshold. This model is in line with
studies that concluded the adverse effects of crowdedness on the quality of care. McCarthy et al. (2014)
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mention crowdedness as a possible reason for doctors to rush the execution of their tasks. The reduction of
the time spent on a patient is often due to doctors moving on fast to a patient awaiting care, reducing tasks
such as documentation or communication with other healthcare staff. The proposed model in equation (1)
decreases explicitly the treatment time a patient gets when the number of patients awaiting care is bigger
than the number of doctors on shift. The details of the model are as follows. Let h be an ED, p a patient,
and t a time step.

• pp is defined as the patient’s priority, where pp ∈ {1,2} . 1 refers to a high priority and, 2 refers
to a low priority.

• dh(t) is defined as the number of doctors on shift and active at the ED h at time t.
• wh(t) is defined as the number of patients waiting for treatment at the ED h at time t.
• kh is a control factor that controls the steepness of the decrease in treatment times. This parameter

depends on each ED to allow different EDs to have profiles of treatment times variations.
• Let Th be the treatment time under non-crowded conditions, i.e., when the doctor is not under a

high stress of demand. Tmin is the absolute minimum amount of time a doctor spends on a patient.

Given these parameters, the model used for estimating the treatment time is defined through the function
tt as follows.

tt(p,h, t) =

{
Th if wh(t)≤ dh(t) or pp = 1
max{Tmin,2Th(1− 1

1−e−kh(wh(t)−dh(t))
} otherwise

(1)

Figure 4 shows the plot of that curve for different values of kh = 0.02. Figure 4 is based on the
theoretical model equation (1). The model can be explained in the following terms.

• A patient with a high priority (i.e. pp = 1) will always get a normal treatment time that is Th.
• If the patient does not have a high priority, two cases emerge. 1) If the number of patients is below

the number of doctors on shift, the patient can expect a full regular treatment. 2) If the number of
patients in the waiting room exceeds the number of doctors on shift. The patient treatment time
will be decreased depending on the total number of patients in the waiting room and the available
resources at the hospital. The steepness of the decrease depends on the ED; this is modeled through
the parameter kh. A high kh means that the treatment times will decrease at a faster rate depending
on the queue size.
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Figure 4: Time spent by a doctor on a patient as a function of the number of patients awaiting care,
kh = 0.02.
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In order to experiment with the model, we need to provide values to the independent model parameters,
namely, Th, Tmin and kh. To have realistic times, we rely on previous observational studies that showed
that the median time spent on a patient is about 90 minutes, where 25% of that time is used for direct
interaction (Füchtbauer et al. 2013). We set that as the minimal treatment time. Hence, Th = 90 minutes
and Tmin =

Th
4 . The resulting range of treatment time is then about 67 minutes. It is important to note

that the treatment time is different from the length of stay of a patient. The treatment time is rather the
amount of time a doctor spends on tasks related to the patient. This simplification allows representing the
interaction between doctors and patients without details that are not necessary for the scope of this study.

Finally, the parameter k values were given the values, k = k1≤h≤5 = (0.11,0.11,0.8,0.06,0.11). These
values were the result of a calibration that was done for each hospital individually based on demand for
the year 2013 (Stockholm County Council 2013).

4 EXPERIMENTS AND RESULTS

In this section, we experiment with different scenarios using the Stockholm Region data. The first experiment
intends to verify the simulation against real historical data. The second experiment shows a different hospital
assignment model that relies on information to patients and its effects on WT and on treatment times. The
time unit of the simulation is 1 minute. Each simulation run consists of 15 days of simulation.

4.1 Validation Experiment: Realistic ED assignment Model

To validate the simulation, we compare its results to a known realistic scenario. In order to have a realistic
scenario, we use a data-based hospital assignment model. In fact, Stockholm County Council (2013) shows
a significant difference between the municipality of the origin of the patient and the hospital they chose
for getting emergency care. We build a fraction origin-destination (OD) matrix based on the results of the
report. Let B be the matrix of size (24,5). Bm,h denotes the proportion of the patients from municipality m
who choose to go to ED h on average. Let ph be the ED chosen by a patient p. ph is defined by equation
(2). Bpm is the row pm of the O−D matrix B, pm is the municipality of the patient. randha is a random
number generator for the discrete probability distribution P(X = i) = Bpm,i.

ph = randha(Bpm) (2)

This random choice model mimics the choice of patients to EDs, and the randomization allows for
dynamism in the simulation. The travel time to the hospital is then computed as proportional to the distance
between the patient coordinates and the hospital coordinates.

The validation experiment uses population data and demand data for 3 years 2013-2015 (Socialstyrelsen
2015). Each scenario is defined by the average daily demand over a year, and the population distribution
of that year. Each of the three scenarios is simulated for 20 times. The resulted WTs of the simulation that
are taken into consideration for drawing the results are the last five days of simulation (the total number
of simulated visits used to draw the conclusions presented hereafter is 348.409 simulated visits). Figure
5 shows a boxplot of patients WTs for each hospital for each of the scenarios simulated. The bottom and
top edges of the box indicate the 25th and 75th percentiles of WTs for all patients, and the dashed lines
show the extent of the results.

In-line with Sargent (2013), the boxplot Figure 5 is used as a validation. It shows a way to see the
simulated WTs against the real median WTs for each year. The results show a good fit against the data.
The boxplot presents a considerable variation of WTs patient to patient. The general tendency that the
hospital 3 is best at dealing with WT, the hospitals 1, 2 and 5 are generally performing within the same
intervals, and the hospital 4 having longer WTs is the same tendency that is observed in EDs reports in
Stockholm (Socialstyrelsen 2015). This model validity can be further verified if highly granular real-data
of visits in the Stockholm Region is made available in the future.
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Figure 5: Boxplot of the simulation waiting times compared to real data.

4.1.1 Experiment 2: Informed Choice Model

In this experiment, we show the effects of a different way of choosing an ED on WTs. This experiment
relies on the fact that information available to patients increases the visibility of EDs and their status.
Patients or patients transportation can by the use of information make a better choice of ED in order to
meet a doctor in the best delays. The experiment is set up as follows. A portion of the patients can choose
the hospital that can provide the fastest patient contact with a doctor. To achieve this, the expected WT at
the time t, at the hospital h, are approximated by equation (3).

WT (h, t) =
wh(t)Th

dh(t)
+∑

p

tt(p,h, t)
dh(t)

(3)

The first term in equation (3) is the expected WT based on the number of patients in the queue waiting
to meet a doctor; wh(t) , over the expected service rate dh(t)

Th
. The second term is the average amount of

time left for treatment at the time t , at the same ED. Combining with transportation time from the patient
location to the hospital in question transTime(p,h, t), the model for this experiment becomes the following:

ph(t) = argmin(transTime(p,h, t)+
wh(t)Th

dh(t)
+∑

p

tt(p,h, t)
dh(t)

)h∈{1,2,3,4,5}. (4)

Where argmin( f (x))x∈X is the function that returns x that minimizes the value f (x) over the set X .
Figure 6 shows the results of the simulation for different scenarios of the use of this model. The

parameter α represents a compliance rate, i.e., the percentage of patients whose hospital assignment model
is Equation 4. The rest of patients relies on the previous model (equation (2)). The results in Figure 6
show that beyond the point 50% compliance rate, there are no difference in the results. The WTs decrease
mainly for hospital 4 and 1 but they also increase slightly for hospitals 3 and 5 while hospital 2 WTs
remain the same. The reduction overall all the system given this assignment model, is 7%. These difference
are statistically significant using an unpaired t-test to compare average WTs when α = 0 (corresponding
to no use of information, i.e., choice model equation (2)) and α = 1 (corresponding to all patient using
information , i.e., equation (4)) for each hospital and for the system overall, with a level of significance of
0.05.
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Performing the same analysis for treatment times shows that the average treatment times improve for
the hospitals 1,2,4, and 5. This shows that a new distribution of patients, while it might not always decrease
WTs, can affect the quality of care received at the EDs. Doctors with fewer patients waiting will spend
more time with patients they are treating, hence having a minimal effect on WTs, but a strong positive
effect on the patient-doctor time and minimizing the doctors’ overload. The increase in treatment times is
not observed for hospital 3. Further analysis of hospital 3 shows that under the informed choice model, the
demand increases in hospital 3, resulting in longer queues, ultimately resulting in lower treatment times.
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Figure 6: Average waiting time per hospital (ED) given different compliance rates.

5 DISCUSSION

The proposed simulation shows the plausibility of representing the provision of emergency care in a
metropolitan area using an ABS and a set of simple low-dimensional data-based and theory-based models
representing the way patients appear, choose an ED, and interact with doctors. The simulation, while it
intended to represent the real system and through the use of realistic data provided plausible scenarios, does
not represent a one-to-one relationship to the system it is representing. The model equation (1) over-simplifies
processes taking place inside EDs. It however succeeded in capturing the dynamic relationship between
crowdedness and treatment times relying on very few parameters. Figure 5 shows that the simulation results
follow the same pattern that is seen in real data over the past years. The use of this validation method is
acceptable as it is very unlikely for a simulation of such complex system to produce data that are exactly
or to a statistical level of significance comparable to the real system data (Kleindorfer et al. 1998).

The second experiment investigated the effect of having a different model for the choice of an ED.
The experiment showed that if patients choose the ED that provides the fastest contact with a doctor, then,
average WTs will decrease while increasing the average treatment time that patients get. However, these
improvements are not uniform over all the agents and subsystems of the system, as shown by the hospitals
specific analysis (Figure 6). The improvements at the EDs are different as some gain in fact in a reduction
of WTs, while others gain more in increasing average treatment times.

Practically, the results also show that if one is to implement such an information system in a real-world
environment, it is enough if one out of every two patients use it as no significant effect take place beyond that
point. Today, only ambulances are aware of the status of crowdedness at EDs often through communication
with ED staff. Since the ambulance transportation represents a small proportion of all transportation to ED
today in cities, informing ambulances only is not going to reach optimal distribution of patients around all
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the city EDs. For ED management, this means that information sharing on WTs can benefit the patients
by showing them in real-time the best choice for getting EC. The results show a possible decrease in WTs,
which is a major source for dissatisfaction for patients and at the origin of possible complications and
decrease in quality of care.

6 CONCLUSION AND FUTURE WORK

This study showed a transparent development and implementation of a verifiable agent-based model
that simulates metropolitan EC as the interaction of three agents; patients, doctors, and hospitals. The
simulation relied on low-dimensional models of interaction defining treatment times, choice of EDs and
doctor’s assignment. The implementation of the Stockholm Region use case showed results that follow the
same patterns seen in the real data. Furthermore, the simulation approach showed that the patient choice
of an ED could affect WTs and treatment times in a significant way. The experiment showed that the
provision of information on WTs to patients could redistribute flows. The resulted redistribution could
improve the overall WTs, increase patients’ treatment times and quality of care or a combination of both.
The resulted changes are not uniform over patients, doctors, or hospitals.

Further work with the model can focus on providing a more detailed model for the hospital functioning, as
it was simplified in this work. Details can categorize doctors into specialties as it is often the case (medicine,
trauma, infection, and orthopedics, for example) and can include more queues than two. Computational
integration of the current simulation with the already existing simulations for different EDs can improve this
model representation of operations in EDs. This development can see the effects of some local changes in
specific EDs on the overall system. From patients or doctor’s perspective, using elements of participatory
simulation or gaming can make the simulation more realistic in including real human and social behavior
into simulations, but it can also make scientific methods such as simulations available to a broader audience
and within the healthcare planning community specifically.
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