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ABSTRACT

The performance of multi-component systems is heavily influenced by the individual maintenance strategy
applied on each subsystem, its costs and the impact of subsystem fails on the performance of the whole
system. For an assessment of different combinations of maintenance strategies, we present a simulation-
based evaluation approach applied to an offshore wind farm, investigating the produced energy and levelized
costs of electricity. The evaluation is carried out by breaking wind turbines down into major subsystems,
applying different suitable maintenance strategies to them and monitoring the performance of the entire wind
farm. The investigated configurations include corrective, predictive and reliability-centered maintenance
strategies. Thereby we investigate limits regarding minimum and maximum performance as well as the
impact of a realistic application of monitoring systems on system performance.

1 INTRODUCTION

Driven by European climate and energy policies, wind energy has become one of the key sources for
renewable energy. Walsh and Pineda (2019) reports that in 2018 wind power has reached a total of
189GW installed capacity in Europe, where onshore wind accounts for 170GW and offshore wind for
19GW. Levelized Costs of Electricity (LCoE) range from 39.9e/MWh to 83.3e/MWh for onshore wind.
In contrast LCoE of offshore wind turbines are significantly higher and range between 74.9e/MWh and
137.9e/MWh, due to the use of more resistant materials and higher efforts for installation and maintenance
(Kost et al. 2013). Main components of LCoE in wind energy are capital costs, financing costs and
Operation and Maintenance (O&M) costs. Typically O&M costs account for 20%-25% of the overall LCoE
(Taylor et al. 2015). As Tardieu (2017) expects wind energy investments in Europe reaching 239Be until
2030, the importance of cost saving O&M strategies for wind energy becomes evident.
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Overall Wind Farm (WF) performance is a complex measure and has multiple dimensions to be
considered. The main objective of a WF operator is to maximize the electricity output while minimizing
the operational costs. Minimizing downtime by applying a preventive maintenance strategy can certainly
increase the total electricity output of the Wind Turbine (WT). However, due to the associated higher
intensity of maintenance activities and increased number of use of spare parts, total operational costs will
most likely also increase. Furthermore, increasing maintenance intensity may lead to bottlenecks in the
maintenance process chain due to limited resources like staff and vessels. Thus, there is a conflict of
objectives between minimizing the efforts for operation and maintenance on the one hand and maximizing
the availability of the WF on the other.

Maintenance Strategy Selection (MSS) is described as a Multi-Criteria Decision-Making (MCDM)
process where several attributes have to be taken into account. These include, but not limited to: required
investment costs, safety aspects, failure costs, mean time between failures, mean time to repairs, resource
utilization, and further constraints. Many of these factors are hard to evaluate and some may not even
be quantifiable. Thus, the optimal selection of maintenance strategies is very critical for the success of a
company. Shafiee (2015) reviewed 82 scientific publications between 1995 and 2013 dealing with the MSS
as a MCDM problem. His research shows that the maintenance strategy selection problem has already
received reasonable amount of attention in the literature. However he also identifies need for improvements
which he summarizes in an extensive list, e.g., the development of MCDM-models for selecting the best
maintenance strategy using all kinds of necessary information. However, from a practical point of view
maintenance strategy selection is often a tedious task and is in many cases described as the gap between
academic and industrial application. Common issues are difficulties in collecting data about maintenance
activities, as well as assessing the impact of functional unit breakdowns on the entire system. The failure
behavior of any kind of equipment can be determined by analyzing collected data and is fundamental for
selecting maintenance strategies properly. (Shafiee 2015; Bertolini and Bevilacqua 2006; Sherwin 2000;
Bevilacqua and Braglia 2000)

In wind energy production, understanding WT failures plays a key role in reducing O&M costs as
pointed out by Carroll et al. (2016). Therefore, a WT must be seen as a system of functional units with
different failure behaviors and maintenance strategies for reducing O&M cost.

This paper presents a simulation-based approach that enables the quantitative assessment of the per-
formance of an offshore WF when using MSS. While the performance of a WF is measured through
total produced energy, the increased effort for applying different maintenance strategies is expressed as
an additional O&M cost. With that the influence of different maintenance strategies on LCoE can be
investigated. We model single WTs consisting of main subsystems and consider maintenance operations by
staff, involved vessels, needed spare parts and time. The selection guidelines for applicable maintenance
strategies are based on results from recent publications in the areas of wind energy and diagnostics.

This paper is organized as follows: Section 2 provides further information on maintenance strategies,
failure modeling, cost assessment and simulation in wind energy production. Section 3 presents the
conceptual model for the simulation-based evaluation. In Section 4 scenarios for the simulation-based
evaluation are defined. Section 5 presents the simulation results of all scenarios. Finally, the paper
concludes with a discussion of the results and an outlook for further research.

2 BACKGROUND

This section provides an overview on maintenance strategies, failure modeling, cost assessment, and the
role of simulation in offshore wind energy production. First, we introduce common maintenance strategies,
which are most relevant in this case study. Second, possible modeling techniques for failure behavior
modeling are introduced. Third, a cost assessment framework for offshore WFs is presented and finally,
the application of simulation for MSS and the cost framework is discussed.
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2.1 Maintenance Strategies

Maintenance strategies can be classified in corrective and preventive strategies. Corrective Maintenance (CM)
is a ’fire-fighting’ strategy, which only reacts after failures have occurred. In contrast, the aim of Preventive
Maintenance (PM) strategies is to prevent equipment breakdowns and to prolong its residual lifetime. PM is
based on collecting data on maintenance activities and prescribed criteria in order to reduce the probability
of failures. PM can be further divided into time-based, condition-based, and predictive maintenance.
Time-based Maintenance (TbM) is a simple strategy, which prescribes periodical maintenance activities
at predefined intervals (e.g., time or mileage). Condition-based Maintenance (CbM) is applied if the
degradation (deterioration) of equipment is dependent on measurable factors (e.g., vibrations, level of wear)
and can be processed by computerized measurement systems. Therefore, CbM is more cost intensive than
TbM and not always feasible. However, CbM is more reliable than TbM especially in case of non-periodic
breakdowns. Predictive Maintenance (PdM) strategies apply prognostic models to forecast the condition of
a machine’s function and to compare it with a predetermined threshold - thus providing information about
the residual life. PdM based maintenance activities can be scheduled and executed before deterioration
and reliability reach a critical level (Van Horenbeek and Pintelon 2013).

For efficiently assigning these strategies to subsystems, Reliability Centered Maintenance (RCM) can
be utilized. It supports models like Failure Mode and Effects and Criticality Analysis (FMECA) and Root
Cause Failure Analysis (RCFA) to identify the impact of possible failure modes on the function of the
complete system. Furthermore, it directs maintenance efforts to functions of equipment where reliability
is critical. According to Moubray (1991), RCM originated in aircraft maintenance in the 1960s where
breakdowns can cause fatal effects. Nowadays, it is one of the most used maintenance management systems
and predominant in the field of WTs (Sherwin 2000; Garg and Deshmukh 2006).

2.2 Failure and Deterioration Modeling

In general, failures of WTs can be defined as breakdowns, which occur if the deterioration of a subsystem
falls below a critical limit. Thereby, the behavior of degradation over time plays a major role. Degradation is
often modeled through failure rate functions. Following Stapelberg (2009), the ‘failure rate’ is the probability
of system fails within a time interval. Several distribution functions are commonly used for failure rate
modeling, especially Weibull or Exponential distributions. The two parametric Weibull distribution is
defined by a shape parameter (β ) and a scale parameter (η). The shape parameter allows for modeling
decreasing (β < 1), constant (β ≈ 1) and increasing (β > 1) failure rates. The Exponential distribution is
defined by a single scale parameter (η) and can be applied in case of constant failure rates.

Deterioration modeling is based on the PF-curve concept which represents the condition of a system
over time. Moubray (1991) describes the PF-curve (compare Figure 1) with an potential failure (P) as the
point where a failure (F) can be discovered. For the simulation-based evaluation, we assume the interval
between P and F to be long enough to prepare maintenance operations and travel to the WT which is
predicted to fail. Furthermore, the condition of the subsystem is assumed to start degrading immediately
after a repair. Downtime (DT) is just as long as Repair Time (RT) for failures of subsystems where CbM
or PdM is applied. DT of CM includes all Preparation and Travel Time (PTT) as well as the RT itself.

2.3 Cost Assessment Framework for Offshore Wind Farms

To accurately evaluate the economic feasibility of offshore WF projects, the capital expenditure (CAPEX),
operating expenditure (OPEX) and LCoE over a projects life cycle must be considered. Therefore, Shafiee
et al. (2016) propose a whole life cost analysis framework for offshore WFs. They present a cost breakdown
structure covering all five phases of offshore WF projects. These phases contain all costs associated with Pre-
development and Consenting (P&C), Production and Acquisition (P&A), Installation and Commissioning
(I&C), Operation and Maintenance (O&M) as well as Decommissioning and Disposal (D&D). Table 1
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Figure 1: Schematic PF-curve including RT for preventive and corrective maintenance.

Table 1: Cost breakdown structure according to Shafiee et al. (2016).

Phase Included costs
P&C Project management, legal authorization, surveys, engineering, contingencies
P&A WTs, support structures, power transmission systems, monitoring systems
I&C Port, installation of the components, commissioning, insurance
O&M Operation, maintenance
D&D Decommissioning, waste management, site clearance, post monitoring

presents a list of considered costs in each phase. The calculation of LCoE considers costs of all phases
and Produced Electricity (PE) discounted by Weighted Average Cost of Capital (WACC).

In the model presented in this paper, phases I&C and O&M are affected by maintenance strategies
and hence described in detail. Costs for installing monitoring systems which enable CbM and PdM are
considered by I&C costs. O&M costs include operation (rental, insurance costs, and transmission charges)
and maintenance costs (direct and indirect costs). Direct maintenance costs represent all costs of CM and
PM (compare Section 2.1) related to transport of failed components, maintenance staff and spare parts
required. Indirect maintenance costs may either be fixed or variable and consider port fees for spare parts
storage and quayside facilities, as well as costs for hired vessels and labor costs for maintenance planning
and coordination.

2.4 Simulation

Simulation models have been used for multiple purposes in the maintenance sectors including maintenance
policy or MSS, scheduling, staffing, inventory management, operational performance, reliability, etc. For a
comprehensive review the reader is referred to Alabdulkarim et al. (2013). Also Ding and Kamaruddin (2015)
provide a survey of optimization approaches, including simulation based methods, for MSS. According to
Ding and Kamaruddin (2015) “Monte Carlo Simulation” is the most widely used method among simulation-
based models for MSS. For example Besnard and Bertling (2010) use “Monte Carlo Simulation” for the
optimization of CbM strategies of WT blades or McMillan and Ault (2008) investigate the sensitivity of
condition monitoring benefits to operational parameters. Examples of studies based on other simulation
paradigms are given by Byon et al. (2011) using discrete event system specification to include stochastic
weather patterns for MSS and Sahnoun et al. (2015) combining an agent based model of offshore WFs
and a cost model for maintenance strategy optimization. Tian et al. (2011) propose a method that aims
to reduce O&M costs by bundling maintenance tasks regarding multiple components of different WTs of
a given offshore park to combined maintenance orders. Thereby, different levels of criticality or risk are
considered to find cost optimal maintenance plans. As concluded by Ding and Kamaruddin (2015) and
Alabdulkarim et al. (2013), investigating a systems performance using prognostics and realistic limitations
on maintenance operations is still not well covered by literature.
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3 MODEL DESCRIPTION

This section provides a detailed description of the simulation model based on the Hierarchical Control
Conceptual Modeling (HCCM) framework which was introduced by Furian et al. (2015). First, the problem
definition and objectives of the simulation study are given in Section 3.1. Then, Sections 3.2 and 3.3 are
defining the input and output measures. The content of the simulation model is presented in Section 3.4
including all modeled entities and processes as well as system control.

3.1 Problem Definition and Objectives

The economic feasibility of a WF project is highly depending on the cost efficiency of O&M. In order
to estimate resulting efforts for O&M as well as the PE of the WF, a model which considers all relevant
influencing parameters is needed.

The model we are presenting here is intended to serve as a generic approach rather than a tailored
solution for a specific WF. Figure 2 shows a possible system under consideration of an offshore WF with
WTs at a certain distance from a service port. Without loss of generality it is assumed that all maintenance
activities are operated from this service port. Consequently, service vessels and maintenance staff are
based at this port and all travel activities take place between the service port and the WF. Travel times are
estimated based on vessel speed and distance. The spare part storage is also located at the service port.
Besides order waiting times, there are no further waiting times connected to the spare part supply. WTs are

Figure 2: Offshore wind farm and onshore service port.

multi component systems which require maintenance activities over their lifetime. The overall goal of these
activities is to keep the WFs in an available operative state and maximize Availability (A) over time. DTs
caused by planned or unplanned maintenance activities are directly affecting the profitability and the LCoE
of a WF. To enable a realistic cost estimation the simulation must be able to represent different applied
maintenance strategies. Furthermore, meteorological effects have to be included in the model, which affect
the WF operations in two ways: Wind speed defines the turbines PE based on a specific power curve. On
the other hand, Significant Wave Height (SWH) influences the maintenance process, since safe operations
are only possible up to a maximum SWH which is defined for each maintenance vessel type.

The objective of the simulation-based evaluation is to evaluate the overall performance of a WF under
a particular combination of maintenance strategies. Furthermore, the result should provide economic-based
arguments for applying efficient maintenance strategies.

3.2 Inputs

Input parameters of the simulation model can be grouped in fixed and variable input parameters. Fixed
model parameters define the WF and all boundary conditions. Variable input parameters are used to define
different applied combinations of maintenance strategies and their dependencies, i.e., scenarios.

An essential part of the model is the simulation of the failure behavior of WT subsystems which are
modeled as described in Section 2.2. Table 2 presents empirically gathered failure rates λ as well as
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Table 2: Subsystems and failure modes of a wind turbine.

Minor repair Major repair Major replacement
Subsystem i λi,1 RT RS I λi,2 RT RS I λi,3 RT RS I
Pitch 0.82 9 2.3 7.4 0.18 19 2.9 3.4 0.001 25 4 0.0
Other Components 0.81 5 2 4.1 0.04 21 3.2 0.9 0.001 36 5 0.0
Generator 0.49 7 2.2 3.4 0.32 24 2.7 7.7 0.095 81 7.9 7.7
Gearbox 0.40 8 2.2 3.2 0.04 22 3.2 0.8 0.154 231 17.2 35.6
Blades 0.46 9 2.1 4.1 0.01 21 3.3 0.2 0.001 288 21 0.3
Grease/oil/cooling liq. 0.41 4 2 1.6 0.01 18 3.2 0.1 0 0 0 0
Electrical components 0.36 5 2.2 1.8 0.02 14 2.9 0.2 0.002 18 3.5 0.0
Contactor/circuit 0.33 4 2.2 1.3 0.05 19 3 1.0 0.002 150 8.3 0.3
Controls 0.36 8 2.2 2.8 0.05 14 3.1 0.8 0.001 12 2 0.0
Safety 0.37 2 1.8 0.7 0.00 7 3.3 0.0 0 0 0 0
Sensors 0.25 8 2.3 2.0 0.07 6 2.2 0.4 0 0 0 0
Pumps/motors 0.28 4 1.9 1.1 0.04 10 2.5 0.4 0 0 0 0
Hub 0.18 10 2.3 1.8 0.04 40 4.2 1.5 0.001 298 10 0.3
Heaters/coolers 0.19 5 2.3 1.0 0.01 14 3 0.1 0 0 0 0
Yaw system 0.16 5 2.2 0.8 0.01 20 2.6 0.1 0.001 49 5 0.0
Tower/foundation 0.09 5 2.6 0.5 0.09 2 1.4 0.2 0 0 0 0
Power supply 0.08 7 2.2 0.5 0.08 14 2.3 1.1 0.005 57 5.9 0.3
Service items 0.11 7 2.2 0.8 0.00 0 0 0.0 0 0 0 0
Transformer 0.05 7 2.5 0.4 0.00 26 3.4 0.1 0.001 1 1 0.0

operational maintenance data of offshore WTs from a previous publication of Ioannou et al. (2018), who
are summarizing a detailed analysis of offshore WTs by Carroll et al. (2016). Thereby, WTs are divided
into 19 subsystems, with each subsystem having three possible failure modes. For each failure mode,
additional parameters define the number of Required Staff (RS), the average RT, and the Impact (I = λ ·RT)
of a breakdown. For Material Costs (MC), the reader is referred to Ioannou et al. (2018).

The maintenance process is further determined by parameters describing the number of available vessels
per type, a mission preparation time, the number of available maintenance staff and travel times from the
service port to the WF. It is assumed that the travel time to the WT as also the mission preparation time is
a mean value, summarized in PTT, only depending on the vessel type. Initial spare part inventory is given
as an input value. For components which are maintained by applying CbM or PdM a condition threshold
value of 40% (see Figure 1) for each failure mode which triggers an intervention is defined.

The weather prediction is based on a Markov-chain approach and uses a historic set of weather data
including wind speed, wind direction and SWH. This weather model is used for the calculation of WT
power production which is defined by a WT specific power curve. The power curve defines the PE as a
function of wind speed including cut-in and cut-out wind speed (Shafiee et al. 2016). SWH determines if
specific vessel types are able to operate or not.

Beside the fixed input parameters, variable input parameters are used for assigning maintenance
strategies on each subsystem. Since the scenarios (see Table 5) are characterized by different combinations
of maintenance strategies, the input parameters are values defining whether a CM or PdM strategy is
applied on a subsystem. Furthermore, the deterioration processes (see Section 3.4) are concatenated to the
maintenance strategies and thereby selected indirectly.
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3.3 Outputs

Output parameters are aggregated Key Performance Indicators (KPIs) which are collected and calculated
during the run-time of the simulation in order to describe relevant system characteristics. The output
parameters are finally used to answer the questions defined in the objectives of the simulation study.

To assess the total effort for maintenance activities all processed Work Orders (WOs) and relevant
information during the simulation period are gathered. This includes the number of WOs classified in CM,
PdM, and TbM. For each WO the DT due to PTT and RT are accessible for analysis. This information is
used for cost assessment and the final calculation of LCoE during post processing.

An important measure which is commonly used to assess WF performance is the Availability (A) as
defined by IEC 61400 26: A is the number of available hours divided by the total number of hours (available
and unavailable) the WT could operate during a time interval. It provides the percentage of time in which
the WT was technically available disregarding if electricity was produced or not. Based on operational
status information of each WT and wind speeds per time step the total amount of PE during the simulation
period is calculated as an output. This output serves for the calculation of LCoE in the post processing.

3.4 Content

This section describes the model content including structure, processes and system control. The model
structure is represented by Table 3 listing all entities and associated attributes included in the simulation.

Table 3: Model structure.

Entity Attribute Description
WF nWT Number of Wind Turbine (WT) in the Wind Farm (WF)

Distance Distance to the service port
WT Structure Each WT is composed of 19 subsystems i as given in Table 2

Failure modes
Each subsystem i has three different failure modes j:
Minor repair, major repair, major replacement.
Each of them contains specific λ , RT, RS, and MC

Operational
state

The operational state vector s of a WT defines if the WT is
available or unavailable at a specific time interval

Power Curve
The power curves provide the relation between wind speed
and power output including cut-in and cut-out wind speeds

Vessel Type Defines the type t of the vessel
nt,Vessels Total number of vessels v of type t
nt,v,Sta f f Total number of staff members a vessel of this type can carry
maxSWH Maximum SWH the vessel can operate safely
Availability Defines if a vessel is available or in operation

Staff nsta f f Total number of maintenance staff
Availability Defines if a staff member is available or in operation

For modeling the maintenance processes, we assume subsystems to be maintained either using PdM
or CM. In particular, subsystems which are maintained with respect to PdM are assumed not to fail nor
to cause CM activities. To model failures which cause the generation of a CM WO, all subsystems which
are maintained according to CM are pooled to a serial overall system without redundancy. The occurrence
of a failure is modeled using an exponentially distributed reliability function with a constant failure rate
λ . As depicted in Table 4 the total failure rate λtotal is the sum of all subsystem failure rates λi and λi is
the sum of the failure rates λi, j for failure modes j. The reliability distribution function R(t) and failure
distribution function F(t) of the entire system are given by R(t) = e−λtotal ·t and F(t) = 1− e−λtotal ·t . The
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Table 4: Failure rate aggregation for subsystems and failure modes.

Failure Mode 1 Failure Mode 2 Failure Mode 3 ∑ Subsystem i
Subsystem 1 λi=1, j=1 . . . λi=1, j=3 λi = ∑

3
j=1 λi=1, j

...
...

. . .
Subsystem n λi=n, j=1 λi=n, j=3

∑ total λtotal = ∑
n
i=1 λi

Time To Failure (TTF) is sampled from F(t). Given the TTF, the affected subsystem and failure mode
have to be determined. This calculation is based on TTF of the overall system and the time duration the
subsystems have been operating since the last breakdown. Following Figure 3, a failure triggers the change
of the operational status of a WT from ‘available’ to ‘unavailable’. Furthermore, the generation of a WO
defines the necessary activities to bring the WT in an operational state again. To simulate a PdM WO event,
the reliability function of each failure mode of the affected subsystem as well as the time a predefined
reliability threshold falls short, needs to be calculated. The statistical variation of a threshold shortfall is
modeled by adding a uniform distributed proportion of ±0.5·MTBF

t =− ln(Rthreshold)

λ
+∆t with Rthreshold = 0.4 and ∆t ⊂

(
−0.5

λ
,
0.5
λ

)
. (1)

When this reliability threshold time is exceeded, a PdM WO is created and a maintenance task is triggered
and the WT remains operational until the maintenance activity starts. TbM is assumed to take place once
a year and for TbM WOs, the WT remains operational except during the maintenance activity itself.

In all cases WOs contain all relevant information of the subsystem and failure mode as well as required
staff, vessel and spare parts. Figure 3 shows the failure simulation process and the operational states of
the WTs which are either set by the occurrence of a failure or the maintenance process itself.

Vessels, maintenance staff members, and spare parts belong to resources required for the maintenance
process. Within the maintenance process their availability is checked. Vessels and maintenance staff
members are located in pools of available units. If a maintenance process requires a certain type and
number of vessels and maintenance staff members, the respective units are blocked. Upon the completion
of the maintenance process the respective vessels and maintenance staff members travel back to the service
port and become available again. Spare part availabilities are modeled differently for different spare part
types. Parts needed for minor and major repairs are held on stock, reordered as soon as a predefined safety
stock level is reached. Spare parts for major replacements are not held on stock and ordered when required.
Both type of parts become available after a predefined individual order lead time.

The maintenance process itself is the same for all type of maintenance strategies and shown in Figure 3.
After receiving a WO the availability of required vessels, staff, and spare parts is checked. If resources
are not available the process is paused until they become available. When all resources are available, total
navigational time is calculated considering preparation times, travel times, RT and demobilization times.
Next, weather conditions are checked whether they allow traveling or not. Therefore, the SWH must stay
below the limit maxSWH during the entire operation.

In terms of system control, the dispatching of WOs is done in the following way: CM WOs are assigned
a high priority followed by PdM with a medium priority and TbM with a low priority. Within a category,
WOs are dispatched according to a FIFO principle.

4 SCENARIOS

Three scenarios are considered: In the base scenario SI, CM is applied to all subsystems and failure modes.
This scenario will exploit the maximum time between failures, since there is no intervention before failures
(compare Figure 1). Hence, there will be the least number of work orders and the lowest O&M costs
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Figure 3: Failure simulation processes, maintenance process, and WT operational state.

are expected. However, the downtime includes also PTT and RT and therefore may have a high negative
influence on the total produced electricity. Scenario SII applies PdM to each subsystem and failure mode.
PTTs are excluded from DTs, but WOs will be executed before the subsystem fails and residual lifetime
may get lost. Consequently, this leads to a larger number of WOs. The potential loss of PE is monitored
and reported over simulation runs. The goal of scenario SIII is to apply RCM, and thereby PdM is just
performed on critical subsystems where tools for monitoring the behavior are known in literature. We
define the impact by means of the failure rate and the average repair time (λ ·RT) which is given in Table
2. Andrawus et al. (2006) list subsystems of WTs where monitoring through vibration analysis and strain
gauges is possible. Matching this list with high impacts, all subsystems with an impact higher than 4.0
are considered as applicable for PdM. For simplicity reasons, only components that can be monitored via
vibration sensors (gearbox and generator) are considered for PdM. It is further assumed, that all failure
modes of monitored subsystems are detectable. Table 5 summarizes the scenarios. To consider service
activities in O&M costs and PE, TbM is applied to all scenarios.

Table 5: Scenario definition through assigning maintenance strategies to subsystems.

Scenario Name TbM CM PdM
SI Baseline all all
SII PdM all all
SIII RCM all some Gearbox and generator; all others are assigned to CM

5 RESULTS

First, all boundary conditions and simulation parameters for the simulation-based evaluation are introduced.
Then the results of scenarios SI to SIII on O&M costs are presented. Finally, simulated O&M costs are
applied on the cost analysis framework presented in Section 2.3 to discuss the influence on LCoE.

The WF modeled in this case study consists of nWT = 100 offshore WTs with a power rating of 5MW and
an operational lifespan of 20 years. The power output of the WTs is characterized by a power curve with a
cut-in speed of 5m/s and a cut-out speed of 25m/s at a hub height of 85m. All maintenance activities require
one or more Staff Transfer Vessel (STV) with a capacity of 12 maintenance staff members. Maintenance
activities on the foundation require an additional special diving vessel while major replacements on the
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transformer system require an additional jack up vessel. The WF is in a distance of 75km from the service
port which results in a travel time of 2h for STVs and diving vessels, and 3h for jack up vessels. There
are 80 maintenance staff members and 15 STVs available for use. In addition, there is one jack up vessel
and one diving vessel available. For all vessel types a fixed hourly rate is assumed (STV: 135e, Diving:
2500e, Jack-up: 4700e) and each required staff member cause costs of 250e per mission hour. Failure
rates, RS, and RT are used as given in Table 2. Further, we assume that these costs include all rental and
insurance costs as well as direct and indirect maintenance costs as described in Section 2.3 and there are
no additional transmission costs. The simulation period is set to 2+20 years, with the first 2 years used for
simulation warm up. To achieve statistical confidence, 100 runs per scenario are performed. For applying
the results to the cost analysis framework, life cycle costs of phases P&C, P&A, I&C, and D&D are taken
from a previous study of Graefe (2019) for following periods. In the first period 0 ≤ t < 3 costs for P&C
(CP&C,0 = 199,567,961e), P&A (CP&A,0 = 853,484,173e), and I&C (CI&C,0 = 325,833,883e) are given.
The costs for O&M (CO&M) in period 3 ≤ t < 23 are evaluated for each scenario. The third period at t = 23
is used for D&D and therefore costs of CD&D,0 = 87,719,950e are defined. All capital costs and PE for
calculating LCoE are discounted to year t = 0 by CX ,0 = ∑CX ,t · (1+WACC)t considering WACC = 6.15%.

Table 6 presents the simulation results of all scenarios and the application on the cost framework for
the entire Wind Farm. SI has implemented CM and is thus used as the baseline scenario for comparison.
As expected comparing SI and SII, the total number of WOs is increasing, as WOs are generated before the
subsystem fails. On the other hand, the results show that the total (DTtotal) and average downtime (DTav)
is significantly smaller when applying PdM. Furthermore, the average availability (Aav) is at a maximum
level, which is also reflected in total produced electricity (PEtotal). However the O&M costs (CO&M,0) are
at a high level due to the larger number of WOs. Scenario SIII represents a realistic application of RCM,
where monitoring systems are applied on subsystems where the impact of a sudden failure is high and
degradation monitoring is feasible (see Table 5). The number of WOs and O&M costs are similar to the
numbers observed in SII, what can be explained by the impact (RT ·λ ) and MC of these subsystems. On
the other hand, Aav and PEtotal are increasing significantly by monitoring only 2 of 19 subsystems. The
average DT of SIII is more or less on an average level of SI and SII, which is mainly caused by the high
number of CM WO as shown by Figure 4. Figure 4 presents the distribution of WOs along all available
maintenance strategies and PEtotal . Comparing SI with SIII, the positive influence of applying PdM to just
two critical subsystems is depicted by the level of PE.

Table 6: Simulation results for SI - SIII and assessment of LCoE.

WOtotal DTtotal DTav Aav PEtotal CO&M,0 Ctotal,0 PEtotal,0 LCoE SP0

[#] [1000h] [h] [%] [GWh] [MMe] [MMe] [GWh] [ e
MWh ] [MMe]

SI 15,114 2,168 143.5 87.8 27,453 363.0 1,829.2 14,146 129.34 -
SII 16,582 289 17.4 98.5 31,294 411.6 1,878.2 16,125 116.48 207.4
SIII 16,164 1,197 74.0 93.6 29,619 406.9 1,873.6 15,262 122.76 100.4

Figure 4: Distribution of WOs and total produced electricity.
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For the application of the simulation results to the cost analysis framework the Saving Potential (SP0)
is calculated as the difference in LCoE compared to the baseline scenario multiplied with the discounted
total produced electricity PEtotal,0. As we did not consider any additional costs for monitoring systems
on I&C, SP0 accounts for the monetary gap for installing and operating such systems to be profitable in
an economic measure. Comparing CO&M,0 with SP0 suggests that investing in CbM/PdM strategies leads
to higher CO&M,0. However, decreasing LCoE and increasing PEtotal shows an economic potential up to
100MMe at SIII. All confidence intervals are within ±1.54% and non-overlapping for all simulation results
across each scenario. Summarizing, this case study demonstrates that an additional investment in O&M
solutions can decrease the LCoE and thus raise the economic performance of a WF significantly.

6 CONCLUSION AND FURTHER RESEARCH

This paper presents a simulation-based approach for selecting maintenance strategies for offshore wind
farms. All relevant entities of an offshore WF were modeled to simulate the production of electricity as
a consequence of failure behaviors, maintenance processes, maintenance resources, and meteorological
conditions. Since the produced electricity and associated levelized costs of electricity of offshore WFs
are heavily dependent on the availability, downtime and operation and maintenance costs, we evaluate
different combinations of maintenance strategies and conclude optimistic and realistic savings potentials.
Our analysis shows that investments in maintenance yields a decrease of levelized costs of electricity,
which results in a saving potential up to one million e over the lifetime of a single wind turbine. The
proposed simulation model can be utilized and extended for further research in various directions. These
include, but are not limited to: the incorporation of market factors influencing the economic success of a
WF; the design and integration of maintenance planning procedures to further minimize O&M costs; and
the investigation of environmental impacts of WF projects over their life cycle and associated cost factors.
According to Arvesen and Hertwich (2012), environmental impact assessment including especially the
O&M phase would create transparency and could accelerate the shift towards renewable energy generation.
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