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ABSTRACT

Bicycle-sharing system (BSS) has attracted much attention due to its great success in providing a low-cost
and environment-friendly alternative to traditional public transportation systems. In some BSSs comprised
of stations with fixed docks, customer satisfaction can be measured by the availability of bikes for pick-ups
and/or open docks for returns. However, it is quite common that the spatial balance of bike inventories
will be broken due to customers’ behavior or frequent failures of bikes and docks. As a result, constant
rebalancing and maintenance services are required to sustain adequate levels of customer satisfaction. In
this research, a simulation framework is developed to optimize the rebalancing and maintenance activities
while satisfying customers’ needs over a service area. An optimization model solved by Ant Colony
Optimization is applied on the Citibike in New York City, which is considered as an example to validate
the effectiveness and efficiency of the proposed simulation framework.

1 INTRODUCTION

Bicycle-sharing system (BSS) has attracted much attention worldwide due to its great success in providing
a low-cost and environment-friendly alternative to traditional public transportation systems (Si et al. 2019).
Some BBSs are composed of multiple stations, each of which has a fixed number of docks. Customers
pick up and return bikes to these stations. Due to customers’ behavior, the spatial balance of bike inventory
will gradually be broken over time, and consequently, customer satisfaction would reach low levels due to
the lack of available bikes or open docks. In practice, a fleet of trucks is often deployed to transfer bikes
across stations to meet the demand (i.e., inventory rebalance). This is referred to as the bike repositioning
problem (BRP), and it is usually solved either statically (rebalancing at night) or dynamically (rebalancing
during the daytime) (Li et al. 2016; Cruz et al. 2017; Schuijbroek et al. 2017).

However, low customer satisfaction levels result not only from the unbalanced bike inventory but also
from broken items at the stations. In practice, bicycle and dock failures are intensive due to the high usage
rates, and frequent maintenance services are required to sustain the operational condition of the BSS. The
usual maintenance activities include sending technicians to repair broken docks at stations and deploying
vehicles to transport broken bikes from stations to a repair center. Therefore, the same fleet of trucks can be
deployed to conduct both bike rebalancing and collecting broken bikes for maintenance. Nevertheless, of
all published studies on BSS, only Kaspi et al. (2017), Alvarez-Valdes et al. (2016), and Wang and Szeto
(2018) have considered the impact of broken bikes and related maintenance activities on the performance
of a BSS. Kaspi et al. (2017) evaluate the level of user dissatisfaction in the presence of unusable bikes.
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The expected number of broken items and the probability that a specific bike is unusable is estimated
with a Bayesian model. In Alvarez-Valdes et al. (2016), an optimization model for minimizing the overall
cost of unsatisfied demand was used to determine the optimal route of vehicles, and the amount of usable
and unusable bikes to be loaded in each station. A simple simulation approach was mentioned to imitate
customers’ behavior. Wang and Szeto (2018) also consider broken bikes in a BRP by minimizing the CO2
emission of all vehicles used for rebalancing. In practice, a decision should be evaluated via simulation due
to the complexity of a real-world BSS. However, none of the previous studies have provided a simulation
framework that incorporates rebalancing and maintenance of a BSS to accurately validate the impact of an
optimization model in the daily operation of a BSS.

In this paper, a simulation framework is proposed to evaluate policies on optimizing rebalancing and
maintenance for a BSS. The optimization model for rebalancing and maintenance modifies the original
model proposed by Schuijbroek et al. (2017). The model is solved by a heuristic algorithm based on the
k-medoids clustering and Ant Colony Optimization (ACO). The model is implemented in a simulation
system developed for performance evaluation in terms of the repairman utilization, bike availability, and
dock availability in a BSS. The contribution of the proposed simulation framework is to offer a valuable
tool to the operator of a BSS for making the most efficient decision on rebalancing and maintenance. New
York City’s BSS (CitiBike, reporting 9000 bike checks per month on average) is considered as an instance
to illustrate the proposed simulation framework.

The remainder of this paper is organized as follows. Section 2 presents a brief literature review on
BSS simulation. Section 3 describes the proposed simulation framework. Section 4 provides the details
on the proposed rebalancing and maintenance strategy. Section 5 provides an application of the proposed
framework in CitiBike of New York City. Finally, section 6 draws conclusions and outlines future work.

2 LITERATURE REVIEW OF BSS SIMULATION

Previous studies have developed different simulation frameworks to investigate the effects of rebalancing
in BSS. Lin and Liang (2017) simulate the BSS in Taiwan using Arena to determine the optimal number of
vehicles for the repositioning that minimizes customers’ waiting time. Rebalancing is conducted dynamically
with a priority following a first-in-first-serve rule. Saltzman and Bradford (2016) also develop a simulation
system in Arena to optimize the configuration of a BSS in San Francisco. However, due to the limitations
of Arena, the size of BSS studied in these two papers are comparatively small (e.g., less than 100 stations
in the system). Kek et al. (2006) employ discrete event simulation to test different relocation techniques in
a car sharing systems in Singapore which has only ten stations. Ji et al. (2014) use Monte Carlo simulation
to evaluate the availability of a proposed e-bike sharing system under various scenarios involving different
numbers of batteries and e-bikes in the system; however, in their small, two-station pilot system, rebalancing
is not considered since it allows riders to make only round trips. Caggiani and Ottomanelli (2013) simulate
bike rebalancing in a dynamic case, aiming to minimize vehicle repositioning costs for the BSS operator
while maintaining a high level of user satisfaction. The simulation model is a decision support system,
which is activated at constant time interval based on the demand predicted by an artificial neural network.
A similar decision support system is applied to a free-floating BSS by Caggiani et al. (2018).

One of the important simulation models of BRP is proposed by O’Mahony (2015). The BSS is modeled
by a discrete-event simulator implemented in Python. The simulation model assumes that 1) the number of
trips taken at a given minute starting at a station is a Poisson random variable, 2) the destination station of
each trip follows a multinomial distribution, and 3) the trip duration is also exponentially distributed. This
work utilizes the rebalancing optimization strategy proposed by Schuijbroek et al. (2017) and is currently
applied in the Citibike operation. In addition, Jian et al. (2016) continue this line of research by using
simulation optimization to improve bike and dock allocation. It is worth pointing out that none of the
existing simulation models consider maintenance activities indispensable in the BSS. To fill the research
gap, a simulation framework that models bike borrowing and returning, bike inventory rebalancing, and
maintenance of the BSS is developed in this paper.
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3 SIMULATION FRAMEWORK

The simulation of BBS is comprised of three major processes: bike borrowing and returning, bike inventory
rebalancing, and system maintenance. Bike borrowing and returning consists of generating demand for
bikes and docks in each station. Bike inventory rebalancing is made up of all bike transportation activities
between stations and between a central location (controller) and the stations. The system maintenance
involves activities done by technicians to repair the broken docks in the stations and broken bikes in the
controller. Details of each process are provided below.

3.1 Bike Borrowing and Returning

This process follows the same assumptions as O’Mahony (2015). Figure 1 shows the process. It starts
with creating bike pick-up demand using a non-homogeneous Poisson process (NHPP) with piece-wise
constant arrival rates. The arrival rate at each station varies in a 24-hour cycle, which can be obtained
from historical trip data. Then, if the start station has available bikes, a bike will be assigned to the user;
otherwise, the user will give up on borrowing a bike and will leave the system. Once a bike is assigned,
the destination station is randomly selected from all stations using a multinomial distribution. Selection
probabilities can be also obtained from historical trip data. The trip duration is calculated as the distance
between the origin and destination stations divided by a fixed bike-speed. Upon arrival at the destination
station, the user returns the bike if there is an available dock. If no docks are available, the user goes to
the nearest station with available docks. In reality, the user can do this based on the real-time BSS data
provided by a smartphone application. After the bike is returned, the age of the bike is updated based on
the trip duration, and a Bernoulli trial is conducted to determine whether the bike is still usable with a
success probability being the bike’s reliability at the current age. Similarly, dock failures are generated by
conducting a Bernoulli trial when the user tries to pick up a bike at the station.

User
Generator

Assign a bike Start Station

Users are generated 
with a NHPP

Ask for a bike
User

DockDock Dock

Return the bike

Rerouting: Send user to the nearest station  
that has available docks 

User

Ask to return 

Available Dock

No Available Dock

Destination
Station

Alternative
Destination

Station
Update the   

age of the bike

Update the   
age of the bike.........

Figure 1: Bike borrowing and returning process.

3.2 Bike Inventory Rebalancing

In the proposed simulation framework, vehicles perform relocating operations during the night (static
rebalance) on the usable bike inventory between the controller and stations, and collect broken bikes from
the stations for repair at the controller. As shown in Figure 2, the controller gathers the information of
bike inventory levels and the number of broken items at each station, and saves such information in a
“.txt” file. Then, the optimization module reads the file and solves the rebalancing problem based on the
service level requirements and the current state of the BSS. The best solution consists of 1) a route that
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determines the stations and the order in which they will be visited by each vehicle, 2) the amount of usable
bikes to be picked up/dropped off at each station, and 3) the number of broken bikes to be picked up at
each station. Details on the implementation of the optimization module are provided in the next section.
Then, the controller reads the optimal solution found and assigns the routing tasks to each vehicle in the
fleet. Note that the simulation framework is flexible enough to accommodate a variety of optimization
techniques as long as they can be called from the simulation software. Lastly, after the vehicle receives a
routing task, it will load an initial inventory of usable bikes from the controller if the total inventory of
stations in each route cannot fulfill the demand. At the end of the route, these vehicles will take all broken
bikes and any remaining usable bikes back to the controller.

Check every day

Optimization 
module All

Stations

Bike and Dock 
Information 

Service Level requirement

 Controller

Center

Rebalancing route and task for each vehiclewith bikeswith broken bikes and  
redundant usable bikes

Bike Inventory level:  
the number of

usable and broken
bikes in each station

Optimal route and the
amount of bikes  

to be loaded/unloaded 
 in each station 

Figure 2: Bike rebalancing process.

3.3 System Maintenance

Figure 3 shows the system maintenance process. A group of repairmen repair both bikes and docks. The
controller assigns an idle repairman to either repair a bike or go to a station to repair docks with the latter
having higher priority. Stations report immediately to the controller whenever a dock fails. Stations with
broken docks are served on a first-in-first-serve basis. The travel time of the repairman between stations
and the controller is ignored in this work. Bike repairs start as soon as broken bikes arrive to the controller.
Each broken bike is assigned to a repairman also following a first-in-first-serve rule. Upon the completion
of repair, the age of each bike is set to zero and a new cycle starts. The repaired bikes are used as initial
inventory for rebalancing operations. The controller continues to assign available repairmen to tasks unless
no items are broken in the system.

4 REBALANCING OPTIMIZATION HEURISTIC

The optimization model adopted in the work is a modification of the one proposed in Schuijbroek et al.
(2017) for static vehicle-based rebalancing. The makespan of rebalancing is minimized while achieving an
inventory level si such that smin

i ≤ si ≤ smax
i for all station i ∈ S, where si is the inventory after rebalancing

and S is the station set. The minimum inventory level smin
i and maximum inventory level smax

i are calculated
based on the service level requirement by the Kolmogorov forward equation provided in O’Mahony (2015).
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Figure 3: System maintenance process.

In this paper, instead of minimizing the completion time of the rebalancing operations (makespan), the
total routing cost, including the travel time and loading/uploading cost, is minimized. The constraints on
the service level requirements are incorporated as a penalization term to the objective function. In addition,
the influence of broken items on the station and vehicle capacities are also taken into consideration.

It is worth noting that the proposed optimization model and selected heuristic algorithm are provided
as an example to show that the simulation framework is able to be integrated to any optimization model
for vehicle-based rebalancing and maintenance.

4.1 Formulation for Rebalancing Optimization

In order to reduce the problem complexity, self-sufficient stations are not considered for rebalance operations.
Stations are classified as self-sufficient if they have no broken bikes (b0

i = 0) and si ∈ [smin
i ,smax

i ]. The
rebalance considering the remaining stations is solved in a two-step process. First, the station set is
partitioned into multiple clusters using the k-medoids algorithm where the number of clusters k is equal
to the minimum between the number of vehicles and the number of stations for rebalancing. Second, a
route to visit each station within each cluster is determined using ACO (i.e., the route of each vehicle).
The objective function of the routing problem is given:

min ∑
(i, j)∈Av

di j+ ∑
i∈Rv

c−(y−i + z−i )+ ∑
i∈Rv

c+(y+i )+

∑
i∈Rv

(ρ1 max{si− smax
i ,0}+ρ2 max{smin

i − si,0}+ρ3 max{b0
i − z−i ,0}−ρ4Ri)

(1)
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which considers the total travel time, loading time and unloading time, the penalty of violating the service
level requirement, and reward of save inventory. In the formulation, Rv is an arbitrary route created for
cluster v, which starts at the controller, visits stations assigned to the cluster and comes back to the controller.
Av consists of two adjacent stations (i, j) in Rv. The travel cost of the trip can be found in the travel time
matrix D, where di j is the travel time between station i and j. The unit bike loading and unloading cost is
denoted as c− and c+, respectively. The number of usable bikes and broken bikes to be picked up at station
i are denoted as y−i and z−i . For the controller, z−i = 0, and y−i is the number bikes for initial inventory. For
station i, z−i is the minimum of the number of broken bikes at that station and the remaining capacity of
the vehicle, and y−i is the minimum of the number of bikes to meet the service level requirement and the
remaining capacity of the vehicle. The number of usable bikes to be picked up at station i is denoted as y+i
and it is equal to the minimum among the number of bikes to meet the service level requirement, the number
of usable bikes on the vehicle, and the number of available docks at the station. The objective function
is penalized if the service level requirements are not satisfied or there are still broken bikes remaining
at those stations. The coefficients of penalty are denoted as ρ1,ρ2, and ρ3. Moreover, a reward term Ri
calculated by by Equation (2) is included with coefficient ρ4 to allow stations to keep additional bikes
without violating the constraints set by smin

i and smax
i .

Ri = (1−max{smin
i − si,0}−max{si− smax

i ,0})∗max{|si−
smin

i + smax
i

2
|,0} (2)

4.2 Use of Ant Colony Optimization Method

In each cluster, the vehicle routing problem is similar to the traveling salesman problem, which can be
effectively solved using the ACO heuristic. The ACO algorithm might not be the best option to solve this
optimization problem, but it provides a benchmark performance of the simulation system by using one of
the most common techniques to solve the vehicle-based rebalancing and maintanance problem. Details on
ACO can be found in Dorigo, Birattari, and Stutzle (2006), and the specifications used in this work are as
follows:

• The pheromone on arc (i, j) in iteration t is denoted as τi j(t).

• Exploitation with transition probability: For arc (i, j) at iteration t, Pi j(t) =
(τi j(t)α (1/di j)

β )

∑τi j(t)α (1/di j)β
, where

α and β are the pheromone exponential rate and heuristic exponential rate, respectively.
• Exploration: 30% of possibility to generate the next node randomly.
• The population size of ant is determined by Nant

v = b|Sv| ∗ pc, where p is the percentage of the
station sequence length.

• Pheromone update:
– Global update: only the best solution/ant will add pheromone to the path: τi j(t+1)= (1−ρ)τi j(t)+Q

(z∗(t))
where z∗(t) is the current optimal, ρ is the evaporation rate, and Q is the contribution rate
which is a constant Q=2 in this paper.

– Local update: every ant will add pheromone to the path: τi j(t+1) = (1−ρ)τi j(t)+ρτ0, where
τ0 is the initial pheromone level.

5 CASE STUDY ON CITIBIKE

The proposed simulation framework is implemented in Java based on the JSL (Rossetti 2008). This
implementation includes the classes Bike, Dock, Station, UserGenerator, RepairMan, Controller, and
Vehicle, for simulating the bike borrowing and returning, bike inventory rebalancing, and system maintenance
processes. The optimization module of vehicle routing for bike rebalancing is implemented in Matlab.

The BSS of New York City (CitiBike) is used to illustrate the proposed simulation framework. CitiBike
consists of 628 stations with 12,625 bikes in total. The spatial distribution of the stations is shown in Figure
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4. We consider only the stations located in Manhattan and Brooklyn (i.e., the station located at Sandy
Hook island is excluded). Station location, capacity, and demand rates are learned from the trip data from
July 2016 to June 2017 provided by the Citibike data website. The reliability of bikes is inferred from
the trip data based on the time between failures. First, a bike is assumed to be failed if it does not start
from the destination station of its last trip and has not been used for at least two days considering the high
demand in New York City. The time when the last trip ended is considered as the failure time and the total
time between failures is the total trip time between two failures. Figure 5 shows the bike reliability based
on the historical trip data. In the simulation, the average 24-hour demand rate learned from the trip data
is used for generating the demand of each station. The service level requirement is defined as the ratio of
satisfied demand over the total demand for bikes and docks. At the end of the first day in the simulation,
the bike inventory level of each station is demonstrated in Figure 6. In this work, we assume that 50 trucks
are available for bike rebalancing, and each vehicle can transport up to 120 bikes at a time. Moreover, the
dock’s reliability is assumed to be 0.999 (i.e., one failure for every 1,000 times of usage).

Figure 4: Stations map of Citibike in New York City.

Figure 5: Kaplan-Meier estimate of bike reliability.

5.1 Rebalancing Optimization

The stations that require rebalancing are classified into 50 clusters using the k-medoids clustering algorithm.
In each cluster, the routing cost can be calculated by Equation (1). The travel cost can be obtained from
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Figure 6: Station inventory level.

the geodesic distance calculated based on the latitude and longitude of stations. The velocity of vehicles is
assumed to be 20 km/hr. The loading/uploading cost c− and c+ are 30 seconds. The punishment parameters
(ρ1,ρ2,ρ3) are 100, 500, and 500 per bike, respectively. The punishments for the insufficiency and broken
bikes are higher than the over-sufficiency. The reward coefficient is 10 per bike.

After extensive numerical experiments, we found that the best results are obtained when applying
500 iterations of the ACO with local pheromone update and exploration. The population of ants for each
cluster is equal to 80% of the number of stations in the cluster. The initial pheromone level τ0 = 0.1. The
pheromone exponential rate α = 0.5, heuristic exponential rate β = 0.5, and the evaporation rate ρ = 0.1.

The performance of the k-medoids combined with ACO heuristic algorithm is evaluated in terms of
the optimal objective value calculated by Equation (1), inventory sufficiency level (I,rI,O,rO), and broken
bike level (B,rB) as shown in Figure 7. For the inventory sufficiency level, I and O are the total numbers of
insufficient and over-sufficient stations, respectively, and rI and ro are the corresponding average unsatisfied
percentages calculated as follows:

rI =
1
|S|∑i∈S

(si− smin
i ), rO =

1
|S|∑i∈S

(si− smax
i ). (3)

It is observed that all the over-sufficiencies are resolved and all broken bikes in the stations are
transported to the repair center. However, there are still 35 stations that have not been served. It might be
due to the fact that in the route of some vehicles, the broken bikes occupy too many spaces on the vehicle
and the vehicle does not have spare for rebalancing usable bikes. This issue can be improved by applying
more advanced clustering method to rebalance the workload of transporting broken bikes.

5.2 Simulation Result

We evaluate the effects of the rebalancing strategy on the performance measures of CitiBike when 50
vehicles and 15 repairmen are available. In particular, we change the bike availability (β−) and dock
availability (β+) which are service level requirements defined by Schuijbroek et al. (2017). Note that
the formulation in Schuijbroek et al. (2017) does not consider bike or dock failures such that the system
performance will not be able to achieve those nominal values. For each configuration, we simulate 30
replications of 10 continuous days of operation and use a warm-up period of 5 days.

Table 1 presents the experimental results. The first column separates the results by the reliability
function used into (1) nominal, using the reliability function as obtained in the previous subsection, and (2)
improved, reducing the age of the bike by a factor of 100. Under the nominal reliability, bike availability is
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Figure 7: Rebalancing optimization.

at best 52% while the dock availability is always over 98%. This is due to a high number of bikes failing
every day such that there are not enough bikes in the system to satisfy the bike demand while users almost
always find available docks. In addition, decreasing β− to be less than 0.95 causes the system to run out of
bikes since the minimum required inventory smin

i = 0 for almost all stations. Under the improved reliability
function, having low nominal availability requirements produces the best balance on the performance of
both bike and dock availability, both over 91%. In contrast, having high requirements on both results in
a significant reduction on the bike availability to be less than 85%. Moreover, bike availability is more
sensitive to the nominal requirements dropping as low as 52% when β+ = 0.95 and β− = 0.75. Lastly,
the repairmen utilization suggests that using 15 repairmen is enough to serve the current system.

Table 1: Average (standard deviation) of each performance metric for 50 trucks and 15 repairmen in 24
hours.

Bike reliability (β−,β+) Bike Availability Dock Availability Repairmen Utilization

Nominal

(0.75, 0.75) 0.0074 (0.0005) 0.9994 (0.0008) 0.0374 (0.0027)
(0.95, 0.95) 0.4321 (0.0038) 0.9957 (0.0003) 0.7366 (0.0068)
(0.95, 0.75) 0.5162 (0.0048) 0.9836 (0.0009) 0.8567 (0.0090)
(0.75, 0.95) 0.0032 (0.0004) 0.9991 (0.0013) 0.0159 (0.0013)

Improved

(0.75, 0.75) 0.9289 (0.0023) 0.9179 (0.0083) 0.1033 (0.0023)
(0.95, 0.95) 0.8431 (0.0037) 0.9896 (0.0005) 0.1157 (0.0033)
(0.95, 0.75) 0.9441 (0.0018) 0.8957 (0.0095) 0.1001 (0.0023)
(0.75, 0.95) 0.5289 (0.0103) 0.9963 (0.0003) 0.1464 (0.0049)

6 CONCLUSION

In this research, a simulation framework is developed to optimize the vehicle-based rebalancing and
maintenance activities in BSS while satisfying customers’ needs over a service area. An optimization
model and a heuristic approach based on the ACO algorithm is applied as an example to show how to
solve the rebalancing optimization problem using the proposed simulation framework. A case study on
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New York City’s BSS (Citibike) is presented to illustrate the effectiveness and efficiency of the proposed
simulation framework to help decision-makers evaluate different policies. The simulation results show the
importance of considering items failures while making decisions on BSS operations such as rebalancing
policies. The simulation framework developed in this paper is not limited to a certain model, but it
can be accommodated to any optimization formulations that consider the rebalancing and maintenance of
BSS. In our future research, a more advanced rebalancing strategy will be studied and incorporated into
the simulation framework to improve the bike and dock availability and labor utilization in a BSS. In
addition, more advanced heuristic algorithms will be implemented to solve the vehicle-based rebalancing
and maintenance optimization problem. Moreover, a simulation optimization algorithm will be applied to
obtain the optimal system configuration.
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