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ABSTRACT

We develop and analyze an unbiased Monte Carlo estimator for a functional of a one-dimensional jump-
diffusion process with a state-dependent drift, volatility, jump intensity and jump size. The approach
combines a change of measure to sample the jumps with the parametrix method to simulate the diffusions.
Under regularity conditions on the coefficient functions as well as the functional, we prove the unbiasedness
and the finite variance property of the estimator. Numerical experiments illustrate the performance of the
scheme.

1 INTRODUCTION

Jump-diffusion processes are widely used to model the dynamics of prices, interest rates and other
financial market quantities. However, only relatively basic jump-diffusion models are analytically tractable.
Simulation methods are often employed to treat the computational problems involving richer models.

Discretization methods are broadly applicable, but generate biased simulation estimators; see Shkolnik
et al. (2019) for an error analysis. Exact sampling schemes for one-dimensional diffusions (Beskos and
Roberts 2005; Chen and Huang 2013) and one-dimensional jump-diffusions (Casella and Roberts 2011;
Giesecke and Smelov 2013; Gonçalves and Roberts 2014) avoid bias but have a narrower scope. It has
proven difficult to extend these exact methods to multivariate processes. For instance, the first exact
algorithm for multivariate diffusions has infinite expected run time (Blanchet and Zhang 2017). A less
ambitious alternative to exact schemes are algorithms that yield unbiased estimators for functionals of the
process. Under different sets of assumptions on the coefficients of the process and the functional, Wagner
1989, Rhee and Glynn 2015, Bally and Kohatsu-Higa 2015, Agarwal and Gobet 2017, Andersson and
Kohatsu-Higa 2017 and Henry-Labordère et al. 2017 provide such estimators for multivariate diffusions.
The jump-diffusion case has not been treated, to our knowledge.

This paper develops an unbiased simulation estimator for functionals of a one-dimensional jump-
diffusion process with state-dependent drift, volatility, jump intensity and jump magnitude. We combine a
change of measure with an recursive algorithm to extend an unbiased estimator for a diffusion to a process
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with jumps that arrive with a state-dependent intensity. We exemplify this approach on the “parametrix
method” estimator for diffusions developed by Bally and Kohatsu-Higa (2015). Here, the diffusion is
approximated by an Euler process and the resulting estimator is reweighted to offset the discretization bias.
Under the assumption that the intensity function is bounded and has a bounded, continuous derivative, and
those inherited from the parametrix method on the diffusion coefficients, we prove that our estimator is
unbiased and has finite variance.

While our approach has a somewhat narrower scope than the method of Giesecke and Smelov (2013)
for one-dimensional jump-diffusions, our numerical results indicate that it can significantly outperform
this exact scheme. Moreover, unlike existing exact algorithms, our approach is extensible to multivariate
jump-diffusions. This extension will be pursued in future work, and will illustrate how our change of
measure approach harnesses the jumps for alternative unbiased estimators for diffusions, such as that of
Henry-Labordère et al. (2017).

The rest of the paper is organized as follows. Section 2 formulates the simulation problem. Section 3
introduces the parametrix method. Section 4 develops and analyzes our approach. Section 5 describes our
simulation algorithm and Section 6 supplies the numerical results. An appendix contains the proofs.

2 PROBLEM FORMULATION

Fix a time horizon T > 0 and let Ck
b(R) denote the space of continuous, bounded functions on R with k

bounded and continuous derivatives.

2.1 Jump-diffusion

We consider an R-valued process X solving the integral SDE

Xt =
∫ t

0
µ(Xs)ds+

∫ t

0
σ(Xs)dWs + Jt (1)

for t ∈ [0,T ], with coefficients µ : R→ R and σ : R→ R such that a (unique) weak solution exists for
some standard Brownian motion W and pure jump process J. Take {Ft}t≥0 as the the augmented filtration
to which both W and J (and therefore X) are adapted. Specifically, we consider J of the form,

Jt =
Nt

∑
n=0

Vn (2)

for a counting process N with intensity λ (X) for some λ : R→ R+ and {Vn}n∈N, a sequence of marks
(see Brémaud (1981) for definitions). Let Tn denote the nth arrival time of N with T0 = 0. Every Vn is a
FTn-measurable random variable with a probability law νn on R that may depend on XTn− and Tn. Observe
that, X0 = J0 and J0 =V0. Finally, denote by P the probability measure on the space on which X ,W and J
are defined, and by E, the corresponding expectation.
Example 1 Taking µ(x) = µx, σ(x) = σx, λ (x) = λ and Vn = XTn−(e

Zn−1) with parameters µ,σ ,λ > 0
and for {Zn}n≥1 an i.i.d sequence drawn from the double-exponential distribution, gives the jump-diffusion
model of Kou (2002).
Example 2 Taking µ(x) = (r+λ (x))x, σ(x) = axβ+1 where λ (x) = b+ ca2x2β and every Vn = −XTn−
with parameters a,b,r > 0 while c ≥ 1/2 and β < 0, gives the jump-to-default extended CEV model of
Carr and Linetsky (2006).

2.2 Objective

Our goal is to derive an unbiased estimator of E( f (XT )) for Borel f : R→ R. Precisely, we construct a
random variable U such that

E( f (XT )) = E(U) . (3)
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We also insist the estimator U have finite variance (i.e., Var(U)< ∞). This leads to a natural Monte Carlo
algorithm for estimating E( f (XT )), i.e., average a sufficient number of i.i.d. samples of U to ensure that
the estimated confidence intervals provide a desired level of precision. The finite variance of the estimator
ensures that the CLT may be used to construct the desired confidence intervals.

2.3 Preliminaries

Define a process Y on [0,T ] as a (weak) solution to the SDE

dYt = µ(Yt)dt +σ(Yt)dWt (4)

for coefficients µ,σ and W in (1). A (weak) solution of (1) may be constructed from i.i.d. copies {W n}n∈N
of the W and a sequence of standard exponential random variables {En}n∈N. To this end, for the intensity
function λ , define A as

At =
∫ t

0
λ (Ys)ds . (5)

We take (Y n,An) to be defined via (4)–(5) but with respect to W n. This pair corresponds to the interval
[Tn,Tn+1) with the right endpoint given by the relation Tn+1 = Tn +(An)−1

En
. Now, starting at T0 = 0 and

X0− = 0, we proceed as,
XTn = XTn−+Vn

Xt = Y n
t−Tn

; t ∈ (Tn,Tn+1),Y n
0 = XTn .

(6)

The (N,J) may be constructed from (Tn,Vn)n∈N. A solution X that follows the above recipe is càdlàg and
enjoys the strong Markov property at each stopping time Tn. For further detail, we refer the reader to
Shkolnik et al. (2019). This construction may be used to simulate the paths of X but the implied procedure
for sampling the jump times is, in general, subject to simulation bias. In general, these errors arise in
sampling of the Y , but also in the inversion of the A.

Throughout, Ex denotes the expectation given X (or Y ) is started in x ∈ R.
Assumption 1 The function µ is C1

b(R) and Lipschitz. The function σ is C2
b(R) and Lipschitz. There are

constants b,c > 0 such that σ(x) ∈ [c,b] for all x ∈ R.
Assumption 2 The function λ is C1

b(R) and is further strictly positive and Lipschitz. Every Vn has a finite
second moment and may be sampled without bias.
Assumption 3 The function f is bounded.

Assumption 1 guarantees the existence and uniqueness of a weak solution of (4). Assumption 2
guarantees further that X solving (1) is non-explosive. Bias free samples and a finite second moment of
Vn are required for an unbiased estimator that also has finite variance. The requirement that f be bounded
(in conjunction with 2) guarantees that a “parametrix formula” holds for Y .

3 PARAMETRIX METHOD

Bally and Kohatsu-Higa (2015) develop unbiased estimator for a diffusion via the parametrix method. This
estimator relies on a formula that, under Assumption 1, states that the diffusion Y solving (4) and its Euler
process Y π satisfy

Ey(g(Yt)) = Ey(g(Y π
t )Θπ(y, t)) y ∈ R, (7)

for t ≥ 0, any smooth function g on R with compact support and a random weight Θπ(y, t) that corrects
for the bias due to Y π . The Euler process Y π is defined over a random time discretization π = {τk}k∈N
with 0 = τ0 ≤ τk ≤ τk+1. More precisely, for every k ∈ N, we take Y π to be the solution of the SDE,

dY π
t = µ(Y π

τk
)dt +σ(Y π

τk
)dWt , τk ≤ t ≤ τk+1. (8)
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We assume the {ηk}k≥1, with ηk = τk− τk−1, is an i.i.d. sequence and that each τk is the kth arrival of K,
some counting process independent of W . Let φ be the density function of η1 and let Ψ be its survival
function, i.e., Ψ(x) = P(τ1 > x). Then, given that Y π starts in y ∈ R, the weight Θt(y, t) in (7) takes the
form

Θπ(y, t) =

(
Kt

∏
k=1

θηk(Y
π
τk−1

,Y π
τk
)

φ(ηk)

)
/Φ(t− τKt ) . (9)

The function θt : R×R→ R for t ∈ R+ depends on the coefficients µ and σ of the diffusion. We omit
these specifics here (but, see Remark 2 for details).

When K is a Poisson process, the variance of the estimator g(Y π
t )Θπ(y, t) of Ey(g(Yt)) may be infinite.

Andersson and Kohatsu-Higa (2017) provide such an example and propose taking η1 to have the Beta
distribution. With this choice, the unbiased estimator g(Y π

t )Θπ(y, t) has finite variance (see Section 4.1).
To accommodate jumps we extend the class of functions for which (7) holds.

Lemma 1 Under Assumption 1, for any g Borel and bounded, (7) holds.
The proof relies on standard dominated convergence type arguments (see Appendix A). The conditions

may be relaxed further but we do pursue this here.
Remark 1 Lemma 1 generalizes to Rd in an obvious way (Andersson and Kohatsu-Higa 2017). In
particular, we apply the paramerix formula in R2 to the joint process (Y,A) to accommodate the jumps in
X (see Remark 2 and Appendix A).

4 UNBIASED ESTIMATOR

Derivations of the parametrix formula rely on the structure of the infinitesimal generator of a diffusion.
They do not extend in a straightforward manner to jump-diffusions. To address this, we apply a change
of measure that transforms the FTn-conditional distribution the waiting time (at Tn) until Tn+1 to be
exponentially distributed with rate λ (XTn). The waiting time may then be sampled exactly. The parametrix
formula is then applied to the diffusion on each interval [Tn,Tn+1) to form an estimator U such that (3)
holds under our assumptions.

4.1 Main Results

For (x, t) ∈ R×R+ and (Y,A) in (4)–(5), define the variables

G(y, t) = e−At f (Yt) and H(y, t) = λ (Yt) e−At . (10)

Recall the Euler process Y π of Y in (8) and define Aπ as the Euler process of A in (5) so that for each
k ∈ N given Aπ

τk
, the process Aπ satisfies

dAπ
t = λ (Y π

τk
)dt, τk ≤ t < τk+1,

starting from Aπ
0 = 0. Define the associated random variables Gπ and Hπ via the Euler processes Y π and

Aπ and the weight Θπ in (9), i.e., let

Gπ(y, t) = e−Aπ
t f (Y π

t )Θπ(y, t) and Hπ(y, t) = λ (Y π
t )e−Aπ

t Θπ(y, t). (11)

To compute Θπ(y, t), we take (9) with φ , the Beta(α,β ) density with parameters α ∈ (1
2 ,

2
3) and β = 1

rescaled to the domain [0, t + ε] for some ε > 0. A practical choice for ε is proportional to t. Finally, the
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function θ in (9) is given by

θt(x,y) =
1
2

qt(x,y)−ρt(x,y)− (λ (y)−λ (x))

where, for a(x) = σ(x)2 we have,

ρt(x,y) = µ
′(y)+(µ(y)−µ(x))ht(x,y)

qt(x,y) = a′′(y)+2a′(y)ht(x,y)+(a(y)−a(x))bt(x,y)

bt(x,y) =
ht(x,y)2ta(x)−1

ta(x)
and ht(x,y) =

tµ(x)+ x− y
ta(x)

.

(12)

Remark 2 The parametrix method in our context is being applied to the joint process (Y,A). Not surprisingly,
setting λ = 0 recovers the Θπ(y, t) in the parametrix formula (7) for Y only. This setting corresponds to
the case when A is constant.
Remark 3 The restriction to the parameter α in the density φ to the interval (1

2 ,
2
3) is motivated by

Proposition 7.3 in Andersson and Kohatsu-Higa (2017). This ensures that a sufficient number of moments
of the parametrix estimator are finite.

Equipped with the above parametrix variables we state the unbiased estimator U for f (XT ) as in (3). Let ξx

be exponentially distributed with rate λ (x), and given the exponential density function `(y, t) = λ (y)e−λ (y)t ,
we further define

L(y, t) =
H(y, t)
`(y, t)

and Lπ(y, t) =
Hπ(y, t)
`(y, t)

. (13)

Take {Gπ
n}n∈N and {Lπ

n}n∈N to be mutually i.i.d. sequences of the random variables with laws of Gπ

and Lπ respectively. Here, both Gπ
n (y, t) and Hπ

n (y, t) are independent samples under P, conditional on a
corresponding sample of Y π started in y. Taking Y n,π to denote the sample of Y π that is associated with
the sample Lπ

n (y, t), and {Vn}n∈N as the marks in (2), we recursively define Un as

Un(x, t) = 0 for all t < 0, and otherwise,

Un(x, t) = Lπ
n (x,ξx)Un+1(Y

n,π
ξx

+Vn+1, t−ξx)+Gπ
n (x, t) .

(14)

The estimator U in (3) is evaluated by sampling x =V0 and setting

U = U0(x,T ). (15)

Some remarks are in order. The time t in Un(x, t) corresponds to the time remaining until horizon T .
The subscript n denotes the number of jumps with t time remaining. When t is negative all jumps have been
realized, i.e., NT = n. At each Tn, we have XTn = x, also the starting point of Y n,π . Each exponential ξx
facilitates the sampling of the jump times without bias. It corresponds to the time increment Tn−Tn−1
under a change of measure as explained in Section 4.2.

The next result supplies a certificate of correctness for our estimator.
Theorem 1 Under Assumptions 1, 2 & 3, we have E(U) = E( f (XT )).

We also guarantee that the Monte Carlo confidence intervals constructed for U may be trusted. Recall
that the samples Gn(y, t) and Ln(y, t) of the variables in (11) are independent (conditional on the starting
point y). This design reduces variance and is key to the proof of the following finite variance result.
Theorem 2 Under Assumptions 1, 2 & 3, we have Var(U)< ∞.

The proofs of both theorems are deferred to Appendix A.
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4.2 Estimator Derivation

The estimator in (14)–(15) consists of two main ingredients. The first is a change of measure that ensures
the waiting times in between jumps are (conditionally) exponential. The second is the parametrix formula
(7) which provides unbiased estimation for the diffusions in between the jumps.

For t ≥ 0 and a change of time γ(t) = TNt , define a càdlàg process Z by

Zt = exp
(∫ t

0
(λ (Xs)−λ (Xγ(s))ds

) Nt

∏
n=1

λ (XTn−1)/λ (XTn−) .

Giesecke and Shkolnik (2019) Theorem 3.1 guarantees the existence of a probability Q via the Radon-
Nikodym derivative ZT of Q with respect to P. This result addresses the case when NT is bounded. The
extension to an infinite but countable number of jumps is facilitated by Kolmogorov’s extension theorem.
We omit the proof for brevity. Here, we require λ > 0 per Assumption 2.

The probability Q has the property that the P-Brownian motion W in the construction of X is a
Q-Brownian motion. However, the intensity of N under Q is now given by λ (Xγ). It follows that the
waiting time Tn+1−Tn has the FTn-conditional Q-distribution that is exponential with rate λ (XTn). This is
not the case under P (see Section 4 of Giesecke and Shkolnik (2019) for further detail).

Denoting by EQ
x the expectation with respect to Q with X started in x, let

u(x,T ) = Ex( f (XT )) = EQ
x ( f (XT )/ZT ) .

By splitting the right side on the event {T1 > T} and its complement, conditioning on FT1 and applying
the strong Markov property of X at T1, we obtain

u(x,T ) = EQ
x (1{T1>T} f (XT )/ZT )+EQ

x (1{T1≤T}u(XT1 ,T −T1)/ZT1). (16)

Note that on the event {T1 > T}, given X and Y start in x, the laws of the random variables f (XT )/ZT and
G(x,T )eλ (x)T coincide. Here, the random variable G is defined in terms of the diffusion (Y,A) in (10).
Recall that under Q, almost surely we have ξx = T1, which is exponentially distributed with rate λ (x). It
follows that Q(ξx > T |F0) = e−λ (x)T , and by the tower property of expectations,

EQ
x (1{T1>T} f (XT )/ZT ) = EQ

x (G(x,T )) = Ex(G(x,T )) . (17)

In the second equality, we used the fact that a P-Brownian motion is a Q-Brownian motion and that ξx has
the same exponential distribution under both probabilities (note, ξx 6= T1 under P). Similarly, on the event
{T1 ≤ T}, the laws of u(XT1 ,T −T1)/ZT1 and u(Yξx +V1,T −ξx)L(x,ξx) coincide. Here, L(x, t) is defined
in (13) and corresponds to a likelihood ratio of the probability densities of T1 under P and Q. Adopting
the convention u( · , t) = 0 for t < 0, we write

EQ
x (1{T1≤T}u(XT1 ,T −T1)/ZT1) = Ex(u(Yξx +V1,T −ξx)L(x,ξx)). (18)

Combining (17)–(18) with (16) we obtain the following identity.

u(x,T ) = Ex(L(x,ξx)u(Yξx +V1,T −ξx))+Ex(G(x,T )).

With the law of the jump diffusion X absent from expectations on the right side, we may apply the parametrix
formula to the diffusion (Y,A) to obtain

u(x,T ) = Ex(Lπ(x,ξx)u(Y π

ξx
+V1,T −ξx))+Ex(Gπ(x,T )). (19)

The estimator U(x,T ) of f (XT ) in (14) is based on formula (19). The independence of the samples Gπ
n

and Lπ
n corresponds to evaluating the two expectations in (19) separately. The proof of Theorem 1 makes

the application of the parametrix formula for the joint process (Y,A) defining G and L rigorous.
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5 ALGORITHM DESIGN

The estimator U in (14)–(15) leads to a straightforward recursive implementation. However, such an
implementation can exhibit poor performance. Here, we design an iterative scheme which is preferable
computationally. In is based on unrolling the recursion in (14). This iterative estimator is sampled in
Algorithm 1. It is important to note that while the values (n,xn) in Algorithm 1 represent those of (N,X) at
the jump-times, they are not samples of (N,X) at these times. The change of measure and the parametrix
formula preclude this interpretation. Algorithm 1 returns a sample of an unbiased estimator of f (XT ).

Algorithm 1 (Generates a sample U for which E(U) = E( f (XT ))).

0. Initialize t = T , n = 0, x0 =V0, Π = 1 and U = 0.
1. Generate a sample Gπ

n (xn, t) of Gπ(xn, t) in (11) by simulating an Euler process (Y π ,Aπ) started
at (xn,0) for π sampled over the interval [0, t].

2. Update U← U+Π×Gπ
n (xn, t).

3. Generate an exponential ξn with rate λ (xn) and return U if ξn > t.
4. Generate a sample Lπ

n (xn,ξn) of Lπ(xn,ξn) in (11) by simulating an Euler process (Y π ,Aπ)
started at (xn,0) for π sampled over the interval [0,ξn].

5. Update Π←Π×Lπ
n (xn,ξn).

6. Sample Vn+1 and set xn+1 = Y n,π
ξn

+Vn+1 for the sample Y n,π in Step 4.
7. Update t← t−ξn and n← n+1. Go to Step 1.

The samples Gπ
n and Lπ

n in Steps 1 and 4 of the algorithm involve two independent samples of the
Euler process Y π , each with its own time discretization π and weight Θπ . Each xn is constructed from the
sample Y n,π from Step 4.

6 NUMERICAL EXPERIMENTS

We provide numerical results to demonstrate the proposed estimator is unbiased. Consider a jump-diffusion
X solving on [0,T ] the SDE

dXt = κ(µ0−Xt)dt +
√

σ0 +σ1Xt dWt +dJt (20)

where κ,µ0,σ0,σ1 > 0 are constant parameters, and J a marked point process with mark sequence {Vn}
and intensity λ (X) = λ0 +λ1X for constants λ1 ≥ 0 and λ0 ≥ λ1σ0/σ1. The Feller condition applied to
the process σ0 +σ1X guarantees that λ (X)≥ 0 almost surely, as required. Model (20) is an example of
an affine jump-diffusion, a class of models widely utilized in financial applications (Duffie et al. 2000;
Errais et al. 2010).

We estimate the expected (undiscounted) price E((XT −K )+) of an interest rate cap with strike K
and maturity T , written on the short rate X (here, P is the risk-neutral measure). For comparison, we also
supply results for E(XT ).

Model (20) and the functions f (x) = (x−K )+ and f (x) = x above violate several of the assumptions
of Theorems 1 and 2. Note that the drift µ(x) = κ (µ0− x) and the volatility σ(x) =

√
σ0 +σ1x are not

bounded. Furthermore, the variance function σ2 is not uniformly elliptic, and the intensity function λ is not
bounded. All of these are in violation of Assumptions 1–3. However, the numerical results below suggest
that our estimator remains unbiased even when many of the required conditions do not hold. This indicates
a broader applicability of our scheme and points to extensions in future work. An additional motivation for
choosing this setting is that it is tractable (yet, nontrivial). This allows us to test if our algorithm indeed
outputs unbiased samples.

To illustrate the performance of our estimator, we report the sample error, given by |Um−E( f (XT ))|,
where Um is the unbiased estimate of E( f (XT )) generated using m Monte Carlo trials. The exact value
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Table 1: Numerical simulation results for E(XT −K )+. The Error and Variance values represent sample
quantities over m Monte Carlo trials.

m Error ×10−3 Variance ×103 99% CI ×10−3 Time (sec)

226 6.86 1.32404 11.5 339.381
228 5.66 1.86632 6.8 1357.52
230 0.21 1.68057 3.2 5430.10
232 0.06 1.54682 1.5 21720.4
234 0.31 2.04001 0.9 86881.6

Table 2: Numerical simulation results for E(XT ). The Error and Variance values represent sample quantities
over m Monte Carlo trials.

m Error ×10−3 Variance ×103 99% CI ×10−3 Time (sec)

226 8.42992 4.40456 20.9 338.180
228 9.41392 6.78829 13.0 1352.72
230 1.60108 6.13765 6.2 5410.88
232 0.24092 5.52924 2.9 21643.5
234 0.97092 6.87710 1.6 86574.2

E(( f (XT )) is computed semi-analytically (see below). We also include the sample variance of the estimate
Um along with 99% confidence intervals in Tables 1 and 2. We report the estimated values for an increasing
number of trials, the largest being, 234 ≥ 17×109, to test the behavior over as many scenarios as possible.
We observe that the sample error stays within the 99% confidence interval for each number of trials used.
While the variance estimates are large, no indication of outliers was detected.

The implementation of the scheme follows Algorithm 1. To evaluate the weight Θπ for the samples
Gπ

n and Lπ
n with time discretization π over, say [0,∆], we take φ(x) = α (2∆)−α/(x1−α) defined on the

domain [0,2∆] with α = 0.5. The function θt(x,y) in (12) for the model in (20) takes the form

θt(x,y) =
σ1

2
(y− x)

(
y− x−κ(µ0− x)t

t(σ0 +σ1x)

)2

−σ1

(
y− x−κ(µ0− x)t

t(σ0 +σ1x)

)
− κ(x− y)(y− x−κ(µ0− x)t)

t(σ0 +σ1x)
+κ−λ1(y− x) .

The parameters for X are selected as σ1 = 0.2 and κ = µ0 = σ0 = λ0 = λ1 = 1. We start X at 2 and
draw each Vn for n ≥ 1 uniformly from {0.5,1.0}. The maturity and strike price are set at T = 1 and
K = 3 for all simulations.

We obtain the exact value for Ex((XT −K )+) using Fourier inversion. This is possible for model (20)
as the transform ψx(u) = Ex(euXT ) may be computed semi-analytically. Indeed, we have ψx(u) = ea(0)+b(0)x

for u ∈ C and (a,b) solve

ȧ =−κµ0b− 1
2

σ0 b2−q(b)λ0 a(T ) = 0,

ḃ = µ0b− 1
2

σ1 b2−q(b)λ1 b(T ) = u,
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a system of ODEs on [0,T ] where q(b) = 1
2(e

b/2 + eb−2). Then,

Ex((XT −K )+) =
e−zK

π

∫
∞

0
Re
{

e−iuK ψx(u− zi)
(z+ui)2

}
du

for any z > 0 for which the above integral converges. We take z = 0.4. For more details we refer the reader
to Duffie et al. (2000) and Lee (2004).

To compute the exact value for Ex(XT ), let µx(t) = Ex(Xt) which using (20) may be shown to satisfy
the following ODE for v = E(V1).

µ̇x = (κµ0 + vλ0)+(vλ1−κ)µx µx(0) = x .

We observe that the algorithm is extremely fast in practice because relatively few (random) discretization
points are sampled for the Euler processes involved. This is unlike traditional Euler methods that require
a fine discretization to maintain accuracy. Despite a relatively high sample variance, in our simulations,
the scheme significantly outperforms the one proposed in Giesecke and Smelov (2013). Utilizing a single
core of a Intel(R) Xeon(R) CPU (E7-8890 v3 at 2.50GHz), Algorithm 1 takes roughly 24 hours to achieve
a 99% confidence interval of length 0.002. It would take 130 times longer for the algorithm of Giesecke
and Smelov (2013) to achieve the same result. If an effective variance reduction technique could be
implemented, our approach could be made even more efficient.
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A PROOFS

The proof of Lemma 1 below accommodates the Rd case. As discussed in Remark 2, we apply the
parametrix formula in R2 to the process (Y,A). It should be noted that (Y,A) does not satisfy Assumption
1, and we make the proper modifications in the proofs to address this difficulty.

Proof of Lemma 1. By Corollary 4.2 and Proposition 7.3 of Andersson and Kohatsu-Higa (2017), (take
Φ(x) = 1 and p = 1 therein), Ey(|Θπ(y, t)|)< ∞.

For M ∈N and g Borel and bounded on Rd , consider gM = g1[−M,M]. Then, there exists a sequence of
compactly supported, smooth functions {gi

M}∞
i=0 such that gi

M→ gM in L1(Rd) (Tao 2011, Theorem 1.3.20).
Furthermore, there is a subsequence {gik

M}k∈N that is uniformly bounded (as g is bounded) and converges
pointwise almost everywhere to gM(y) (Folland 2007, Corollary 2.32)). Consequently, the parametrix
formula holds for each gik

M, i.e., Ey(g
ik
M(Yt)) = Ey(g

ik
M(Y π

t )Θπ(y, t)). Since g is bounded, the law of Yt is
non-atomic and therefore no point has positive probability mass, and Ey(|Θπ(x, t)|)<∞, applying dominated
convergence with k ↑ ∞ yields Ey(gM(Yt)) = Ey(gM(Y π

t )Θπ(y, t)). Applying dominated convergence again
with M ↑ ∞ yields the desired result.

Before proceeding to the proofs of Theorems 1 and 2 we make some preliminary definitions. The
estimator U = U0(X0,T ) constructed in (14)–(15) has a P-law that coincides with the Q-law. It implies the
existence of a counting process N̂ that is constructed from the exponential waiting times generated at each
arrival (e.g., see Step 3 of Algorithm 1). This process should not be confused with the original counting
process N, the law of which depends on the probability measure. The auxiliary process N̂ represents N
and is involved in the left side of

E(U) = E( f (XT )). (21)
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Define Bn(t) = {N̂t = n} and note that this event satisfies

1{T1≤T}Bn+1(t) = 1{T1≤T}Bn(t−T1). (22)

We proceed to prove the main results of the paper.

Proof of Theorem 1. To prove (21) it suffices, for to show that

EQ
x (1An(t)U0(x, t)) = Ex(1{Nt≤n} f (Xt)), An(t) = ∪k≤nBk(t), t ≤ T. (23)

Then, taking n ↑ ∞, so that 1An(t) ↑ 1 almost surely, EQ
x (U0(x, t)) = Ex ( f (Xt)) for t ≤ T . The right side

of (23) follows by the bounded convergence theorem ( f is bounded). The left side of (23) follows by
dominated convergence with |1An(t)U0(x, t)| ≤ |U0(x, t)| since EQ

x (|U0(x, t)|) < ∞ which holds by the fact
that EQ

x (U0(x, t)2) < ∞ per Theorem 2 and Jensen’s inequality.
The proof follows induction on n. To this end, we assume (23) holds for some n and prove (23) for

all n+1. Using the definition in (14) we have,

EQ
x (1An+1(t)U0(x, t)) = EQ

x (1An+1(t)L
π
0 (x,ξx)U1(Y

0,π
ξx

+V1, t−ξx))

+EQ
x (1An+1(t)G

π
0 (x, t))

We treat the two terms in the sum separately.
The following steps follow from the arguments in Section 4.2. Here, we address the application of the

parametrix formula.

EQ
x (1An+1(t)G

π
0 (x, t)) = EQ

x (1An+1(t)Θπ(x, t)e−Aπ
t f (Y π

t ))

= EQ
x (1An+1(t)1{T1>t}Θπ(x, t)e−Aπ

t +tλ (x) f (Y π
t ))

= Ex(Θπ(x, t)e−Aπ
t f (Y π

t ))

= Ex(e−At f (Yt))

= Ex(1{T1>t} f (Xt)).

In the above steps, we applied the parametrix formula to (Y,A) starting in (x,0) and the map (z1,z2) =

e−(z2∨0) f (z1), which is bounded, ensures Lemma 1 is applicable. It should be noted that the diffusion
(Y,A) is degenerate which would in theory violate the conditions on its diffusion matrix. This is easily
remedied by introducting a second Brownian motion W ′ independent of W and considering (Y,A+ cW ′)
for any c > 0. Establishing the formula above for this modified process and using bounded convergence
with c ↓ 0 yields the result.

The second term relies on the inductive hypothesis. We define,

un(x,s) = EQ
x (1An(s)U1 (x,s)) = EQ

x (1An(s)U0 (x,s)) = Ex(1{Nt≤n} f (Xs)).

Noting that 1An+1(t)1{T1≤t} = 1{T1≤t}1An(t−T1) upon summing (22), again adopting the convention un(x,s) = 0
for s < 0, and applying the arguments used in the derivation of (18) in Section 4.2, for V π

1 = Y 0,π
ξx

+V1,
leads to

EQ
x (1An+1(t)L

π
0 (x,ξx)U1(V π

1 , t−ξx)) = Ex(Lπ
0 (x, t)un (V π

1 , t−ξx))

= EQ
x (L0(x, t)1{T1≤t}un(XT1 , t−T1))

= Ex(1{T1≤t}un(XT1 , t−T1))

= Ex(1{T1≤t}1{Nt≤n} f (Xt)).

The parametrix formula is applied above to (Y,A) with un is bounded and the Lπ
0 treated analogously to

Gπ
0 above. Adding the two terms completes the proof.
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Proof of Theorem 2. It suffices for a finite C ≥ 2 and γ ∈ (0,1) to show

sup
x∈R

EQ
x

(
1Bn(t)U0(x, t)2

)
≤Cγ

n t ≤ T. (24)

Once (24) holds, we obtain E(U2)≤ supx∈R ∑n∈N EQ
x (1Bn(t)U0(x,T )2) where the sum and the expectation

are exchanged by applying monotone convergence.
Proposition 7.3 in Andersson and Kohatsu-Higa (2017) guarantees there exists a constant B≥ 2 such

that for Gπ and Lπ in (11),

sup
x∈R

EQ
x (G

π(x, t)4)≤ B2 and sup
x∈R

EQ
x (L

π(x,ξx)
4)≤ B2.

An examination of the proof of the result in Andersson and Kohatsu-Higa (2017) reveals that the bound
is independent of the starting point x ∈R. Here, we crucially rely on the value α in the range specified in
Remark 3 and that under Assumptions 2 and 3 both λ and f in Gπ and Lπ are bounded.

We proceed by induction on n ∈ N. The base case follows by noting that EQ
x (1B0(t)U0(x, t)2) =

EQ
x (G

π
0 (x, t)

2)≤ B by Jensen’s inequality.
We take C ≥ B. Assuming that (24) holds, it suffices to exhibit the same bound for n+1 and for n

sufficiently large (taking C large enough for other n). To this end, for t ≤ T , consider {pn(t)}n∈N defined
by p2

n(t) = Q(Bn(t)). Assumption 2 (bounded λ ) guaratees that for n sufficiently large,

B2C pn(t)≤ γ
n/2.

Since λ is bounded, the dependence of the the starting point x may be ignored.
Expanding 1Bn+1(t)U0(x, t)2 using the definition (14) yields a sum of three terms. Applying (22) together

with the strong Markov property at ξx = T1, and further using Cauchy-Schwarz yields the following bounds
for these terms.

EQ
x (1Bn+1(t)G

π
0 (x, t)

2)≤ pn+1(t)B2C2

EQ
x (1Bn+1(t)G

π
0 (x, t)L

π
0 (x,ξx)U0(Y

0,π
ξx

+V1, t−ξx))≤ pn+1(t)B2C2
γ

n/2

EQ
x (1Bn+1(t)L

π
0 (x,ξx)

2U0(Y
0,π
ξx

+V1, t−ξx)
2)≤ pn+1(t)B2C2

γ
n/2

Combining these bounds yields the inductive step, concluding the proof, i.e.,

sup
x∈R

EQ
x

(
1Bn+1(t)U0(x, t)2

)
≤ B2C2 pn+1(t)(1+ γ

n)≤Cγ
n+1.
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