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ABSTRACT

We analyse the equilibrium behaviour of a large network of banks in presence of incomplete information,
where inter-bank borrowing and lending is allowed, and banks suffer shocks to assets. In a two time period
graphical model, we show that the equilibrium wealth distribution is the unique fixed point of a complex,
high dimensional distribution-valued map. Fortunately, there is a dimension collapse in the limit as the
network size increases, where the equilibriated system converges to the unique fixed point involving a simple,
one dimensional distribution-valued operator, which, we show, is amenable to simulation. Specifically,
we develop a Monte-Carlo algorithm that computes the fixed point of a general distribution-valued map
and derive sample complexity guarantees for it. We numerically show that this limiting one-dimensional
regime can be used to obtain useful structural insights and approximations for networks with as low as a
few hundred banks.

1 INTRODUCTION

We analyse a large network of financial institutions (henceforth referred to as banks) where inter-bank
borrowing and lending of capital is allowed, and arrive at structural simplifications as the network size
increases to infinity. Specifically, we consider a graphical model of the banking network where vertices
denote banks and edges spell out the inter-bank liability structure. A two time period framework is
considered: In period one, banks borrow and lend capital to each other, and inter-bank linkages in the
network are realised. In the next period, they receive income from their external assets modulo random
shocks, and use it to clear external and inter-bank liabilities. The equilibrium wealth of the system is
the resultant fixed point solution that balances the incoming and the outgoing wealth at each bank. Such
graphical models have been extensively studied in literature, for example, by Allen and Gale (2000),
Eisenberg and Noe (2001), Haldane and May (2011), Acemoglu et al. (2015) and Glasserman and Young
(2016) among others. It can be shown that the wealth of banks in equilibrium is the unique fixed point
of a vector valued map. However, one shortcoming in much of the existing literature is the assumption
that the entire network wealth and liability structure is known to the modeller. This is often unrealistic in
practice as observed by Anand et al. (2015): A modeller typically only gets access to balance sheets of
banks in the network and only knows the aggregate assets and liabilities, i.e., how much each bank lends
or borrows, but not from whom. A modeller may also know the average number of creditors and debtors
of a typical bank, without access to further information granularity.

To address this lack of complete information, we model the banking network as a random, weighted
graph, where the randomness captures the modeller’s incomplete information on exact assets and liabilities,
as well as unobserved (both idiosyncratic and systemic) shocks to the bank’s assets. We allow the inter-
bank connectivities, liabilities and external assets to be random variables, whose distribution matches the
observed statistical properties of the network. Other works, for example Amini et al. (2016), also consider
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random graphical models of banking networks . However in their models, the recoveries of a bank from a
defaulting debtor are independent of the actual wealth possessed by the debtor. Our model departs from this
by allowing recoveries on default to be state dependent, resulting in a more realistic view of the banking
network.

We consider a sparse graph regime where each bank has only a few counter-parties and show that
the wealth possessed by banks in equilibrium is a random vector whose distribution is a fixed point of
a distribution-valued map (specified in Section 3). A similar approach is also followed by Kavitha et al.
(2018), however, they model the network as a dense graph, where the expected number of counter-parties
of a bank go to infinity. The sparse graph model which we consider differs from theirs both in terms of
the analysis and conclusions. Further, it has been observed empirically, for example, by Cont et al. (2010)
that banking networks are sparse, and hence we expect our regime to more accurately capture real banking
networks.

To infer the statistical properties of the network, it is essential to sample from this fixed point. However,
typical banking networks are quite large, often consisting of hundreds or thousands of banks. Sampling
thus is computationally prohibitive due to the underlying high dimensionality. We show that as the size
of the banking network grows, due to conditional independence amongst underlying random variables,
there is a dimension collapse: the distributional fixed point of a large banking system converges to the
product of a one-dimensional distributions. Hence, the statistical properties of a large network are well
approximated by the limiting fixed point distribution. This provides a great deal of structural insights and
may be of use in conducting many what if analysis on a large network. As we discuss below, it is easy
to generate approximate samples from the limiting fixed point distribution, providing a large amount of
computational reduction for the network. Proving the existence and uniqueness of fixed points as well as
distributional convergence for the growing random banking network is typically not straightforward. One
of our contributions is to leverage the theory of optimal transport, which enables us to metrize the infinite
dimensional space of distributions in which the fixed points and their limits lie. This provides a relatively
simple approach to prove limit theorems.

The second part of this paper focuses on simulation of the limiting fixed point and related computational
issues. Let T (·) be a map on the space of probability measures on the line. Suppose T (·) is contractive
(and hence has a unique fixed point), and satisfies certain moment bounds. Then, assuming that for any
distribution P one can sample from T (P), we develop a Monte Carlo algorithm which gives a distribution
which is close to the fixed point of T (·), and derive probabilistic guarantees for it. To the best of our
knowledge, the algorithm and its analysis are new. Applying this to the banking network, we show that
to approximate a realistic system a small number of computations are required. Testing this algorithm on
a simulated example where there are a few hundred banks in the network, we find that the limiting fixed
point distribution approximates the global properties of the large network well.

To summarise, our contributions are two-fold: We provide a framework to capture the modelling
uncertainty in a graphical model of a banking system, and provide asymptotic analysis and approximations.
Secondly, we provide a method to simulate these approximations in an efficient way, and provide some
structural insights into the behaviour of a large banking system.

In Section 2, we provide the technical background and notation used throughout this paper. In Section
3 we introduce our model and derive the asymptotic behaviour of the large banking system. In Sections
4 and 5 we discuss the simulation of distributional fixed points, and related computational issues. Section
6 concludes with simulation experiments, which validate our theoretical results. Due to space limitations,
only proof sketches are provided. A more elaborate version of this paper will consider richer models and
refined mathematical analysis.

2 BACKGROUND

In our asymptotic analysis, we encounter measures on the vertices of an increasing sequence of graphs.
We embed these in a common space of measures on ℜ∞ (by setting all marginals of components larger
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than the system size to 0). To study convergence of properties of the large graph to its limit, as well as to
easily establish existence and uniqueness of fixed points, it is essential to metrize this space. An elegant
and natural way of doing this is through Wasserstein distances, which we describe next. Let X be a Polish
space equipped with a metric d(·, ·), and let M (X ) denote the set of probability measures on X . For
µ,ν ∈M (X ), we define the Wasserstein distance of order p under d as

Wp(µ,ν) = inf
X∼µ,Y∼ν

(E(d(X ,Y )p)
1
p . (1)

We call the joint distribution of µ and ν which achieves this infimum as the optimal coupling between µ

and ν . It can be shown that for all p < ∞, Wp makes the space of probability measures a Polish space.
Further, weak convergence together with convergence of pth moments is equivalent to convergence in Wp
(see Villani (2003), Theorem 7.12). The following duality for Wasserstein distance of order 1 is also useful:

W1(µ,ν) = sup
f∈Lip(1)

∣∣∣∣∣
∫

f dµ− f dν

∣∣∣∣∣, (2)

where Lip(1) is the set of all 1-Lipschitz function with respect to the metric d. For any distribution
P ∈M (X ), and any (i1, . . . , ik), k < ∞, we denote its finite dimensional projections on the components

(i1, . . . , ik) by π
−1
i1,...,ik P. Let, X = {Xi} denote a random vector with marginals Xi. We use D−→ to denote

convergence in distribution. Let {Yi} be an indexed set of random variables, and {ai} be a sequence of
real numbers. Then, Yn = OP(an) if for any ε > 0, there exists an M > 0, such that for all n large enough,
P
(∣∣Yn

an

∣∣> M
)
< ε . For any random element Z (scalar or vector), let L (Z) denote its law. For two random

elements Z1 and Z2, we say that Z1
D
= Z2 if Z1 and Z2 have the same distribution. We denote a Poisson

variable with rate α by Poi(α), and use Bin(N, p) to denote a binomial random variable with size N and
success probability p. Lastly, for any µ ∈M (ℜ), suppose {Xi : i≥ 1} are drawn from µ independently.
Letting δ(·) be the Dirac point measure, denote the the empirical distribution of µ , of size n is given by
1
n ∑

n
i=1 δXi .

3 LARGE NETWORK UNDER MODELLING UNCERTAINTY

Consider an economy where there are N banks of identical seniority, indexed by {1,2, . . . ,N} and represented
as the vertices of a directed graph GN . For a bank j, let A j, B j denote the total external assets and inter-bank
liabilities, respectively. We additionally assume that j has an external liability of Vj (e.g. customer deposits
and operational costs). Note that these are modelled as random variables to capture the uncertainty in the
network, as well as unobserved idiosyncratic shocks to assets. We make the following structural assumption
on the network:
Assumption 1 The graph GN is directed Erdos-Renyi. Letting pN denote the probability of there being an
edge between a pair of vertices, N pN → α > 0. Further, there is a common shock Z ∈ℜd , conditioned on
which (Ai,Bi,Vi) is i.i.d. over i such that Ai, Bi and Vi each have a finite moment of order γ > 2.

Assumption 1 captures the fact that banking networks are sparse: inter-bank relations are costly, and
typical banks only have a small number of counter-parties. In this regime, the number of creditors and
debtors of any bank are distributed as Bin(N− 1, pN). The shock Z can be interpreted as a loss due a
common risk for each bank: it could consist of portfolios invested by the banks in risky assets, as well
as the general state of the economy. For instance, the wealth possessed by each bank may be a random
function of a common risky asset Z. A crisis in the stock market, or general economic depression then
reduces the external assets. Since all the results we state and prove are be conditioned on a fixed realisation
of the common shock Z, we henceforth hide Z and assume that (Ai,Bi,Vi) are i.i.d. across i. Suppose the
economy operates over two time periods, t = {0,1} as follows:
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• At t=0, the banks borrow capital from others. An edge from bank j to bank i (which we denote
by ( j→ i)) is present if bank j is liable to i. The total liability inter-bank of i is given by Bi.

• At time t=1, each bank i receives random external asset income Ai which may be small if it suffers
an idiosyncratic shock. Bank i first clears its liabilities outside the system, Vi, and then pays back
the amounts it has borrowed from others within the system. Bank i defaults if the wealth available
to it post clearing, denoted by XN

i is less than Bi +Vi. Since we have assumed equal seniority,
payments made within the system are pro-rata, that is, if a bank defaults, it clears its dues to its
creditors in proportion to what it owes them.

The total wealth held by bank i is the sum of its external assets and inter-bank claims. In equilibrium,
this holds simultaneously for all banks in the network. Further, any bank pays the system the minimum
of its wealth net senior liabilities and what it owes, i.e., bank i pays the system (XN

i −Vi)
+∧Bi. Since for

each i, only the aggregate liability Bi is available to the modeller, it is reasonable to assume that a bank
borrows equally from each of its creditors (similar to for example, Gai and Kapadia (2010)), although this
is easily relaxed (see Remark 2). The joint distribution of wealths of the banks hence satisfies

{XN
i }i=1,...,N

D
=
{

Ai +
N

∑
j=1

(XN
j −Vj)

+∧B j

PN
j

I( j→ i)
}

i=1,...,N
, (3)

where recall that XN
j is the wealth of bank j post clearing, PN

j
D
= Bin(N−1, pN) is the out-degree of bank j

(this represents the number of banks j is liable to). Recall that M (ℜ∞) is the space of probability measures
on ℜ∞. Now define the map TN : M (ℜ∞)→M (ℜ∞),

TN(λ ) = L

({
Ai +

N

∑
j=1

(X j−Vj)
+∧B j

PN
j

I( j→ i)
}N

i=1

)
, (4)

where X = {Xi} is drawn jointly from λ ∈M (ℜ∞). Then, the wealths of the banks in an economy of size
N are a fixed point of TN(·). Observe that for all λ ∈M (ℜ∞) if k > N, then π

−1
k TN(λ ) = 0. The following

lemma shows that the system of distributional equations in (4) is consistent. Let C N
i be the set of debtors

of bank i. Define the distance on ℜ∞: dN(x,y) = ∑
N
i=1(|xi− yi|), ‖x− y‖1,N . Then,

Lemma 1 For every N, TN(·) is a contraction in the Wasserstein-1 metric, and thus has a unique fixed
point, call it λ ∗N . Further, {λ ∗N} is a relatively compact sequence in M (ℜ∞).

Proof sketch of Lemma 1 For every fixed N,

W1(TN(µ),TN(ν)) = inf
U∼TN(µ),V∼TN(ν)

E‖U−V‖1,N , taking Wasserstein distances with respect to dN(·, ·)

≤ E
∥∥∥{ ∑

j∈C N
i

((X j−Vj)
+∧B j)− ((Yj−Vj)

+∧B j))

PN
j

}
i

∥∥∥
1,N

where X∼ µ,Y∼ ν (5)

≤ E

 N

∑
i=1

∑
j∈C N

i

|((X j−Vj)
+∧B j)− ((Yj−Vj)

+∧B j)|
PN

j

 (6)

≤
N

∑
i=1

E

 ∑
j∈C N

i

|X j−Yj|
PN

j

≤ αNE

(
N

∑
j=1
|X j−Yj|

)
= αNE(‖X−Y‖1,N), (7)

where the measures µ , ν in M (ℜ∞). In (5), we have selected all random variables except X and Y to be
identical. It is easy to see that this gives the correct marginals, and hence is a valid coupling of TN(µ)
and TN(ν) (joint distribution with the correct marginals). The inequality is then a consequence of (1). To
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see (6) use the definition of the distance d(·, ·), and the triangle inequality. To go from (6) to (7), note
that for all x, y, a and b, |(x∨a)∧b− (y∨a)∧ (b)| ≤ |x−y|. Since the bound in (7) is independent of the
joint distribution of X and Y, it also holds under the optimal coupling between of X and Y (this exists by
Theorem 4.1 from Villani (2003)). Then, one can replace the expectation in (7) by W1(µ,ν). αN in (7) is

E
(

∑ j∈C N
i

1
PN

j

)
. For j ∈ C N

i , PN
j are distributed as 1+Bin(N−2, pN), i.i.d. It can be shown that for all N,

αN < 1, and hence TN(·) is a contraction and has a unique fixed point.
Remark 1 dN(·, ·) is not a metric on ℜ∞ (it is a pseudo-metric). However, the range of TN(·) is restricted
to M (ℜN). Since dN(·, ·) defines a metric on ℜN , the proof goes through.

Define T : M (ℜ)→M (ℜ) as

T (µ) = L

(
A1 +

P

∑
i=1

(Xi−Vi)
+∧Bi

1+Pi

)
, (8)

where Pi and P are independent Poi(α) random variables. We now state this section’s main result:
Theorem 1 The limiting map T (·), defined by (8) is a contraction in the Wasserstein 1 metric, and hence
has a unique fixed point. Let TN(·) be defined by (4). Then, if λ ∗ is the unique fixed point of (8), and λ ∗N

is the unique fixed point of TN(·), λ ∗N
D−→
⊗

∞
i=1{λ ∗}i, as well as in Wp, for any p ≤ 2, where

⊗
denotes

the product measure and {λ ∗}i
D
= λ ∗.

Proof Sketch: The proof consists broadly of the following steps:
1) Uniqueness of limiting fixed point: To show that λ ∗ is the unique fixed point of T (·) defined by

(8) we show that it is a contraction. Fix measures λ1, λ2 ∈M (ℜ). Observe that as consequence of (1), for
any arbitrary coupling Π of λ1,λ2, W1(λ1,λ2) ≤ E(X ,Y )∼Π|X −Y |. Let Wi,1 and Wi,2 be drawn i.i.d. from
λ1 and λ2, respectively. Then, proceeding in a manner similar to the proof of Lemma 1,

W1(T (λ1),T (λ2))≤ E

∣∣∣∣∣ P

∑
i=1

(Ai−Vi +Wi,1)
+∧Bi− (Ai−Vi +Wi,2)

+∧Bi)

1+Pi

∣∣∣∣∣≤ E

(
P

∑
i=1

|Wi,1−Wi,2|
1+Pi

)

≤ E
(

P
1+P′

)
W1(λ1,λ2) where P and P

′
are independent Poi(α). (9)

One can verify that (9) is (1−e−α)W1(λ1,λ2). Hence, T (·) is a contraction, and has a unique fixed point.
2) Constructing bank ancestries: By relative compactness, it is sufficient to argue the convergence

of the projection π
−1
1,2 λ ∗N to (λ ∗

⊗
λ ∗). In equilibrium,

XN
1 = A1 +

N

∑
j=1

(XN
j −Vj)

+∧B j

1+DN
j

I( j→ 1) and XN
2 = A2 +

N

∑
j=1

(XN
j −Vj)

+∧B j

1+DN
j

I( j→ 2). (10)

where the DN
j are i.i.d. Bin(N−2, pN) random variables. Since the indicators I( j→ 1) and I( j→ 2) are

independent of each other, in equilibrium, the number of debtors of banks 1 and 2, henceforth referred
to as parents of bank 1 and 2, are independent Bin(N− 1, pN) random variables, call them CN

1 and CN
2

respectively. Now, for any i ∈ [n], call the set of all banks which reach i via at most k edges the ancestors
of i of order k, denoted by A N

i (k), and set Ai(0) = {i}. Denote the joint ancestry of banks 1 and 2 up to
k steps by A N

1,2(k). Define BN
1,2 = inf{k : A N

1 (k)∩A N
2 (k) 6= /0}. This denotes the smallest level at which

banks 1 and 2 have a common ancestor. Then, if k < BN
1,2, and if A1(k) and A2(k) are individually tree

like, A N
1,2(k) consists of two disjoint trees. Suppose the latter holds. Now, consider two independent copies

of λ ∗:

Y1 = A1 +
P1

∑
i=1

(Yi,1−Vi,1)
+∧Bi,1

1+Pi,1
and Y2 = A2 +

P2

∑
i=1

(Yi,2−Vi,2)
+∧Bi,2

1+Pi,2
. (11)
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Recall that here, Yi,1 and Yi,2 are sampled from λ ∗, i.i.d, the (Ak,Bi,k,Vi,k) are independent and (Pi,1,Pi,2,P1,P2)
are independent Poi(α) random variables. In (11), for k ∈ {1,2}, replace the Pi,k and Pk by Bin(N−2, pN)
and Bin(N−1, pN), random variables, call them DN

i,k and CN
k respectively, all else remaining the same:

Y N
1 = A1 +

CN
1

∑
i=1

(Y N
i,1−Vi,1)

+∧Bi,1

1+DN
i,1

and Y N
2 = A2 +

CN
2

∑
i=1

(Y N
i,2−Vi,2)

+∧Bi,2

1+DN
i,2

. (12)

One can show that the distributional fixed point of (12) is unique, that is there is a unique distribution µ∗N
on the line which satisfies (12). We expand the Y N

i,1 and Y N
i,2 in (12) as

Y N
i,1 = Ai,1 +

CN
i,1

∑
j=1

(Y N
i, j,1−Vi, j,1)

+∧Bi, j,1

1+DN
i, j,1

and Y N
i,2 = Ai,2 +

CN
i,2

∑
j=1

(Y N
i, j,2−Vi, j,2)

+∧Bi, j,2

1+DN
i, j,2

,

where all the random variables defined above are independent of each other. Continuing such an expansion,
it can be seen that the ancestries of Y N

1 and Y N
2 form disjoint trees with roots at Y N

1 and Y N
2 , denoted by

T N
1 and T N

2 . Observe that up to depth k < BN
1,2, the joint tree (T N

1 ,T N
2 ) is similar in structure to A N

1,2(k).
The main idea behind the proof is to leverage this to construct a coupling between (XN

1 ,XN
2 ) and (Y N

1 ,Y N
2 )

and show that the distance between them vanishes. Since (Y N
1 ,Y N

2 ) converges to (Y1,Y2), defined in (11),
(XN

1 ,XN
2 ) converges to (Y1,Y2) as N ↑ ∞. For simplicity of explanation, let the external liability Vi = 0,

pN = α

N , and let the inter-bank liability Bi be bounded by 1. A further outline is as follows:
3) Constructing the coupling: Set r = 0 and compute the fixed point of (4). Let the parents of

(XN
1 ,XN

2 ) in A N
1,2 be enumerated as ((XN

1,1, . . . ,X
N
CN

1 ,1
),(XN

1,2, . . . ,X
N
CN

2 ,2
)). Suppose A N

1 (1)∩A N
2 (1) = /0, that

is, there is no common parent. Then, use the same random variable (CN
1 ,C

N
2 ) (recall that CN

1 and CN
2

are independent Bin(N−1, pN)) to select number of parents of banks 1 and 2 in (T N
1 ,T N

2 ). Enumerate

these as ((Y N
1,1, . . . ,Y

N
CN

1 ,1
),(Y N

2,1, . . . ,Y
N

CN
2 ,2

)). Since A N
1 (1)∩A N

2 (1) = /0, for k ∈ {1,2}, (Ai,k,Bi,k,DN
i,k)

CN
k

i=1

are independent over i and k. Use these as the external wealth, liabilities and out degree respectively of
(Y N

1,k, . . . ,Y
N

CN
k ,k

) for k ∈ {1,2}. Set r→ (r+1) and repeat the above procedure for higher level ancestors,

until A N
1 (r+1)∩A N

2 (r+1) 6= /0, that is until r = BN
1,2−1, and select all the subsequent random variables,

(Ai,Bi,DN
i ) in T N

1 and T N
2 independent of A N

1,2 and of each other. This produces the correct marginals
on (XN

1 ,XN
2 ) and (Y N

1 ,Y N
2 ) and hence is a coupling, call it πN .

4) Bounding the distance: Call the distribution of (Y N
1 ,Y N

2 ) as QN and that of (XN
1 ,XN

2 ) as RN . Suppose
BN

1,2 > 3. For a coupling π , letting Eπ(·) denote the expectation when ((XN
1 ,XN

2 ),(Y N
1 ,Y N

2 )) are jointly
drawn according to π ,

W1(QN ,RN)≤Eπ(|XN
1 −Y N

1 |)+Eπ(|XN
2 −Y N

2 |), where the Wasserstein distance is taken under the L1 metric.
(13)

Fix the coupling πN . Since we have used the same random variables (Ai,1,Bi,1,DN
i,1)

CN
1

i=1 for the CN
1

parents of vertex 1 in both T N
1 and A N

1,2, the first term in (13) is bounded above by EπN

(
∑

CN
1

j=1
|XN

j,1−Y N
j,1|

1+DN
j,1

)
,

where XN
j,1 and Y N

j,1 are the parents of 1 in A N
1,2 and T N

1 respectively. For l ∈ {1, . . . ,CN
1 }, denote its CN

l,1
parents in T N

1 and A N
1,2 by (XN

l1,1, . . . ,X
N
lN
Cl,1

,1) and (Y N
l1,1, . . . ,Y

N
lN
Cl,1

,1). Since A N
1 (2)∩A N

2 (2) = /0, set identical

(Alr,1,Blr,1,D
N
lr,1)

CN
l,1

k=1, for its parents in both T N
1 and A N

1,2, and bound |XN
l,1−Y N

l,1| by ∑
CN

l,1
r=1

|XN
lr ,1−Y N

lr ,1|
1+DN

lr ,1
, where

XN
lr,1 and Y N

lr,1 are the parents of XN
l,1 and Y N

l,1 respectively.
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Recall that for any bank k, C N
k denotes its parents. Now, repeating the above step BN

1,2−3 more times,
one can bound the first term in (13) by

E

 ∑
r1∈C N

1

∑
r2∈C N

r1

. . . ∑
rBN

1,2−1∈C
N
r
BN

1,2−2

|XN
rBN

1,2−1,1
∧BrBN

1,2−1,1
−Y N

rBN
1,2−1,1

∧BrBN
1,2−1,1

| ·
BN

1,2−1

∏
l=1

1
(1+DN

rl
)

 ,

Since Bi is bounded by 1, a further upper bound is

E

 ∑
r1∈C N

1

∑
r2∈C N

r1

. . . ∑
rBN

1,2−1∈C
N
r
BN

1,2−2

BN
1,2−1

∏
l=1

1
(1+DN

rl
)

 . (14)

Now, since A N
1 (l) and A N

2 (l) are trees, and l < BN
1,2, the vertices rl in the product in (14) are all distinct,

and hence the DN
rl

are i.i.d, Bin(N− 2, pN). Then, the expectation of the product ∏
BN

1,2−1
l=1

1
(1+DN

r1
)

equals(
E
(

1
1+DN

1

))BN
1,2−1

. This can be bounded, for a sufficiently large N by 2
(

1−e−α

α

)BN
1,2−1

. Next, observe that

the total number of terms in the sum in (14) is the size of A1(BN
1,2−1). Now, (14) may be bounded for a large

enough N by 2
(

1−e−α

α

)BN
1,2−1
·E|A1(BN

1,2−1)|, which equals 2Cα (1− e−α)
BN

1,2−1, for some constant Cα .

It can be seen that BN
1,2 <

logN
3logα

has a probability of O(N−
1
3 ). Similarly for k < logN

3logα
, the probability that

either A N
1 (k) or A N

2 (k) is not tree-like is O(N−
1
3 ). Since Bi are bounded by 1, W1(QN ,RN) = O(N−

1
3 ).

Remark 2 Generalisations: The Erods-Renyi assumption on GN is simplest non-trivial case of random
banking network structure. Our results are also applicable when the out degrees are regularly varying
and even when in-degrees are themselves fat-tailed and dependent on the out-degree. However, the key
structural insights which we provide are seen most easily in the Erdos-Renyi case. One may also do
away with the assumption that (Ai,Bi,Vi) are conditionally i.i.d. over i, and allow some heterogeneity, e.g.
based on the geographical location of the banks. Similarly, one can introduce heterogeneity in inter-bank
borrowing: e.g, if bank i has an out degree D, one could assign i.i.d. weights (e1, . . . ,eD), and then, the
amount the bank borrows from its jth creditor can be set to equal e j

∑
D
r=1 er

Bi, where the random variables
e j are statistically fitted from the data. This captures the heterogeneity in the inter-bank borrowing, and
facilitates the use of our approximation even when granularities of the inter-banking structure are observed.

4 SIMULATION OF A DISTRIBUTIONAL FIXED POINT

Theorem 1 shows that a large banking network with uncertainty can be approximated in distribution by
the cartesian product of the fixed point of a one dimensional operator. In order to study the properties of
the finite network, it is essential to be able to draw samples from the limiting fixed point. The measure we
want to sample from is the fixed point of (8). The map T (·) defined in (8) depends on the distribution of
µ , as well as other random variables (Ai,Bi,Vi). Since it is difficult to obtain a closed form expression we
resort to a Monte-Carlo algorithm which gets provably close. Before stating the algorithm, we first outline
our general set-up. Let T : M (ℜ)→M (ℜ) be a contractive operator, with Lipschitz constant β < 1. For
γ > 0, define Kγ

M = {λ ∈M (ℜ) : EX∼λ (|X |γ)≤M}.
Assumption 2 There exists an γ > 2, such that T (M (ℜ))⊂ Kγ

M.
Is is easy to see that Assumption 2 is satisfied by the limiting operator T (·) defined in (8). This

may be relaxed by assuming that for any distribution with bounded moment of order γ , T (·) outputs a
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distribution with bounded moment of order γ . We now outline the motivation behind the Monte-Carlo
algorithm. First, observe that by the contraction property, for any distribution λ0, the sequence of iterates
{T k(λ0)}∞

k=1 converges to the fixed point λ ∗ of T (·). Our strategy is to replace the iterates T k(·) by their
empirical samples of size n. Then, provided a sufficiently large n is selected, the resulting empirical sample
distribution is close to T k(·) with high probability. Since T k(λ0) itself converges to the limiting fixed point
at a geometric rate, the empirical T̂ k

n (λ0) will be close to the true fixed point with high probability. To the
best of our knowledge, such probabilistic guarantees for distributional fixed points are new (however, see
Blanchet and Sigman (2011) for some related work).

Algorithm 1: Simulation of Distributional fixed point

1. Start with an arbitrary distribution λ0 = λ̂0, a fixed n (to be specified later), and set i = 0.
2. For j = 1, . . . ,n, generate i.i.d. samples {T (λ̂ n

i )}n
j=1. Call the resulting empirical distribution λ̂ n

i+1
and set i← i+1.

3. Repeat 2. for i = 1,2, . . . ,r, (r to be specified later).
4. Output the final empirical distribution λ̂ n

r .

The following theorem gives a probabilistic bound on the performance of Algorithm 1.

Theorem 2 For every ε > 0 and δ > 0, such that for all n≥C
′
((

δεγ−κ log−1
ε
)− 1

(γ−κ)−1

)
and r≥

log ε

2E(B1)

logβ
,

we have P(W1(λ̂
n
r ,λ

∗)≥ ε)≤ δ , for all sufficiently small κ > 0. Here, C
′
is a computable system dependent

constant.
The following result, which gives a concentration bound for the error between the true and empirical

distribution is required for the proof:

Theorem 3 [Fournier and Guillin (2015), Theorem 2] Suppose ∃γ > 2 such that EX∼λ (|X |γ)< ∞. Let λ̂n

be the empirical distribution generated by n i.i.d. samples from λ . Then, P(W1(λ̂n,λ )≥ x)≤ a(n,x)I(x≤
1)+b(n,x), where a(n,x) = K1e−K2nx2

and b(n,x) = K1n(nx)−(γ−κ), for all κ ∈ (0,1) for some constants
K1 and K2, which depend on γ , EX∼λ (|X |γ) and κ .

Proof of Theorem 2 For any distribution µ on the line, let T̂n(µ) denote the empirical distribution of
size n drawn from T (µ). Then, observe that for all i, λ̂ n

i+1, as defined in Algorithm 1 is T̂n(λ̂
n
i ). Now,

consider the following sequence of bounds where λ ∗ is the fixed point of T (·) which we wish to sample
from, and where we define recursively λk = T (λk−1):

W1(λ
∗, λ̂ n

r )≤W1(λ
∗,λr)+W1(λr, λ̂

n
r ) by the triangle inequality

≤ β
rW1(λ

∗,λ0)+W1(λr, λ̂
n
r ) since λ

∗ is the fixed point, by contraction

≤ β
rW1(λ

∗,λ0)+W1(T (λr−1),T (λ̂ n
r−1))+W1(T (λ̂ n

r−1), T̂n(λ̂
n
r−1))

≤ β
rW1(λ

∗,λ0)+βW1(λr−1, λ̂
n
r−1)+W1(T (λ̂ n

r−1), T̂n(λ̂
n
r−1)) (15)

≤ β
rW1(λ

∗,λ0)+
r

∑
i=1

β
i−1W1(T (λ̂ n

r−i), T̂n(λ̂
n
r−i)) , by (15) and contraction. (16)

The first term of (16) is deterministic for a given λ0. Select r so that β rW1(λ
∗,λ0)<

ε

2 , e.g., select r = rε =⌈
1

logβ
log ε

2E(B1)

⌉
. Then, the first part of the theorem follows. To complete the proof, we shall bound the

probability that ∑
r
i=1 β i−1W1(T (λ̂ n

r−i), T̂n(λ̂
n
r−i)) exceeds ε

2 by δ . Define Aε,δ =
⋃rε

i=1

{
W1(T (λ̂ n

i ), T̂n(λ̂
n
i ))≥

(1−β )ε
2

}
and observe that by the union bound,

P(Aε,δ )≤
rε

∑
i=1

P
(

W1(T (λ̂ n
i ), T̂n(λ̂

n
i ))≥

(1−β )ε

2

)
. (17)
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Further, observe that restricted to Ac
ε,δ , ∑

rε

i=1 β i−1W1(T (λ̂ n
i ), T̂n(λ̂

n
i ))≤ ε

2 . We now develop uniform bounds
for the probabilities in (17). By Assumption 2, supλ∈M (ℜ) ET (λ )(|X |γ) ≤M for some γ > 2. Then from
Lemma 13 of Fournier and Guillin (2015), the constant K2 in Theorem 3 above works uniformly for all
i. Hence, fix i = 1. We bound P

(
W1(T (λ̂ n

1 ), T̂n(λ̂
n
1 ))≥

(1−β )ε
2

)
by δ

rε
which ensures P(Aε,δ ) ≤ δ . Set

n ≥ C
′ (

δε(γ−κ) log−1
ε
)− 1

(γ−κ)−1 . The rest of the proof now follows from an application of Theorem 3,
replacing ε by (1−β )ε

2 and δ by δ

rε
. The constant C

′
can be calculated from the system parameters.

5 COMPUTATIONAL GUARANTEES

In analysis of computational efficiency of a numerical algorithm it is often beneficial to study its behaviour
constrained to a large but fixed budget, Γ, which asymptotically increases to infinity. We demonstrate how
to distribute this budget well, so as to get a good upper bound on average error in the algorithm, and
optimise this upper bound. Notice that the average computation required in Algorithm 1 is n× r (since
step 2 is repeated r times, and we assume for simplicity that each sampling on average takes unit time).
Taking expectations of (16)

E(W1(λ
∗, λ̂ n

r ))≤ β
rW1(λ

∗,λ0)+
r

∑
i=1

β
i−1E(W1(T (λ̂ n

r−i), T̂n(λ̂
n
r−i))). (18)

Now, by Assumption 2 and Fournier and Guillin (2015), Theorem 1, the RHS of (18) is bounded above by

β
rW1(λ

∗,λ0)+
C

1−β
n−

1
2 + smaller terms, (19)

for some constant C, depending on the system parameters. Then, to derive a good upper bound on the
computation required, one minimises (19) subject to r ·n≤ Γ. It can be seen that up to first order terms,
the optimum is achieved by r∗ =C1 logΓ and n∗ =C2

Γ

logΓ
, for some constants C1 and C2. This guarantees

an error of K
(√

logΓ

Γ

)
+ smaller terms, for a constant K which can be computed form C1 and C2.

Remark 3 Iteration dependent sampling To further improve performance, one may choose n dependent
on the current iteration i. For instance, a carefully chosen increasing sequence {n1, . . . ,nr} may be selected
in Step 2 of the algorithm, instead of a uniform n. The intuition here is that since for small r, T r(λ0) is
far from the true fixed point, one can tolerate more noise in approximating it. The following reduces the

error from order
√

logΓ

Γ
to order Γ−

1
2 . Let r = logΓ

2logβ
, and set nk =

β r−k

∑i β i Γ for k≤ r. From (18) and (19), the

error in estimation now becomes Cβ√
Γ

, where Cβ is a β dependent constant.

Approximating a large banking system We next derive the computation required to accurately
approximate a banking system of size N. As a measure of performance, we use the average expected surplus
of the network, defined as the net profit made by all the banks in the economy, SN , 1

N ∑
N
i=1(X

N
i −Vi−Bi)

+.
A limiting approximation to this is EX∼λ ∗(X −B1−V1)

+, the surplus computed by the limiting system.
However, we can draw samples only from the approximation to the limiting distribution λ ∗. Let λ̂ ∗

Γ
be the

random distribution output by Algorithm 1. In order to capture the two-sided of error in estimating the
surplus, we consider the square error(

E{Xi}∼λ ∗N

(
1
N

N

∑
i=1

(XN
i −Bi−Vi)

+

)
−EX∼λ̂ ∗

Γ

(X−B−V )+

)2

. (20)

The following guarantee is obtained:
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Lemma 2 Consider the problem of approximating a banking network of size N using the limiting fixed
point. Suppose that the total computing power of Γ. Then,(

E{Xi}∼λ ∗N

(
1
N

N

∑
i=1

(XN
i −Bi−Vi)

+

)
−EX∼λ̂ ∗

Γ

(X−B−V )+

)2

= OP(N−1)+OP

(
logΓ

Γ

)
. (21)

From (21), it follows that for Γ = O(N logN), the two error terms are roughly of order OP(N−1). Any
further increase in order of Γ no longer reduces the order of the error. We can set Γ = O(N) and achieve
error OP(N−1) by using the iteration dependent sampling outlined in Remark 3.

Proof Sketch: Bound (20) above by 2 times(
E{Xi}∼λ ∗N

(
1
N

N

∑
i=1

(XN
i −Bi−Vi)

+

)
−EX∼λ ∗(X−B−V )+

)2

+
(

EX∼λ ∗(X−B−V )+−EX∼λ̂ ∗
Γ

(X−B−V )+
)2

.

(22)
Notice that for any (b,v), f (x) = (x−b− v)+ ∈ Lip(1). By an application of the duality in (2), (22)

is bounded above by W 2
1 (λ̂

∗
Γ
,λ ∗)+O(N−1). This together with the explanation following (19) completes

the proof.
Observe that the squared bias between the finite and the limiting system:(

E{Xi}∼λ ∗N

(
1
N

N

∑
i=1

(XN
i −Bi−Vi)

+

)
−EX∼λ ∗(X−B1−V1)

+

)2

= O(N−1).

Recall that the finite banking network has a complicated dependence among the wealth of the banks
due to inter-connectivity in the network. This is a function of the number of counter-parties of a typical
bank. Because the in and out degree distributions of various banks have bounded second moments, the
dependence disappears rapidly. This results in a O(N−1) rate of decay of the square of the bias error.

6 NUMERICAL SIMULATIONS

We now present a numerical study to validate the theory developed in the previous sections, and provide some
structural insights. We assume that Bi have a fat tailed distribution with a complimentary CDF F̄B(x)∼ x−3,
and that external liabilities are zero. The external assets Ai = εi ·Ei, where Ei has a complimentary CDF
F̄E(x) ∼ x−3 and εi is a binary random variable, taking value 1 with probability 0.9, and 0 otherwise,
independent of Ei. Here, εi represents the idiosyncratic shock to the banks external assets, and we assume
that occurrence of a shock wipes out external assets held by a bank. Lastly, in all experiments, Ai and Bi
are taken to be independent of each other.

In the first set of experiments, we test the accuracy of the approximation produced by the algorithm.
Throughout, we set the average connectivity α = 5. Table 1 shows the behaviour of the network surplus
and default probability as a function of its size. It can be seen that all else kept the same, the average
surplus remains somewhat constant with network size, while the variance error decays inversely as system
size. Table 2 shows the performance of Algorithm 1 as a function of computational power. Recall that the
limiting surplus computed by Algorithm 1, S(λ̂ ∗), EX∼λ̂ ∗(X−B1)

+ is a random variable, where λ̂ ∗ is the
output random measure. To find the limiting expected surplus, we run Algorithm 1 L times independently,
and return the estimate Ŝ = 1

L ∑
L
k=1 S(λ̂ ∗k ) and compute the limiting default probability in a similar manner.

Even when there are as few as 200 banks in the network, Tables 1 and 2 show that the estimated mean
surplus and default probabilities in the finite system are well approximated by the limiting system. Table 2
further suggests that only a small amount of computational effort is required to accurately approximate
these.
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Table 1: The expected surplus and default probability of a finite banking network of size N are estimated by
simulating 2000 networks and evaluating the empirical average. Further, a confidence interval is evaluated
around the estimated mean as 1.96×σN , where σN is the estimated standard deviation.

N Estimated mean surplus Estimated default probability
100 1.339±0.178 0.126±0.063
200 1.341±0.128 0.126±0.043
500 1.341±0.083 0.127±0.027
1000 1.341±0.058 0.127±0.019

Table 2: Here, we calculate the expected surplus and average default probabilities computed by the random
distribution output by Algorithm 1. The quantity (r,n) indicates that step 2 of the algorithm has been run
r times, and at each step, n samples have been drawn. Here, L = 200 independent runs of Algorithm 1 are
used to compute the limiting expected surplus and default probabilities. Confidence intervals around the
mean are found similar to those in Table 1. It is seen that the width of the confidence interval shrinks as
n−

1
2 .

Computation (r,n) Limiting expected surplus Limiting default probability
(3,500) 1.335±0.095 0.125±0.031
(4,1000) 1.341±0.074 0.125±0.023
(4,2000) 1.341±0.051 0.127±0.016
(5,3000) 1.338±0.038 0.127±0.011

In the second set of experiments, we study the effect of connectivity on system surplus and default
probability. It is observed (see Table 3) that highly connected systems have lesser default probabilities as
well as larger surpluses. The intuition behind this is as follows: higher connectivity in the network allows
a diversification of risk throughout the network, and thus decreases the probability of knock-on effects
triggering a cascade of defaults. Our results also show that the limiting approximation works well over a
wide range of connectivities.

Table 3: Connectivity parameter α is variable. Here, N = 500, and 2000 Erdos Renyi networks are
simulated, and the average surplus and default probabilities are estimated. Similarly, limiting average
surplus and default probability are computed using Algorithm 1, and a confidence interval is constructed
around the mean as before.

α Limiting surplus Estimated surplus Limiting default probability Estimated default Probability
2 1.177±0.096 1.171±0.091 0.199±0.034 0.204±0.035
5 1.335±0.095 1.341±0.083 0.125±0.031 0.127±0.027
7 1.345±0.092 1.350±0.083 0.117±0.026 0.113±0.027
10 1.347±0.090 1.355±0.082 0.106±0.027 0.104±0.025

Remark 4 In the case where Ai = 0 a.s. it is easy to see that δ0 is the unique fixed point of (8). We find
that the Wasserstein-1 distance between the simulated fixed point with (r,n) = (4,1000) and 0 random
variable is 0.022, thus validating the algorithm on an example where the true limiting fixed point is known.

7 CONCLUSIONS AND FUTURE WORK

We analysed a large inter-connected network of banks in presence of incomplete information. We developed
distributional limit theorems to approximate the behaviour of a large banking network, and a Monte-Carlo
algorithm for simulating this limiting behaviour. We found that even when there are a few hundred banks
in the network, the approximations worked well and that these distributional limits provided structural
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insights into the behaviour of the system. Typically, degree distribution in banking networks are seen to
have fat tails. Further, there often exist banks which account for a finite fraction of the systems wealth.
To this end in an extended version of this work, we will present a more realistic model where the in and
out degrees of banks in the network are positively correlated, and there exist large banks interacting with
every other bank in the network, and will derive limiting results.
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