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ABSTRACT

Tail risk estimation for portfolios of complex financial instruments is an important enterprise risk management
task. Time consuming nested simulations are usually required for such tasks: The outer loop simulates
the evolution of risk factors, or the scenarios. Inner simulations are then conducted in each scenario to
estimate the corresponding portfolio losses, whose distribution entails the tail risk of interest. In this paper
we propose an iterative procedure, called Importance-Allocated Nested Simulation (IANS), for tail risk
estimation. We tested IANS in a multiple-period nested simulation setting for an actuarial application.
Our numerical results show that IANS can be an order of magnitude more accurate that a standard nested
simulation procedure.

1 INTRODUCTION

Tail risk estimation is an important task in financial risk management, as evidenced in its ubiquitous
presence in regulations for financial and actuarial industries: Solvency II (EIOPA 2014) applies to most
insurers in the European Union, which requires evaluating the 99.5% Value at Risk (VaR) of the change
in surplus each year. In North America, insurers use a similar approach under their Own Risk Solvency
Assessment (ORSA) obligations (NAIC 2014), where the Conditional Tail Expectation (CTE), also known
as the Expected Shortfall (ES), is the tail risk measure of interest.

Under realistic economic models and reasonable variety of financial instruments, tail risk estimation,
i.e. estimation of ρ(L) where ρ is the risk measure and L = g(Y,E[X |Y ]), usually calls for nested simulation:
The outer level simulation projects the underlying risk factors Y , such as values of market indexes and
interest rates, to a future time, such as 1 day or 1 year. These outer level sample paths are also known as
the scenarios. Then inner level simulations are conducted to determine the portfolio values E[X |Y ], which
give rises to the portfolio loss L in each scenario based on loss function g. Finally, the empirical distribution
of the nested-simulated portfolio losses is then used to estimate the tail risk measure of interest.

In this article we focus on estimating ES efficiently via simulation, although the simulation procedure
we introduce here is also applicable to estimation of other tail risk measures such as VaR. ES can be viewed
as the average of the largest losses in the tail of the loss distribution. For example, given M equally likely
scenarios with losses L1, . . . ,LM and a tail probability α (e.g., α = 0.95), the 100α%-ES is given by

ESα =
1

(1−α)M

M

∑
j=αM+1

L( j). (1)

where L( j) is the jth smallest loss, which is also known as the jth order statistic of the portfolio losses.
We refer to the (1−α)M scenarios whose losses appear in (1) as the tail scenarios as they belong to the
tail of the loss distribution; the other scenarios are referred to as the non-tail scenarios.
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Nested simulation is notoriously known for its excessive computational burden, which hinders its
applicability in practice, where computational power and run time are constrained. To address this
computational challenge, Gordy and Juneja (2010) studied the optimal allocation of a given simulation budget
between the outer and inner simulation. Broadie et al. (2011) proposed algorithms to adaptively allocate
the given simulation budget to inner simulations. Liu and Staum (2010) used stochastic kriging (Ankenman
et al. 2010) to approximate the portfolio loss as a function of the risk factors to improve the estimation
efficiency. In addition, the regression method proposed by Broadie et al. (2015) and the kernel smoothing
method proposed by Hong et al. (2017) both aim to reduce the number of inner simulations. Readers are
encouraged to refer to Hong et al. (2014) for a review on simulation methods in tail risk estimation.

We address the computational challenge of tail risk estimation via nested simulation by first identifying
some highly likely tail scenarios (HLTS), on which the available computational budget will be concentrated.
The HLTS are identified through an innovative application of simple proxy models and concomitant of order
statistics (COS) (David 1973). Suppose (Ui,Vi), i = 1, . . . ,n are n independent pairs of r.v. with a common
bivariate distribution. We denote the rth order statistic among n Ui’s as Ur:n. Then the V-variate associated
with Ur:n is called the concomitant of the rth order statistic (David et al. 1977), and is denoted as V[r:n]. The
rank of V[r:n] among all n Vi’s are denoted as Rr:n. In other words, Rr:n = s implies V[r:n] =Vs:n. The term
concomitant of order statistics was coined by David (1973) and was independently studied by Bhattacharya
(1974) with a different name induced order statistics. One well-known application (COS) is to select the
best k objects, i.e., Vi’s, out of n candidates based on some auxiliary observations, i.e., V̂i’s (Yeo and David
1984). In our context, we aim to select (1−α)M tail scenarios associated with the true inner simulation
model, with high confidence, on the basis of the portfolio losses associated with the proxy model.

Variable annuity (VA) are insurance contracts that are widely used to provide retirement income. Its
annual sales in the U.S. market in recent years has been around $100 billion (LIMRA Secure Retirement
Institute 2017). In addition to death and survival benefits to the policyholder, a VA contract also offers
benefits that are linked to the performance of certain financial assets, e.g. stock and bonds. As insurance
products, such equity-linked benefits often have embedded guarantees to protect the policyholder from
downside market risks. From the insurer’s perspective, these guarantees can be viewed as embedded
financial options. The complexity of the embedded options varies: from European put options of standard
Guaranteed Minimum Maturity Benefits (GMMB) to complex combinations of path dependent, exotic
lookback and tandem options of the Guaranteed Minimum Income Benefit (GMIB) studied by Marshall
et al. (2010). Similar to the risk management of financial options, in practice insurers commonly use a
dynamic hedging strategy to mitigate the financial risks of the guarantees in a VA contract, where a hedging
portfolio is set up and rebalanced periodically at some rebalancing times. For a comprehensive review of
different types of guarantees offered in VA contracts, the hedging of these embedded guarantees, and the
modeling of the contracts, we refer readers to Hardy (2003). For ease of exposure, we focus on standard
GMMB contracts in this article. The proposed procedure, however, can be applied to more complicated
VA contracts.

VAs are often long-term policies, so simple economic models such as log-normal returns with constant
volatility are often insufficient for risk management purpose. Moreover, it is a standard practice for insurers
to dynamic hedging programs to mitigate the underlying risks of VA contracts. As a result, assessing the
tail risks such dynamic hedging program requires a multi-period nested simulation procedure, which is
considerably more complicated than the single-period nested simulation studied in most literature. We
consider a multi-period nested simulation setting in our numerical experiments.

The remainder of this article is organized as follows: Section 2 provides an overview of the dynamic
hedging practice of VA contracts and the process of a standard nested simulation. Section 3 presents an
Important-Allocated Nested Simulation procedure that uses proxy modeling and the rank of concomitant
to find the cut-off for potential tail scenarios. Section 4 illustrates the performance of the proposed method
in numerical experiments. Section 5 concludes.
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2 MOTIVATING EXAMPLE: DYNAMIC HEDGING VIA NESTED SIMULATION

In this section we present the settings, notations, and assumptions through a motivating example: estimation
of the ES of the hedging error for a delta-hedged financial instrument (which could itself be an instrument
or a portfolio of instruments) whose value is affected by some underlying risk factors. This example is
also relevant to VA as many embedded options in a VA guarantee can be modeled by some financial
instruments under some simplifying assumptions. In addition, this example illustrates the multi-period
nested simulation that we are interested in this article.

In a dynamic hedging program, a hedging portfolio is set up using stocks, bonds, futures and other
derivatives to offset or mitigate the risks of the instrument due to fluctuations of the underlying risk factors.
For example, a vanilla European put option whose underlying asset is a stock may be hedged by a short
position in the underlying stock and a long position in some risk-free bonds. The hedging portfolio is
rebalanced periodically, responding to changes in the risk factors. For simplicity, in this article we consider
delta hedge programs, in which the composition of the hedging portfolio at time t is determined by the
sensitivity of the instrument’s value with respect to the risk factor at that time, i.e., the delta at time t, ∆(t).

Let T be the maturity of the instrument of interest and let S(t) be the value of the relevant risk factors
at any time 0≤ t ≤ T . For simplicity we consider one underlying asset S(t) but the following discussions
can easily be generalized to multiple risk factors. We assume that these the underlying asset can be long or
short by any amount at any time. Without loss of generality, let t = 1,2, . . . ,T be the periodic rebalancing
times for the hedging portfolio. In a delta hedging program, at time t the hedging portfolio is composed of
∆(t) units in S(t), and amount B(t) in a risk free zero coupon bond maturing at T . Then, for t = 0,1, . . . ,T ,
the value of the hedging portfolio at t is given by

H(t) = ∆(t)S(t)+B(t). (2)

In a special case S(t) follows a Geometric Brownian Motion, i.e. the Black-Scholes economy, by the
risk-neutral pricing theory the price of a vanilla European put option would then be

H(t) = Ke−r(T−t)
Φ(−d2)−S(t)Φ(−d1), (3)

where K is the strike price, T is the maturity date, r is the per-period continuously compounded risk free
rate, and Φ(x) is the cumulative density function of the standard Normal distribution and

d1(t,T ) =
ln
(

S(t)
K

)
+
(
r+σ2/2

)
(T − t)

σ
√

T − t
d2(t,T ) = d1(t,T )−σ

√
T − t. (4)

In addition, the hedging portfolio for the put option in this special case consists of ∆(t) =−Φ(−d1) units
of the underlying asset and B(t) = H(t)−∆(t)S(t) invested in a zero coupon bond maturing at time T .

Regardless of the model for S(t), suppose the per-period continuously-compounded interest rate is a
constant, denoted by r. Then at the end of the tth period (or equivalently at time t +1), the value of this
hedging portfolio is given by

HBF(t +1) = ∆(t)S(t +1)+B(t)er (5)

where the superscript “BF” denotes the hedge brought forward (from time t) and the argument (t + 1)
indicates its value at time t + 1. The hedging error incurred at each rebalancing time t is the difference
between the cost of the hedging portfolio at that and the value of the hedging portfolio brought forward
from the previous period, i.e.,

HE(t) = H(t)−HBF(t), t = 1, . . . ,T. (6)

The costs to set up the initial hedging portfolio, H(0), and the present value of the periodic hedging errors,
H(t) for t = 1, . . . ,T , are recognized as the profit and loss of the hedging program, which is the loss random
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variable to which we apply a suitable risk measure. Mathematically,

L = H(0)+
T

∑
t=1

e−rtHE(t). (7)

In general, a multi-period nested simulation is needed to estimate the ES of the hedging loss random
variable in (7). A standard multi-period nested simulation process is detailed in the following section.

2.1 Standard Multi-period Nested Simulation Procedure

In a multi-period nested simulation, the outer-level simulation generates M sample paths of risk factors
under the real-world measure (or the P-measure), denoted by S j := {S j(t), t = 0, . . . ,T}, for j = 1, . . . ,M.
Each sample path has T realized values of risk factors at different times. Given the realized values of
risk factors at time t in the jth sample path, S j(t), inner-level simulations are conducted to estimate the
corresponding H j(t), ∆ j(t), and B j(t). In each of the N inner simulation at time t, the sample path is
initialized with Si j(t) = S j(t), for i = 1, . . . ,N. Then inner simulations are performed to obtain i.i.d samples
of Hi j(t) and ∆i j(t). More specifically, the hedging portfolio value Hi j(t) can be estimated by Monte Carlo
under the risk-neutral measure (or the Q-measure). The sensitivity or Greeks, e.g. ∆i j(t), can be estimated
by the Infinite Perturbation Analysis (IPA) method (Broadie and Glasserman 1996; Glasserman 2013), the
likelihood ratio method (L’Ecuyer 1990), simultaneous perturbation (Fu et al. 2016), etc. Then the hedging
portfolio value, the delta and the hedge bond value at time t on outer-level sample path j are estimated as

H j(t) =
1
N

N

∑
i=1

Hi j(t), ∆ j(t) =
1
N

N

∑
i=1

∆i j(t), B j(t) = H j(t)−∆ j(t)S j(t).

When inner simulations for all t = 0, . . . ,T are completed for the jth sample path, then the hedging error
in the jth scenario, L j, can be calculated based on (2), (5) – (7). Finally, given a prescribed confidence
level α , the ESα is then estimated by (1) using the simulated hedging losses for all M scenarios.

Compared to the usual single-period nested simulation in other studies, the multi-period nested simulation
described above has three nested for-loops: i) for each inner loop simulation i; ii) at each projection time
point t; iii) in each outer-level sample paths j. In particular, the inner simulation is performed at every
time-t along each outer-level sample path, rather than one fixed risk horizon (e.g., 1 day or 1 year). This
additional level of simulation further aggravates the computational burden by orders of magnitudes.

The different purposes of the outer- and inner-simulations result in different stochastic asset models
being applied. For the purpose of estimating ES of L, a real-world model is used in outer simulations
of stock price paths to examine losses associated with the financial instrument under realistic scenarios.
Meanwhile, a risk-neutral model is used in inner simulations for estimating H(t), ∆(t), and B(t) based on
risk-neutral pricing theory (Hardy 2003).

3 THE IMPORTANCE-ALLOCATED NESTED SIMULATION (IANS) PROCEDURE

In this section, we present in Algorithm 1 an outline of Importance-Allocated Nested Simulation (IANS)
procedure for estimating the ESα of a VA GMMB contract. The IANS procedure replaces the inner
simulation steps in the standard nested simulation described in Section 2.1 with a two stage process. Its
goal is to achieve higher accuracy in tail risk estimation under a fixed computation budget.

The user must specify some parameters and experiment design choices that govern the behavior of
the IANS procedure. For a VA GMMB contract, the put option in a Black-Scholes economy identified
in Section 2 is an obvious proxy derivative, as the option payoffs are identical to the guarantee payoffs.
To ensure that the proxy losses are highly correlated with the true values under the inner simulation
asset model, we dynamically calibrate the Black-Scholes implied volatility in the proxy model to the
conditional expected volatility of the real world model, based on the scenario path up to the valuation.
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Algorithm 1: Importance-Allocated Nested Simulation of losses for a Delta-hedged VA contract.
Initialization: Simulate M outer scenarios, each is a T -period simulated stock price sample path under the

real-world measure.
Stage I: Identification of highly likely tail scenarios (HLTS)

I.1 Select a proxy financial derivative and associated asset model which provide tractable, analytic hedge
costs, and for which the payoff which is expected to be well-correlated to the VA guarantee costs.

I.2 Calibrate the proxy asset model to the underlying risk-neutral asset model in inner-level simulations.

I.3 Implement nested simulation procedure in Section 2.1 but with the analytic hedge calculations for the
proxy derivative and asset model replacing the inner simulation step.

I.4 Identify MH = (1−ξ )M HLTS with the largest simulated proxy loss in Step I.3 for some ξ ∈ [0,α].

Stage II: Nested simulation with concentrated computation budget

II.1 Allocate remaining computational budget to the MH HLTS.

II.2 Implement the inner simulation step in Section 2.1 with the original risk neutral asset model and VA
payoff, but only for the MH outer scenarios identified in Step I.4.

II.3 Identify the MT = (1−α)M largest losses based on the inner simulations.

II.4 Compute output as ESα = 1
MT ∑

MH

j=MH−MT+1 L( j).

See Proposition A.1 and A.2 in Dang et al. (2018) for details of this calibration. Unlike a standard proxy
approach, the highly-likely tail scenarios identified in Stage I of Algorithm 1 do not need to accurately
assess the loss values for those scenarios – the proxy step is only for ascertaining a ranking of the loss
by scenarios. This means that the IANS procedure is expected to perform well as long as the rankings of
losses between the proxies and original models are highly correlated, even if the losses themselves are not.

The proxies selected in Step I.2 cannot perfectly capture the complexities of the original asset model and
VA contract of interest, resulting in potential misclassification of tail scenarios. Therefore we select a proxy
confidence level ξ in Step I.4 with some safety margin, so that α−ξ ≥ 0. We use these MH = (1−ξ )M
HLTS to identify the largest MT = (1−α)M simulated loss based on the inner simulations, assuming that,
with high confidence, the true tail scenarios are a subset of the MH HLTS. This proxy confidence level
ξ is an experiment design parameter in IANS. If ξ is very small, the likelihood of capturing the true tail
scenarios is high, but at the cost of running the inner simulations on a large number of outer scenarios.
Given a fixed budget for the inner simulations, this will generate higher mean square errors in the loss
values and ES estimates. On the other hand, if ξ is close to α , the inner simulation budget is focused on
fewer scenarios, so those included will have more accurate loss estimates, but some tail scenarios will be
wrongly omitted because the proxy loss ranking is not comonotonic with the true loss ranking. Hence there
is a trade-off between a high likelihood of including the true tail scenarios (ξ → 0) and high concentration
of simulation budget in Stage II (ξ → α).

In this article, we studied two methods to determine the proxy confidence level ξ in Step I.4: By
choosing a fixed ξ or by choosing a ξ implied by the distribution of Concomitant of Order Statistics (COS).

3.1 IANS Procedure with Fixed ξ

We first explored the option of choosing a fixed proxy confidence level ξ = 90%, or equivalently a safety
margin of α−ξ = 5%. This choice was based on experience with the nested simulation experiments of
GMMB contracts. We show in Section 4 that this choice of ξ produces satisfactory results.
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3.2 IANS Procedure with ξ Implied by the Distribution of Concomitant of Order Statistics (COS)

Even though the fixed proxy confidence level ξ in Section 3.1 works well in our numerical experiments,
there is no statistical guarantee of its effectiveness on other asset and liability models. As such, we developed
a different approach to determine ξ based on the statistical properties of Concomitant of Order Statistics.

A nested simulation using the IANS procedure generates a sample with MH = (1− ξ )M pairs of
bivariate output, corresponding to the MH HLTS identified in the IANS procedure. Each pair of output
consists of hedging loss estimated by proxy and by inner simulation, denoted by (L̂i,Li), respectively, for
i = 1, . . . ,MH . Given this sample, we try to determine if the MT = (1−α)M true tail scenarios are a
subset of the MH HLTS. For this purpose, we only need to focus on the quantile of proxy loss and inner
simulation loss, rather than the actual value of such losses, which simplifies the problem to one with a
bivariate uniform distribution. Because the order statistics of the proxy loss among all scenarios are known,
we can study the quantile of inner simulation loss as a concomitant of the quantile of proxy loss. We first
derive the first and second moment of the rank of concomitant in a bivariate uniform distribution. We then
illustrate how they can be applied in the selection of the proxy confidence level ξ in the IANS procedure.

3.3 Rank of Concomitant of Order Statistics

David et al. (1977) derived a general expression for the expected value of Rr:n, E[Rr:n], for any bivariate
distribution of (U,V ). As discussed in Section 3.2, quantiles of losses, which are the random variables
(U,V ) we focus on in this study, have a bivariate uniform distribution. This allows us to use the copula
function C(U,V ) to denote the distribution function of (U,V ). We also denote the density function of the
copula as c(U,V ). Using the results in (David et al. 1977), we derive Proposition 1.
Proposition 1 Suppose (U,V ) has bivariate uniform distribution. In a sample with n pairs of (U,V )’s, the
expected value of the rank of concomitant of U’s rth order statistic is

E[Rr:n] (8)

=1+n
(∫ 1

0

[∫ 1

0
C(u,v)c(u,v)dv

]
fUr−1:n−1(u)du+

∫ 1

0

[∫ 1

0

(
v−C(u,v)

)
c(u,v)dv

]
fUr:n−1(u)du

)

where fUr:n(u) is the density function of Ur:n. More specifically, fUr:n(u) =
n!

(r−1)!(n−r)! u
r−1(1−u)n−r.

Furthermore, in O’Connell (1974), the author derived an expression for E[R2
r:n], where U and V are

linearly correlated. Following the same methodology as in O’Connell (1974), we derived Proposition 2.
Proposition 2 Suppose (U,V ) has bivariate uniform distribution. In a sample with n pairs of (U,V )’s, the
second moment of the rank of concomitant of U’s rth order statistic is

E[R2
r:n] = 3E[Rr:n]−2+n(n−1)×

(∫ 1

0

[∫ 1

0

(
C(u,v)

)2c(u,v)dv
]

fUr−2:n−2(u)du (9)

+
∫ 1

0

[∫ 1

0

(
v−C(u,v)

)2c(u,v)dv
]

fUr:n−2(u)du

+2
∫ 1

0

[∫ 1

0
C(u,v)

(
v−C(u,v)

)
c(u,v)dv

]
fUr−1:n−2(u)du

)

Given Proposition 1 and 2, the variance of Rr:n can be easily derived.
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3.4 Application in Importance-Allocated Nested Simulation

Given Algorithm 1, the optimal proxy confidence level ξ in the IANS method is the highest ξ such that the
MT true tail scenarios are a subset of the MH HLTS. This is equivalent to the highest ξ such that, among
all M outer loop scenarios, the lowest rank of proxy losses corresponding the largest MT inner simulation
losses is greater than ξ M. Since we could not find this optimal ξ without a full nested simulation of all M
outer loop scenarios, we attempt to answer a similar question instead. That is, what is the highest value
of ξ such that the rank of the concomitant (i.e. the inner simulation loss) of the (ξ M+1)th proxy loss is
higher than αM? We propose the following iterative process to find this answer.

Given M outer level sample paths and their associated proxy losses L̂i, i = 1, . . .M, we start with an
initial proxy confidence level ξ = ξ0 that is slightly lower than α , e.g. ξ0 = 92% for ES95% estimate, and
identify the set of MH = (1−ξ0)M HLTS with the largest proxy losses L̂i. We then implement the inner
simulation steps in Section 2.1 only on this set of HLTS and collect MH pairs of bivariate output (L̂i,Li).
We convert each bivariate output to its marginal quantiles among the MH samples. The converted samples
are denoted as (Ui,Vi), for i = 1, . . . ,MH . With that, we estimate the empirical copula function and density
function of the copula of (U,V ). Then we construct a 95% one-sided confidence interval for R(α−ξ0)M:MH ,
the rank of concomitant of the (α−ξ0)Mth order statistics of the MH proxy losses:(

−∞, E[R(α−ξ0)M:MH ]+1.645×
√

Var[R(α−ξ0)M:MH ]
)

(10)

where E[R(α−ξ0)M:MH ] and Var[R(α−ξ0)M:MH ] are calculated by (8) and (9). Let ω denote the upper bound
of the confidence interval in (10). If ω ≥ (α−ξ )M, then update ξ = 1−dω +(1−α)Me÷M and redo
the above process. The iterative process continues until ω < (α−ξ )M. Then the search for ξ is complete
and Stage II of the IANS procedure in Section 3 can be carried out to calculate the ESα estimate.

The above process searches for the highest ξ in the IANS procedure so that within the MH pairs of
bivariate sample of proxy and inner simulation losses, the upper bound of the confidence interval for the
rank of concomitant of one of the best proxy losses is less than (α−ξ )M. In other words, we search for
the highest ξ such that we could expect with high confidence at least MT inner simulation losses to be
larger than one of the best inner simulation losses in the bivariate sample. We consider the upper bound
of the confidence interval for R(α−ξ0)M:MH rather than R3:MH , the rank of concomitant of the best proxy
loss in the sample whose expected value and variance could be derived, in order to reduce the impact from
boundary bias when estimating the empirical copula function of the proxy and inner simulation losses.

4 NUMERICAL EXPERIMENTS

To illustrate the performance of the IANS procedure, we use it to estimate ES95% of VA GMMB hedging
loss using different true asset models. We will only present the results from numerical experiments using
the Regime-Switching Lognormal asset model as the results using other asset models are similar. Again,
we make a few simplifying assumptions so that the payoff of the GMMB contract is identical to that of a
European put option on the underlying asset. We consider the risk measure of ES95%, as it is commonly
used in valuation and economic capital setting in Canada, consistent with regulatory standards. We assume
the GMMB contract has initial fund value and guarantee value of 1,000, 20 years of maturity and monthly
rebalancing in the hedging portfolio.

Regime-Switching Lognormal with two regimes is a popular stochastic asset price model for modeling
equity-linked insurance contracts (Hardy 2001). The model parameters are provided in Table 1. The financial
market is incomplete in the regime-switching model, thus its risk-neutral measure is not unique (Hardy
2001). Given the real-world measure in the regime-switching model, we employ the risk-neutral model
studied in Bollen (1998) and Hardy (2001), whose mean conditional log return is r−σ2

i /2 for i = 1,2. All
other parameters are the same in the real-world and risk-neutral models.

We assess the IANS procedure using a fixed computational budget for simulation, and compare the
accuracy of the resulting ES estimates with those produced with the same simulation budget using the
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Table 1: Parameters for the Regime-Switching Model used in Section 4.

(Monthly rate) Real-World Risk-Neutral
Risk-free Rate: r 0.002 0.002

Mean - Regime 1 (ρ = 1): µ1 0.0085 0.0013875
Mean - Regime 2 (ρ = 2): µ2 -0.0200 -0.0012000

Standard Deviation - Regime 1: σ1 0.035 0.035
Standard Deviation - Regime 2: σ2 0.080 0.080

Transition Probability - from Regime 1: p12 0.04 0.04
Transition Probability - from Regime 2: p21 0.20 0.20

standard nested Monte Carlo (SMC) simulation in Section 2.1. We consider both methods for selecting ξ

as described in Section 3.1 and 3.2 when applying the IANS procedure in the numerical experiments.

4.1 Benchmarking Large Scale Nested Simulations

We first conduct a large-scale nested simulation, with 10,000 inner-level simulations and 10,000 outer-level
simulations, to obtain an accurate estimate for ES95%. This is a large scale nested simulation because
it requires a simulation budget of 10,000×10,000× (1+12×20)× (12×20)÷2 = 2.892×1012. This
estimate serves as a benchmark for assessing the accuracy of other estimators, and is referred to as the
true mean of ES95% hereinafter. To illustrate the first stage of the IANS procedure, we replace the inner
simulations with closed-form formulas based on the put option proxy derivatives, with the Black-Scholes
asset model and examine how many true tail scenarios are correctly identified by the proxies.

Figure 1 depicts the comparisons between the losses that are simulated by standard nested simulation
and those by the IANS procedure’s proxy simulation. We can see graphically that the values of the inner
simulation losses and the proxy losses are highly correlated. This indicates that Stage I in the IANS
procedure is able to correctly identify most true tail scenarios without any inner simulation. In fact,
480 out of the 500 true tail scenarios are identified in Stage I in the IANS procedure without any inner
simulation. Such robust and accurate identification of tail scenarios leads to the high performance of the
IANS procedure, as showcased in subsequent experiments.

4.2 Experiments with Fixed Computation Budget

To demonstrate the efficiency of the IANS procedure using either a fixed ξ or a ξ implied by the concomitant
of order statistics (COS), we compare them to three standard nested simulation experiments that use the
same simulation budget, but with different allocation between inner- and outer-level simulations, as shown
in Table 2. By design, the SMC-5,000-200 experiment has a large number of outer-level simulations and the
SMC-200-5,000 experiment has a larger number of inner simulations. The SMC-1,000-1,000 experiment
is designed with a more balanced number of inner and outer-level simulation. For the IANS estimators,
we set M = 5,000. Column (c) in Table 2 indicates the number of outer simulations required. In the
experiments using IANS with a fixed ξ = 90%, 500 outer-level simulations were conducted, each with
2,000 inner-level simulations. In the experiments where ξ is implied by the distribution of COS, the number
of outer-level simulations varies by experiment, which results in different number of inner-level simulations
in each experiment. Nonetheless, the simulation budget consumed in each experiment remains the same.
Each experiment design is repeated independently 100 times to produce 100 estimates of ES95%.

Figure 2 depicts the ES95% estimates in different experiment designs for the GMMB contract. The solid
red line in each graph indicates the true mean of ES95% discussed in Section 4.1. Comparing Figure 2a with
Figure 2b and 2c, we see that sufficient number of outer-level simulation reduces the variance while inner-
level simulation appears to reduce the bias in estimating tail risk measures. These results are consistent
with, for example, Broadie et al. (2011) and Gordy and Juneja (2010). Large number of outer-level
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Figure 1: Simulated losses in 10,000 outer scenarios. The x and y coordinates of each point in the figures
represent the loss in a scenario, simulated by the IANS proxy simulation and by the true nested simulation,
respectively.

simulation reduces the variation in extreme losses simulated from one experiment to another, which reduces
the variance of the ES estimate. On the other hand, enough inner-level simulation ensures a more consistent
distribution of number of contracts matures in-the-money, which reduces the bias of the simulated loss.
Figure 2d and 2e show that the IANS procedure achieves both low bias and low variance compared to the
three standard nested simulation experiments using the same simulation budget, regardless of the method
used to determine the proxy confidence level ξ .

Table 3 summarizes the relative mean squared errors (RMSEs) for different experiment designs. Each
RMSE is calculated as 1

100 ∑
100
i=1

(µ̂est
i −µ)2

µ
where µ̂est

i is the estimated ES95% in the ith independent repeated
experiment and µ is the true mean of ES95%. The RMSEs are further decomposed into relative bias and

relative variance in Table 3 for different experiment designs. Each relative bias is calculated as ( 1
100 ∑

100
i=1 µ̂est

i −µ)

µ
,

whereas each relative variance is calculated as 1
100 ∑

100
i=1

(µ̂est
i −

1
100 ∑

100
i=1 µ̂est

i )2

µ
.

Table 3 demonstrates numerically that, in these examples, the IANS procedure achieves smaller RMSEs
compared with straightforward nested simulation using the same simulation budget. The RMSEs indicate
the mean squared error in the IANS method experiments are within 2% of the true mean of ES95% whereas
the mean squared error in the SMC experiments are much higher relative to the true mean. Table 3 also
shows that both IANS experiments have significantly smaller RMSEs than any of the SMC experiment.
In particular, the smaller RMSEs in the IANS experiments are mostly attributed to the smaller relative
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Table 2: Simulations in Numerical Experiments.

(a) (b) (c) Nested Simulation
Experiment Design M N (1−ξ )M Computational Budget

SMC-5,000-200, ES95% 5,000 200 - (a)× (b)× (1+12×20)×(12×20)
2 = 2.892×1010

SMC-1000-1000, ES95% 1,000 1,000 - (a)× (b)× (1+12×20)×(12×20)
2 = 2.892×1010

SMC-200-5,000, ES95% 200 5,000 - (a)× (b)× (1+12×20)×(12×20)
2 = 2.892×1010

IANS, ES95% 5,000 2,000 500 (b)× (c)× (1+12×20)×(12×20)
2 = 2.892×1010

with Fixed ξ = 90%
IANS, ES95% 5,000 2,000×500

(c) Varies (b)× (c)× (1+12×20)×(12×20)
2 = 2.892×1010

with COS Implied ξ

variance. This echoes the importance of sufficient outer-level simulation relative to inner-level simulations
observed in other studies in nested simulations (Broadie et al. 2011; Gordy and Juneja 2010).

Table 3: Relative mean square errors (RMSEs), relative bias and relative variance of ES 95% estimate for
different experiment designs.

Experiment Design RMSE Relative Bias Relative Variance
SMC-5,000-200 8.32% 2.34 % 1.20 %

SMC-1,000-1,000 5.38% 0.51 % 5.05 %
SMC-200-5,000 25.50% -0.24 % 25.43 %

IANS with Fixed ξ = 90% 1.28% 0.17 % 1.24 %
IANS with COS Implied ξ % 1.03% 0.03 % 1.03 %

In addition, the IANS experiments using the COS implied proxy confidence level ξ result in a slightly
lower RMSE than the IANS experiments using a fixed ξ of 90% because the COS implied ξ ensures a
more complete coverage of the true tail scenarios in the IANS procedure. This result highlights the benefit
of using the COS implied proxy confidence level ξ to choose the ξ in the IANS procedure: It provides a
statistical guarantee that sufficient number of true tail scenarios have been captured in nested simulation.
Furthermore, parameters input into the asset and liability models could change frequently in the application
of periodic risk reporting, which would give rise to changes in the dynamics of the simulation model. In
this case, blindly applying a fixed ξ that worked previously may result in unknowingly missing the true
tail scenarios, whereas the COS implied ξ provides a mechanism to avoid such issue.

In addition, we applied the IANS procedure to VaR estimation in the same experiments. We also
conducted these experiments on GARCH (1,1) models, as well as more complicated VA contracts, e.g. a
Guaranteed Minimum Accumulation Benefit similar to a tandem option (Blazenko et al. 1990) in finance.
The results are very similar to those illustrated in this section.

5 CONCLUSION

In this article, we propose an Importance-Allocated Nested Simulation procedure for estimating the ES of
loss from VA dynamic hedging strategy. The IANS procedure takes advantage of the special structure of the
ES by first identifying a small set of potential tail scenarios based on a proxy for liabilities calculated from
a closed-form solution, and then focus the simulation budget on only those scenarios. Based on theories
from order statistics, we also propose a prudent and structured method for finding sufficient number of
potential tail scenarios to be included in the IANS procedure. We conduct extensive numerical experiments
on GMMB contracts. The numerical results show significant improvement in efficiency using the IANS
procedure compared to a standard nested simulation.
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(a) SMC-5,000-200. (b) SMC-1,000-1,000. (c) SMC-200-5,000.

(d) IANS with Fixed ξ . (e) IANS with Concomitant Implied ξ .

Figure 2: Estimated ES95% of simulated GMMB losses under Regime-Switching Model in 100 independent
repeated experiments. The solid red line in each graph indicates the true value estimated by the large scale
simulation discussed in Section 4.1.

For future work, we will expand the IANS procedure to more sophisticated VA contract such as GMIB
and GMWB, as well as other financial instruments. We will also look for a more general approach to
identify the tail scenarios that could accommodate vastly different asset and liability models.
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