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ABSTRACT

Coherent risk measures have received increasing attention in recent years among both researchers and
practitioners. The problem of estimating a coherent risk measure can be cast as estimating the maximum
expected loss taken under a set of probability measures. In this paper, we consider the set of probability
measures is finite, and study the estimation of a coherent risk measure via an upper confidence bound
(UCB) approach, where samples of the portfolio loss are simulated sequentially from one of the probability
measures. We study in depth the so-called Grand Average estimator, and establish statistical guarantees,
including its strong consistency, asymptotic normality, and asymptotic mean squared error. We also construct
asymptotically valid confidence intervals.

1 INTRODUCTION

Risk measures find a wide range of important applications in financial industries, such as calculation of
regulatory capital charge, risk pricing, and portfolio optimization. Among various popular risk measures,
Value-at-Risk (VaR) has been widely used, which is defined as the quantile of the probability distribution
of the loss at a given confidence level. Despite its popularity in the banking industry, VaR has been
criticized because it does not take into account the magnitude of extreme losses and may discourage
risk diversification. As a remedy for these drawbacks, a class of risk measures, referred to as coherent
risk measures, have been proposed by Artzner, Delbaen, Eber, and Heath (1999). A notable example of
coherent risk measures is conditional Value-at-Risk (CVaR, also known as expected shortfall), defined as
the average size of the losses beyond the VaR value. In the recent Basel Accords (Basel III & IV), the
Basel Committee on Banking Supervision has moved away from VaR towards CVaR in its market risk
framework (Basel Committee on Banking Supervision 2016). Another application of coherent risk measure
is on the construction of good deal bounds when pricing derivative securities, where bid and ask prices of
a derivative security can be represented as coherent risk measures; see, e.g., Jaschke and Küchler (2001)
and Staum (2004).
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It has been well known that under mild continuity conditions, a coherent risk measure ρ can be
represented in the form of

ρ(Y ) = sup
P∈P

EP[−Y/r],

where Y is the value of the portfolio at a future time, 1/r is the discount factor, and P denotes a set of
probability distributions. To further simplify the problem, we consider the setting in Lesnevski, Nelson, and
Staum (2007), where the set P has only a finite number K of elements P1, . . . ,PK . This assumption holds,
for instance, when the coherent risk measure is defined by the specification of K generalized scenarios.
Under this setting, the problem of estimating the coherent risk measure is reduced to the estimation of
the maximum mean of K stochastic systems, which is closely related to identifying the best system (Kim
and Nelson 2006), but arguably more difficult (Lesnevski, Nelson, and Staum 2007). The main difficulty
lies in that maximum-mean estimation requires sampling budget allocated to the best system as much as
possible, not just find the best system out. The problem of estimating the maximum mean also finds a
variety of applications in other areas of management science and machine learning, ranging from Markov
decision processes (MDPs) and reinforcement learning to Monte Carlo tree search; see, e.g., Chang, Fu,
Hu, and Marcus (2005), Kocsis and Szepesvári (2006) and Fu (2017).

This paper focuses on how to estimate the maximum mean in the context of coherent risk measures.
In this context, one of the key issues is to develop efficient estimators with sound statistical guarantees,
especially their consistency, asymptotic normality and asymptotic mean squared errors, which seem to be
missing in the literature, to the best of our knowledge. To this end, we study estimators of the maximum
mean under the upper confidence bound (UCB) sampling policy framework. The UCB policy (Auer et al.
2002) has been studied extensively in the literature of the stochastic bandit problem where a sample from a
system is called a (random) reward and the objective of the decision maker is to maximize the total rewards.
At the heart of the stochastic bandit problem is thus how to accumulate higher rewards while sequentially
learning which system is the best, referred to as the tradeoff between exploration and exploitation. It has
been well known that the UCB policy serves as an effective way of balancing this tradeoff. In the UCB
policy for bandit problems, the exploration rate is set to be a logarithm function, ensuring that the expected
amount of sampling budget allocated to the non-maximum systems is at most of a logarithmic order of
the total budget, which implies that majority of the sampling budget is allocated to the system with the
maximum mean. In our study, we consider a generalized UCB policy that allows the exploration rate to
take a range of functional forms, and aim to construct efficient estimators of the maximum mean with
desirable statistical guarantees.

The estimator being studied in this paper is the sample average of all the samples, whether drawn
from the system with the maximum mean or not. We refer to it as the Grand Average (GA) estimator.
Rationale of the GA estimator stems from the fact that under the UCB framework, majority of the samples
are drawn from the system with the maximum mean, implying that the grand average is dominated by
the sample average of this system. The GA estimator is not new in the literature, and has served as a
key ingredient for algorithms in MDPs and reinforcement learning; see, e.g., Chang, Fu, Hu, and Marcus
(2005) and Kocsis and Szepesvári (2006). However, to the best of our knowledge, very little is known
about the statistical properties of the GA estimator, except its asymptotic unbiasedness. In this paper, we
fill this gap by establishing statistical guarantees for the GA estimator, including its strong consistency,
central limit theorem (CLT), and asymptotic rate of mean squared error (MSE), leading to both an efficient
point estimator and asymptotically valid confidence intervals for the coherent risk measure.

The rest of the paper is organized as follows. We propose the GA estimator under the UCB framework
in Section 2. Asymptotic properties of the GA estimator are established in Section 3, as well as a way of
constructing asymptotically valid confidence intervals. We demonstrate the performance of the point and
interval estimates in Section 4, followed by conclusions in Section 5. Lengthy proofs are provided in the
appendix.
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2 AN UPPER CONFIDENCE BOUND APPROACH

We formulate the problem of estimating coherent risk measures using simplified notations. Consider K
stochastic systems, with performances denoted by random variables {Xk,k = 1, . . . ,K}, respectively. For
each k, we assume that Xk follows an unknown probability distribution, while independent samples can be
drawn. Here, Xk represents the discounted loss of a portfolio sampled from probability distribution Pk.

Let µk = E(Xk). We are interested in estimating the maximum mean, defined as

µ
∗ , max

k=1,...,K
µk.

Throughout the paper, we assume that Xk’s have bounded supports. While this assumption simplifies the
analysis and helps to convey the main idea in a clearer manner, our results can be extended to the setting
when Xk’s follow sub-Gaussian distributions.

Let k∗ denote the index of the system with the largest mean, i.e., µ∗ = µk∗ . Without loss of generality, k∗

is assumed to be unique. Given samples of Xk, denoted by {Xk j, j = 1, . . . ,nk}, k = 1, . . . ,K, a straightforward
estimator of µ∗, referred to as the maximum estimator, is given by

max
k=1,...,K

X̄k,

where X̄k , ∑
nk
j=1 Xk j/nk is the sample average of Xk.

It has been well known that the maximum estimator has a positive bias and may overestimate µ∗. It
may lead to overestimation of risk, resulting in unduly high capital charges for risky activities (Lesnevski,
Nelson, and Staum 2007). Better estimators of µ∗ are thus desirable.

Sampling from the K systems is essential for constructing any estimator of µ∗. In developing an
efficient estimator, two issues are of major concern. The first issue is on how to efficiently allocate the
sampling budget, while the second issue is on methods of constructing an estimator such that statistical
guarantees can be established.

To address the first issue, dynamic sampling policies have been studied in the literature on MDPs and
machine learning. A popular dynamic sampling policy is the UCB policy that was originally proposed for
the multi-armed bandit (MAB) problem; see Auer, Cesa-Bianchi, and Fischer (2002). In traditional MAB
problem, in each round, one of the K systems is chosen and a random sample (reward) is drawn from
the chosen system, and the decision maker aims to maximize the total rewards collected over the first n
rounds. At the heart of the MAB problem is to find a dynamic sampling policy that decides which system
to sample from in each round so as to balance the tradeoff between exploration and exploitation. Among
various sampling policies for MAB, it has been well known that the UCB policy achieves the optimal rate
of regret, defined as the expected loss due to the fact that a policy does not always choose the system
with highest expected reward; see Lai and Robbins (1985) and Auer, Cesa-Bianchi, and Fischer (2002).
Specifically, let Tk(t) denote the number of samples drawn from system k during the first t rounds, for
k = 1, . . . ,K. The UCB sampling policy can be described as in Algorithm 1.

The UCB policy offers important insights into the sequential allocation of sampling budget. Essentially,
it balances the tradeoff between exploration and exploitation using the UCB defined on the right-hand-side
(RHS) of (1). On the one hand, systems with higher on-going sample averages have higher chance to be
chosen in the current round, contributing to higher total rewards. On the other hand, systems that are chosen
less frequently during the previous rounds, i.e., Tk(t−1) being smaller, may also have sufficient chance to
be chosen so that such systems will be sufficiently explored. The function log t in (1) can be interpreted
as the exploration rate that controls the speed of exploring systems that may not have the largest mean.

In the MAB context, the exploration rate is set to be log t simply because it leads to the optimal rate
of regret. However, it should be pointed out that when the objective is not to miminize the regret, as the
case in our setting, the rate function may take different forms. Therefore, we shall henceforth allow the
exploration rate, denoted by νt , to take different forms as a function of t, and refer to the resulting UCB
policy as a generalized UCB (GUCB) policy, which is described in Algorithm 2.
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Algorithm 1: UCB Sampling Policy

1. Initialization: During the first K rounds, draw a sample from each system.
2. Repeat: For t ≥ K +1, draw a sample from the system indexed by

κt = argmaxk∈{1,...,K}

{
X̄k[Tk(t−1)]+

√
2log t

Tk(t−1)

}
, (1)

where X̄k[Tk(t−1)] denote the sample mean of system k during the first (t−1) rounds.
Update the sample average of system κt .

Algorithm 2 (GUCB): Generalized UCB Sampling Policy

1. Initialization: During the first K rounds, draw a sample from each system.
2. Repeat: For t ≥ K +1, draw a sample from the system indexed by

It = argmaxk∈{1,...,K}

{
X̄k[Tk(t−1)]+

√
2νt

Tk(t−1)

}
,

where X̄k[Tk(t−1)] denote the sample mean of system k during the first (t−1) rounds.
Update the sample average of system It .

2.1 Grand Average (GA) Estimator

Before moving on to the construction of estimators for µ∗, we highlight some of the key properties of the
GUCB policy. To convey the main idea, for a while we focus on a special case where the exploration rate
νt = log t. In this case, it has been known that (see Auer, Cesa-Bianchi, and Fischer (2002)), for system k
(k 6= k∗),

E[Tk(n)]≤C logn,

for some constant C that depends on the gap between µk and µ∗. Then it can be easily seen that E[Tk∗(n)],
the expected number of times system k∗ is chosen, is of order n during the first n rounds, because the
summation of Tk(n)’s equals n.

In other words, it is expected that among the first n rounds, system k∗ is chosen for a majority of the
rounds. Recall that our objective is to estimate µ∗, the mean of system k∗. It is, therefore, reasonable to use
the grand average of the samples of all the n rounds as an estimator of µ∗, which we refer to as the Grand
Average (GA) estimator. Although it takes into account the samples that are not drawn from system k∗,
the validity of the GA estimator can be justified by the fact that the estimation error due to such samples
may phase out when n is sufficiently large, as the number of such samples is negligible compared to those
drawn from system k∗.

Specifically, the GA estimator is defined by

M̃n =
1
n

K

∑
k=1

Tk(n)

∑
i=1

Xk j, (2)

where {Xk j, j = 1, . . . ,Tk(n)} denotes the samples drawn from system k during the first n rounds.
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The GA estimator is not new, which has served as a key ingredient for algorithms for MDPs and
reinforcement learning under the special case that νt = log t. However, research on the statistical properties
of the estimator has been underdeveloped. To the best of our knowledge, only asymptotic unbiasedness of
the estimator has been established (Kocsis and Szepesvári 2006), while other statistical properties seem to
be missing. One of the contributions of this paper is to fill this gap. In particular, we generalize the GA
estimator by allowing νt to take a range of functional forms, and establish its strong consistency, CLT, and
asymptotic MSE, which shall be discussed in detail in the following section.

3 ASYMPTOTIC PROPERTIES

In this section, we establish strong consistency, asymptotic MSE and asymptotic normality for the GA
estimator. To facilitate analysis, we first establish a proposition on the moments of Tk(n). Due to page
limit, the proof of the proposition is omitted.
Proposition 1 If νn ≥ logn, then for k 6= k∗ and any positive integer p,

ETk(n)p ≤



⌈
8νn

∆2
k

⌉
+4 i f p = 1;(⌈

8νn

∆2
k

⌉
+2 [log(n+1)+2]

1
2

)2

i f p = 2;{⌈
8νn

∆2
k

⌉
+

[
2p

p−2
(n+1)p−2 +O

(
np−3)] 1

p
}p

i f p≥ 3,

where ∆k = µ∗− µk, and the notation O(·) means that limsupn→∞ an/bn ≤ C for some constant C if
an = O(bn).

Proposition 1 provides an upper bound for the pth moment of Tk(n), the number of samples drawn
from system k during the first n rounds, for k 6= k∗. This upper bound relies on the exploration rate νn. In a
special case when νn = logn and p = 1, the result is the same as that in Theorem 1 of Auer, Cesa-Bianchi,
and Fischer (2002).

Proposition 1 implies that the sampling ratios Tk(n)/n may satisfy certain convergence properties. In
particular, strong consistency of the sampling ratios are summarized in the following theorem, whose proof
is provided in Section A.1 of the appendix.
Theorem 1 If νn ∈

[
logn,n1−δ

]
with 0 < δ < 1, then, as n→ ∞,

Tk(n)
n

a.s.−→

{
0 f or k 6= k∗;
1 f or k = k∗.

where the notation a.s.−→ denotes convergence almost surely (or with probability 1).
Let XI j, j denote the sample drawn at the jth round. Note that

M̃n =
1
n

K

∑
k=1

Tk(n)X̄k[Tk(n)] =
1
n

n

∑
j=1

XI j, j =
1
n

n

∑
j=1

(
XI j, j−µI j

)
+

1
n

n

∑
j=1

µI j .

Define

Zn ,
n

∑
j=1

(
XI j, j−µI j

)
.

Then,

M̃n =
Zn

n
+

1
n

n

∑
j=1

µI j . (3)
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Let Fn be the σ -field generated by the first n samples for n ≥ 1, and F0 = {Ω, /0}. Note that In is
Fn−1-measurable. It follows that for n≥ 1,

E [XIn,n|Fn−1] = µIn , and then EXIn,n = EµIn .

Therefore, EZn = 0 and

E [Zn|Fn−1] = Zn−1 +E [XIn,n−µIn |Fn−1] = Zn−1,

i.e., Zn is a martingale with mean 0.
Because Xk j is assumed to have bounded support, we have

|Zn+1−Zn|=
∣∣XIn+1,n+1−µIn+1

∣∣≤C.

for some constant C. By Azuma-Hoeffding Inequality (Durrett 2019) and letting Z0 = 0,

P(|Zn/n| ≥ ε) = P(|Zn| ≥ nε)≤ 2exp
{
−nε

2/(2C2)
}
,

and hence ∑
∞
n=1P(|Zn/n|> ε)< ∞. By Borel-Cantelli lemma, Zn/n a.s.−→ 0 as n→∞. i.e., the first term on

the RHS of (3) converges to 0 almost surely. Moreover, the second term on the RHS of (3) satisfies

1
n

n

∑
j=1

µI j =
1
n

K

∑
k=1

Tk(n)µk
a.s.−→ µk∗ ,

where the convergence follows from Theorem 1 and the continuous mapping theorem (Durrett 2019).
Therefore, by (3), we establish strong consistency of M̃n that is summarized as follows.
Theorem 2 If νn ∈

[
logn,n1−δ

]
with 0 < δ < 1, then M̃n is a strongly consistent estimator of µ∗, i.e.,

M̃n
a.s.−→ µ

∗, as n→ ∞.

Theorem 2 ensures that the GA estimator, M̃n, converges to µ∗ with probability 1, as the sample size
goes to infinity. To further understand its asymptotic properties, it is desirable to conduct error analysis,
especially on its bias and variance. In the following theorem, we establish the rate of convergence of its
asymptotic MSE. Proof of the theorem is provided in Section A.2 of the appendix.
Theorem 3 If νn ∈

[
logn,n1/2−δ

]
with 0 < δ < 1/2, then,

Bias
(

M̃I∗n

)
= O

(
νn

n

)
, Var

[
M̃n

]
≤ 2K

σ2
k∗

n
+o
(

1
n

)
,

and thus

MSE
(

M̃n

)
≤ 2K

σ2
k∗

n
+o
(

1
n

)
,

where σ2
k , Var[Xk], and the notation o(·) means that limn→ an/bn = 0 if an = o(bn).

Theorem 3 shows that the MSE of the GA estimator is of order n−1. In greater detail, variance is the
dominant term in the MSE, compared to square of the bias, which is of order ν2

n/n2. This result implies
that when the exploration rate takes value in the range νn ∈

[
logn,n1/2−δ

]
with 0 < δ < 1/2, the bias of

the GA estimator is negligible, compared to its variance.
To provide a theoretical support for asymptotically valid CIs, we establish a CLT for M̃n in the following

theorem, whose proof is provided in Section A.3 of the appendix.
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Theorem 4 If νn ∈
[
logn,n

1
2−δ

]
with 0 < δ < 1/2, then,

√
n
(

M̃n−µ
∗
)
⇒ N(0,σ2

k∗), as n→ ∞,

where ⇒ denotes convergence in distribution.
Theorem 4 shows that the GA estimator is asymptotically normally distributed with mean µ∗ and

variance σ2
k∗/n. Based on Theorem 4, an asymptotically valid CI can be constructed for the maximum

mean µ∗. To do so, a remaining issue is on how to estimate the unknown σ2
k∗ . In light of the proof of

Theorem 4, we estimate σ2
k∗ using

σ̃
2
n =

1
n

K

∑
k=1

Tk(n)σ̂2
k , (4)

where for k = 1, ...,K,

σ̂
2
k =

1
Tk(n)

Tk(n)

∑
j=1

X2
k, j−

[
1

Tk(n)

Tk(n)

∑
j=1

Xk, j

]2

. (5)

It can be shown that σ̃2
n converges to σ2

k in probability, as n→ ∞. This result is summarized in the
following proposition, whose proof is omitted due to page limit.
Proposition 2 If νn ∈

[
logn,n1−δ

]
with 0 < δ < 1, then, as n→ ∞,

σ̃
2
n → σ

2
k∗ , in probability.

From Theorem 4 and Proposition 2, it follows that
√

nσ̃−1
n

(
M̃n−µ∗

)
⇒ N(0,1). Then, an asymptot-

ically valid 100(1−β )% CI of µ∗ is given by

(M̃n− z1−β/2σ̃n/
√

n,M̃n + z1−β/2σ̃n/
√

n), (6)

where z1−β/2 is the 1−β/2 quantile of the standard normal distribution.

4 A NUMERICAL EXAMPLE

We examine the performances of the GA estimator and the constructed CI through an example. Consider
the option portfolio example in Section 2.2 of Lesnevski, Nelson, and Staum (2007), where the risk of
the portfolio is assessed via a coherent risk measure based on K = 44 = 256 generalized scenarios. These
scenarios are set by varying the risk factors (i.e., underlying asset prices) under several different conditions
such as a large increase, a large decrease, and moderate changes. We follow exactly the same parameter
settings as in Lesnevski, Nelson, and Staum (2007), to which interested readers are referred for details.

While the GA estimator is asymptotically unbiased, it is low-biased with finite samples and the bias is
more severe especially when the variances of the systems are large. To alleviate this adverse effect of bias,
we set up a warm-up period and discard samples in this period during the implementation. We observed
that MSEs of the GA estimator are robust with respect to the length of the warm-up period, while it mainly
affects the validity of the CIs. The MSEs are also robust with respect to the specification of exploration
rate function νt , and the results reported in this section are based on νt = log2 t.

To examine the performance of the GA estimator, we estimate its relative bias, standard deviation (std),
and square root of MSE (RMSE), as percentages compared to true value of the coherent risk measure that
is 4645 in this example. The estimated error metrics reported are based on 1000 independent replications.
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Table 1: Relative bias (%), relative standard deviation (%) and RMSE (%), and coverage probabilities (%).

sample size n (×105) 1 2 4 6 8 10

bias -0.60 -0.24 -0.05 -0.02 -0.007 0.001
std 1.61 1.13 0.60 0.36 0.31 0.19

RMSE 1.72 1.15 0.60 0.36 0.31 0.19
cov. prob. 79.6 83.9 88.9 90.1 89.7 90.8

Table 2: Comparison of CIs.

Fixed width of CI (Lesnevski et al.) 100 90 80 70 60 50 40 30

cov. prob. (Lesnevski et al.) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99
cov. prob. (GA) 0.90 0.90 0.88 0.90 0.89 0.91 0.90 0.89

Ratio of CI widths 4.5 4.0 3.6 3.1 2.7 2.2 1.8 1.3

We also report the coverage probability (cov. prob.) of the constructed 90% CIs. Performances of the
estimators with respect to different sample sizes are summarized in Table 1. From the table it can be seen
that when the sample size is 105, the RMSE is below 2% of the true value, suggesting a very accurate
estimate. It can also be seen that the bias of the GA estimator is negligible compared to its variance that
contributes to the major part of its MSE. This coincides with the theoretical result on asymptotic MSE as
in Theorem 3. Moreover, when the sample size becomes larger, the coverage probability converges to the
nominal one (90%), implying that the constructed CIs are asymptotically valid.

In the second set of experiments, we compare the constructed CIs to the fixed-width CI procedure
as proposed in Lesnevski, Nelson, and Staum (2007). Since a fixed width of the CI has to be set at the
beginning of the procedure of Lesnevski, Nelson, and Staum (2007) and thus the total sample size required
to stop the process may vary across different replications. For the sake of fairness in comparison, we
first run the procedure of Lesnevski, Nelson, and Staum (2007), and the same sample size is then used to
construct our CIs. We then compared the widths of the 90% CIs to that of the fixed width. The comparison
results with respect to varying settings of the fixed width are presented in Table 2. From the table it can be
seen that the procedure of Lesnevski, Nelson, and Staum (2007) tends to be conservative in that it leads
to coverage probabilities that are close to 100%, while our method produces narrower CIs. For instance,
when the fixed width is set to be 100 (about 2% of the true value), the width of CIs of Lesnevski, Nelson,
and Staum (2007) is more than four times wider than ours.

5 CONCLUSIONS

In this paper, we have studied a Grand Average estimator of a coherent risk measure under the UCB framework,
and established statistical guarantees for the estimator, including its strong consistency, asymptotic normality,
and asymptotic rate of MSE. We have shown that the rate of convergence of the estimator is

√
n, where n

is the sample size. We have also constructed an asymptotically valid confidence interval. Both the point
estimator and the confidence interval perform very well numerically.
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A APPENDIX

A.1 Proof of Theorem 1

When k 6= k∗, by Markov’s inequality and Proposition 1, for any ε > 0 and p≥ 3,

P
(

Tk(n)
n

> ε

)
≤ 1

ε pE
[

Tk(n)
n

]p

≤ 1
ε p

{⌈
8νn

∆2
k

⌉
1
n
+

[
2p

p−2
1
n2 +O

(
n−3)] 1

p
}p

≤ 2p−1

ε p

[(⌈
8νn

∆2
k

⌉
1
n

)p

+
2p

p−2
1
n2 +O

(
n−3)] .

Because logn≤ νn ≤ n1−δ , it follows that for p≥ 3,

P
(

Tk(n)
n

> ε

)
≤ 2p−1

ε p

[(
8

∆2
knδ

+
1
n

)p

+
2p

p−2
1
n2 +O

(
n−3)]≤ 2p−1

ε p

[
2p−1

(
8

∆2
knpδ

+
1
np

)
+

2p
p−2

1
n2 +O

(
n−3)] . (7)

Let p > max{1/δ ,3}. Then, for any ε > 0,

∞

∑
n=1

P
(

Tk(n)
n

> ε

)
< ∞.

By Borel-Cantelli lemma, Tk(n)/n a.s.−→ 0 as n→ ∞, for k 6= k∗, and thus

Tk∗(n)
n

= 1− ∑
k 6=k∗

Tk(n)
n

a.s.−→ 1.

A.2 Proof of Theorem 3

We analyze the bias and variance of M̃n separately.
The Bias. We assert that Tk(n) is a stopping time. In fact, given the filtration generated by {Xi j, i 6=

k, j = 1,2, . . .}, denoted by σ (Xi j, i 6= k, j = 1,2, . . .), one has

{Tk(n)≥ m}= {Tk(n)≤ m−1}c ⊂ σ (Xk1, . . . ,Xk,m−1) .

Hence Tk(n) is a stopping time with respect to {Xk j, j ≥ 1}. Then by Wald’s equation (Ross 1996),

E
[
∑

Tk(n)
j=1 Xk j

]
= µkE [Tk(n)], leading to

EM̃n =
1
n

K

∑
k=1

µkE [Tk(n)] .

Thus,

Bias
(

M̃n

)
= EM̃n−µ

∗ =

(
−1+

ETk∗(n)
n

)
µk∗+ ∑

k 6=k∗

ETk(n)
n

µk

= − ∑
k 6=k∗

ETk(n)
n

µk∗+ ∑
k 6=k∗

ETk(n)
n

µk = ∑
k 6=k∗

ETk(n)
n

(µk−µk∗) .

By Proposition 1,

Bias
(

M̃n

)
≤ ∑

k 6=k∗

(
8νn

n∆2
k
+

5
n

)
(µk∗−µk) = O

(
νn

n

)
. (8)
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The Variance. Note that

Var
[
M̃n

]
= E

(
M̃n−E

[
M̃n

])2

= E

{(
M̃n−

1
n

K

∑
k=1

µkTk(n)

)
+

(
1
n

K

∑
k=1

µkTk(n)−
1
n

K

∑
k=1

µkETk(n)

)}2

≤ 2E

(
M̃n−

1
n

K

∑
k=1

µkTk(n)

)2

+2E

(
1
n

K

∑
k=1

µkTk(n)−
1
n

K

∑
k=1

µkETk(n)

)2

. (9)

We analyze the two terms on the RHS of (9) separately. By the Wald’s Lemma (see Theorem 13.2.14
in Athreya and Lahiri (2006)),

E

(
Tk(n)

∑
j=1

Xk j−µkTk(n)

)2

= σ
2
k ETk(n). (10)

Then, by (3) and Cauchy-Schwarz inequality, it can be seen that

E

(
M̃n−

1
n

K

∑
k=1

µkTk(n)

)2

≤ K
n2

K

∑
k=1

E

(
Tk(n)

∑
j=1

Xk j−µkTk(n)

)2

=
K
n2

K

∑
k=1

σ
2
k ETk(n)

=
K
n2 σ

2
k∗ETk∗(n)+

K
n2 ∑

k 6=k∗
ETk(n)≤

K
n

σ
2
k∗+

K
n2 ∑

k 6=k∗
ETk(n), (11)

where the last inequality follows from the fact that Tk∗(n)≤ n.
We then analyze the second term on the RHS of (9). Note that, by Cauchy-Schwarz inequality,

E

(
1
n

K

∑
k=1

µkTk(n)−
1
n

K

∑
k=1

µkETk(n)

)2

=
1
n2E

(
K

∑
k=1

µkTk(n)−
K

∑
k=1

µkETk(n)

)2

≤ K
n2

K

∑
k=1

µ
2
kE [Tk(n)−ETk(n)]

2 =
K
n2

K

∑
k=1

µ
2
k Var [Tk(n)]

≤ K
n2 ∑

k 6=k∗
µ

2
k Var [Tk(n)]+

K
n2 µ

2
k∗Var [Tk∗(n)] . (12)

Furthermore,

Var [Tk∗(n)] = Var

[
n− ∑

k 6=k∗
Tk(n)

]
= Var

[
∑

k 6=k∗
Tk(n)

]
≤ E

[
∑

k 6=k∗
Tk(n)

]2

≤ K ∑
k 6=k∗

ET 2
k (n).

Therefore,

RHS of (12)≤ K
n2 ∑

k 6=k∗
µ

2
kET 2

k (n)+
K2

n2 µ
2
k∗ ∑

k 6=k∗
ET 2

k (n)≤
K
n2 ∑

k 6=k∗

(
µ

2
k +Kµ

2
k∗
)
ET 2

k (n). (13)

Combining (9), (11)-(13) and Proposition 1 yields

Var
[
M̃n

]
≤ 2K

n
σ

2
k∗+

2K
n2 ∑

k 6=k∗

(
8νn

∆2
k
+5
)
+2K2

µ̄
2

∑
k 6=k∗

(
8νn

n∆2
k
+

1
n
+

2 [log(n+1)+2]
1
2

n

)2

, (14)
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where µ̄2 = max{µ2
1 , ...,µ

2
K}.

Incorporating the bias in (8), the variance in (14), and νn ∈
[
logn,n1/2−δ

]
with 0 < δ < 1/2, we have

MSE
(

M̃n

)
= Var

[
M̃n

]
+Bias

(
M̃n

)2
≤ 2K

n
σ

2
k∗+o

(
1
n

)
.

A.3 Proof of Theorem 4

To prove the result, we first define a martingale difference array and introduce a lemma on asymptotic
normality for martingale different arrays (Theorem 16.1.1 of Athreya and Lahiri (2006)).
Definition 1 Let {Yn}n≥1 be a collection of random variables on a probability space (Ω,F ,P) and let
{Fn}n≥1 be a filtration. Then, {Yn,Fn}n≥1 is called a martingale difference array if Yn is Fn-measurable
and E[Yn|Fn−1] = 0 for each n≥ 1.
Lemma 1 For each n≥ 1, let {Yni,Fni}i≥1 be a martingale difference array on (Ω,F ,P), with E|Yni|2 < ∞

for all n ≥ 1 and let τn be a finite stopping time w.r.t. Fni. Suppose that for some constant σ2 > 0, as
n→ ∞, ∑

τn
i=1E

[
|Yni|2

∣∣Fni
]
→ σ2 in probability, and that for any ε > 0, ∑

τn
i=1E

[
|Yni|21{|Yni|>ε}

∣∣Fni
]
→ 0

in probability. Then,
τn

∑
i=1

Yni⇒ N(0,σ2), as n→ ∞.

Proof of Theorem 4. By (3),

√
n
(

M̃n−µ
∗
)
=

Zn√
n
+
√

n

(
1
n

n

∑
j=1

µI j −µ
∗

)
. (15)

We analyze the two terms on the RHS of (15) separately. Note that Zn is a martingale. So Zn−Zn−1 =
XIn,n−µIn is a martingale difference array. To show the asymptotic normality of Zn/

√
n, it suffices to prove

that the two conditions of Lemma 1 are satisfied for Yn j =
(
XI j, j−µI j

)
/
√

n, τn = n and Fn j = F j. First,
note that

n

∑
j=1

E
[∣∣(XI j, j−µI j

)
/
√

n
∣∣2∣∣∣F j−1

]
=

1
n

n

∑
j=1

E
[

X2
I j, j−2µI j XI j, j +µ

2
I j

∣∣∣F j−1

]
=

1
n

n

∑
j=1

{
E
[

X2
I j, j

∣∣∣F j−1

]
−2µI jE

[
XI j, j

∣∣F j−1
]
+µ

2
I j

}
=

1
n

n

∑
j=1

{
E
[

X2
I j, j

∣∣∣F j−1

]
−µ

2
I j

}
=

1
n

n

∑
j=1

σ
2
I j
=

1
n

K

∑
k=1

Tk(n)σ2
k

a.s.−→ σ
2
k∗ , as n→ ∞,

where the convergence follows from Theorem 1.
Second,

n

∑
j=1

E
[∣∣(XI j, j−µI j

)
/
√

n
∣∣2 1{∣∣∣(XI j , j−µI j

)
/
√

n
∣∣∣>ε

}∣∣∣∣F j−1

]
=

1
n

n

∑
j=1

E
[∣∣XI j, j−µI j

∣∣2 1{∣∣∣XI j , j−µI j

∣∣∣>ε
√

n
}∣∣∣∣F j−1

]
≤ 1

n

n

∑
j=1

E
[

C ·1{∣∣∣XI j , j−µI j

∣∣∣>ε
√

n
}∣∣∣∣F j−1

]

= C · 1
n

n

∑
j=1

P
(∣∣XI j, j−µI j

∣∣> ε
√

n
∣∣F j−1

)
≤C · 1

n

n

∑
j=1

E
[∣∣XI j, j−µI j

∣∣2∣∣∣F j−1

]
ε2n

=
C

ε2n
· 1

n

n

∑
j=1

E
[∣∣XI j, j−µI j

∣∣2∣∣∣F j−1

]
=

C
ε2n
· 1

n

n

∑
j=1

σ
2
I j
=

C
ε2n
· 1

n

K

∑
k=1

Tk(n)σ2
k

a.s.−→ 0, as n→ ∞,
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where C is an upper bound of
∣∣XI j, j−µI j

∣∣2 and exists because Xk’s are assumed to have bounded supports.
Therefore, by Lemma 1, we have

Zn/
√

n⇒ N(0,σ2
k∗), as n→ ∞.

It remains to prove that the second term on the RHS of (15) converges to 0 in probability. Note that

√
n

(
1
n

n

∑
j=1

µI j −µk∗

)
=
√

n

(
1
n

K

∑
k=1

Tk(n)µk−µk∗

)
=
√

n

[
∑

k 6=k∗

Tk(n)
n

µk +

(
Tk∗(n)

n
−1
)

µk∗

]

=
√

n

[
∑

k 6=k∗

Tk(n)
n

µk− ∑
k 6=k∗

Tk(n)
n

µk∗

]
= ∑

k 6=k∗

Tk(n)√
n

(µk−µk∗)
L1

−→ 0,

where the convergence follows from Proposition 1 and the condition νn ∈
[
logn,n

1
2−δ

]
with 0 < δ < 1/2.

Applying Slutsky’s Theorem (Durrett 2019) to the RHS of (15) leads to the conclusion.
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