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ABSTRACT

Considering the globally aging population, one of the main challenges the healthcare system would have
to face is to help elderly people stay at home in good health conditions and as long as possible. Recent
advances in technologies answer this need with Smart Homes and Ambient Assisted Living programs. Data
collected by the sensors are labeled and used to monitor the inhabitant Activities of Daily Living (ADLs).
This paper presents a new modeling framework of the smart home resident’s behavior that mimics his
behavior on multiple aspects and is able to simulate the resident daily behavior. Our approach is illustrated
by a real-life case study application. Results show that the presented framework enables the modeling of
human behavior living alone in a smart home without prior knowledge on the inhabitant. Such results
enable further research on frailty prediction through simulation.

1 INTRODUCTION

1.1 Context

The global population of elderly people aged 60 years or more was 600 million in 2000; it is expected
to rise to around 2 billion by 2050 according to the United Nations Population Fund (UNFPA) (Guzman
2012). A significant proportion of the elderly population suffers from multiple age-related diseases such
as Alzheimer, dementia and mild cognitive impairment. When these diseases are coupled with the natural
decline of functional abilities of elderly people, it can prevent them to live independently. This evolution
of their global health requires a unique care approach due to their complexity. Considering the increasing
shortage of health practitioners, this could have a huge impact on the healthcare economy in the years to
come.

The concept of frailty is used to characterize elderly decline, allowing the identification of elder adults
at risk of death, disability, and institutionalization. If such identification is done early enough, frail elderly
persons may receive adequate preventive care to recover their general health state and well-being. Recent
advances in Information and Communication Technologies (ICT) have opened up new opportunities in
healthcare. In this paper we focus on smart home technologies, referring to a residence equipped with
sensors technologies that monitor the daily life of its inhabitant. Indeed, elderly people tend to follow
a certain routine, either daily, weekly or monthly and those habits give them a sense of control of their
environment. Losing this sense of control can be a sign of functional health decline among elderly, changes
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in the habits may indicate a need for more effort to perform everyday tasks or reveal the onset of disorders
like Alzheimer or dementia. Such changes can be very subtle and caused by various reasons from the
elderly life, which makes them quite complex to detect and the use of smart homes can help to identify
these changes. Furthermore, such ICT solutions for aging at home are cheaper than nursing home stays or
hospitalization for acute care.

1.2 Related Work

Research in modeling human behavior is a complex topic and have been intensively studied. The modeling
was usually knowledge-based, based on experts knowledge on the domain (Jirgl et al. 2015).

However, recent advances in ICT gave us the opportunity to gather more information on human behavior
and thus increase the accuracy of the modeling. Two different types of approaches can be used to collect
this kind of data: obtrusive and unobtrusive approach (Novák et al. 2012). Obtrusive approaches used
either sensors attached to the user body (accelerometers or tags) (Majumder et al. 2017) or video and
ultrasonics sensors (Stack et al. 2018).

Although the systems based on obtrusive sensors gave outstanding results for real-time monitoring of
patient’s health and behavior monitoring, they come with some drawbacks. They highly interfere with the
user’s daily activities since he either have to attach them on his body each day or faces a loss of privacy.
The other type of approach is unobtrusive sensors. They are used to reduce the disturbance caused by
the sensors on the user and to get him accustomed to the sensors: this is the case of Heath Smart Homes
(HSH).

A Health Smart Home (HSH) refers to a residence equipped with sensors technologies that monitor
the daily activities of its resident. The sensors are added to the infrastructure of the residence without
interfering with the resident’s lifestyle. Their goal is to gather data to passively monitor and assess the
functional abilities of the resident. Currently, there are quite numbers of HSH project deployed around the
world. Some examples are CASAS (The Center for Advanced Studies in Adaptive Systems) at Washington
State University (Crandall et al. 2013) and PlaceLab at MIT (Intille et al. 2006). Once the data is gathered
through smart homes, the modeling can be done using low-level or high-level data analysis (Novák et al.
2012). Low level data analysis approaches use data directly from sensors like the work done on activity
recognition or anomaly detection (Bouchard et al. 2018; Arifoglu and Bouchachia 2019; Dahmen et al.
2017). Bouchard et al. (2018) used sensors data to model activities of elderly residents using behavior trees
which allowed for simulation tasks. In contrast, Tax et al. (2018) showed in their work how abstraction
from sensor-level to Activities of Daily Living (ADLs) like sleeping, eating or personal hygiene, can help
build more accurate behavior models of the smart home resident. This leads us to the other type of modeling
approach which is high-level data analysis.

This type of approach uses as input the ADLs performed by the resident to model its behavior (Noury
and Hadidi 2012; Suryadevara et al. 2013). Suryadevara et al. (2013) proposed a method based on a
probabilistic approach to forecast the wellness of an elderly living alone in a smart home. The probabilistic
approach is used to annotate the data gathered by the sensors and then predict their wellness based on the
ADLs detected. Another example is the work done by Noury and Hadidi (2012) who aimed to build a
simulation model that mimics the behavior of the subject in order to raise an alarm when there is a significant
difference between real and simulated data. He compared two probabilistic method using ambulatograms of
the simulated data: the Polya distribution and Hidden Markov Model (HMM). One the common limitation
of these works is the fact that the dependency or pattern between activities is not taken into account.
Along the same lines, Virone and Sixsmith (2008) showed the importance of the patterns between ADLs.
For them, looking closely at those relationships might help uncover complex behavioral changes and help
identify the onsets of cognitive decline.
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1.3 Scientific Contribution

In light of these considerations, the main contribution of this paper is to propose a modeling framework
of human behavior based on high-level activities data (ADLs) and taking into account a higher level of
abstraction which is build from the patterns and relationships between activities. Our goal is to build
a simulation model that will mimic the behavior of the smart home resident on multiple aspects using
available data. The model relies on pattern recognition techniques to identify the inhabitant behavioral
patterns, graph model to represents the complex and non-deterministic aspect of human behavior and finally
Petri nets for a runnable simulation model.

This paper is organized as follows. In Section 2, we describe the proposed framework methodology.
Section 3 describes the methods used to build the simulation model from a sequence of events collected
through the smart home. The validation of the framework and its application on a real-life case study are
presented in Section 4. Conclusions and perspectives for future work are presented in Section 5.

2 BEHAVIOR MODELING

Our work methodology is presented in Figure 1. After the data are collected through sensors around the
house and clustered into ADLs 1 , we use data mining techniques to have a better understanding of the data
by unveiling relevant relationships between events 2 . Those relevant relationships are then encapsulated
into stochastic graphs 3 . Those graphs are converted into Petri nets and linked according to a specific
conversion algorithm 4 . Once the ”big Petri net” (the simulation model) is built, we simulate the virtual
inhabitant activities 5 . The model is then validated by comparing the real inhabitant activity to its virtual
counterpart 6 and is ready to use 8 or updated if needed 7 . Note that the preliminary recognition of
activities according to sequences of sensors activations and deactivations included in step 1 is out of the
scope of this paper.
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Figure 1: Global methodology.

This Section presents the mathematical formalism used for data understanding approach (step 2 of
Figure 1).

2.1 Definitions

An event sequence is generated by the inhabitant activity around the house. For a better understanding of
the data, the structure is formally defined as follow:

Definition 1 (Label) A label s represents an activity executed by the inhabitant (e.g: sleeping, lunch,
work, making a phone call, watching TV, ...).

Definition 2 (Domain Alphabet) The domain alphabet Π is the set of all possible labels that could appear
in the input data stream.
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Definition 3 (Event) An event δ is denoted as the tuple δ =
(
s, t,d

)
where s is a label, t the starting

timestamp of the event and d its duration.

Definition 4 (Event Sequence) An event sequence ∆ is an ordered sequence of events ∆ =
〈
δ1,δ2, ...,δn

〉
with ti the starting timestamp of δi such that ti ≤ ti+1, ∀ i ∈ J1 ; n−1K. For instance, an event sequence
could be ∆ = 〈δ1,δ2〉 with δ1 = (eat,7:19am,15mn) and δ2 = (relax,8:41am,10mn).

2.2 Patterns Discovery

This Section presents the formalism needed for the data mining algorithms used to extract behavior patterns
from the collected data. The input event log is processed to retrieve frequent periodical episodes and their
occurrences, formally defined as follows:

Definition 5 (Episode) An episode E =
{

s1, ...,sn
}

is an unordered set of distinct labels. An example of
episode is E = {cook, eat, relax}. Episodes would be used to characterize sets of activities that
have a strong temporal dependency.

Definition 6 (Episode Occurrence) ω is an occurrence of E =
{

s1, ...,sn
}

if ω =
〈
δ1, ...,δn

〉
is an event

sequence such that each label of E has one unique event associated in ω . The starting time of the occurrence
is t1. The duration of the occurrence is tn− t1 and it can be constrained using an episode length parameter
Tep as upper bound value.

This definition of an episode occurrence allows a robust recognition of an episode even if it is mixed
with other events (e.g., the morning routine activities are occurring and the inhabitant go answer the phone
right in the middle). The information both on episodes and their occurrences are needed because the
episode by itself is not precise enough; it lacks of temporal information and also on the execution order
between the different labels. Thus, the data mining algorithm used should output the episodes and their
occurrences. To encapsulate information on both episodes and their occurrences we use an entity called
macro-activity (Definition 7).

Algorithm 1 Algorithm to describe the creation of macro-activities.

1: Require: input event sequence ∆input , episode maximum length parameter Tep

2: MAs← empty set . A set of Macro-Activities
3: ∆← ∆input

4: while ∆ is not empty do . Finish when ∆ empty
5: episodes← findAllPeriodicalEpisodes(∆) . List of all the periodical episodes found in ∆

6: Ebest ← mostFrequentEpisode(∆,episodes)
7: Ωbest ← computeEpisodeOccurrences(∆,Ebest ,Tep)
8: A ← (Ebest ,Ωbest) . Creation of the macro-activity A
9: append A to MAs

10: ∆← ∆−Ωbest

11: return Set of Macro-Activities MAs . All the Macro-Activities occurrences Ω are disjoints

Definition 7 (Macro-activity) A macro-activity describes the behavior of an episode. It is written as a
tuple A = (E,Ω) where E is a non empty episode. E = {s1, ...,sn} and Ω is the sequence of occurrences
of the macro-activity. Ω = 〈ω1,ω2, ...,ωm〉 such that each ωi is an occurrence of E and ωi∩ω j = /0 with
i 6= j.
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The procedure to create macro-activities is presented in Algorithm 1. The pattern mining algorithm
used is based on the work of (Soulas et al. 2015). The input event log is parsed to find all the periodical
episodes. Among frequent episodes, the most periodical one is picked Ebest (line 6), its occurrences are
computed Ωbest (line 7) and we create the corresponding macro-activity A (line 8). Once those occurrences
are included in a macro-activity, they are subtracted from the input sequence as you can see in line 10.
We do the same operation all over again while the input sequence is not empty. This enables to look for
the most interesting pattern at each step in the input event log.

Example 1 We consider two occurrences ω1 = 〈(cook,7am,20min),(eat,7:30am,10min)〉 and
ω2 = 〈(cook,6:45pm,25min), (eat,7:10pm,15min)〉 of the episode E = {cook, eat}. These
two occurrences represent respectively breakfast and dinner. The macro-activity created on E represents
here the eating behavior of the inhabitant and would have as sequence of occurrences Ω = 〈ω1,ω2〉.

3 THE BEHAVIOR SIMULATION MODEL

This Section describes the construction of the resident’s behavior simulation model (steps 3 to 5 of
Figure 1).

3.1 Graph Model

In this Section, we propose an extension of the pattern discovery process presented above. Markov chains
are often used to represent Bayesian processes with several states and associated conditional probabilities.
For our problem, we use a similar approach based on stochastic graphs. We build a workflow model for
each macro-activity to understand when each task (event) is executed, in what order and for how long.
For that, we use a customized graph model represented as a directed tree where each branch is a potential
execution order of the labels in the macro-activity.

For the macro-activity A = (E,Ω), the algorithm 2 describes how to create the structure of the tree.
The construction takes the macro-activity occurrences Ω as input and for each new label order found in
the occurrences ω ∈Ω, a new branch is added to the tree.

Algorithm 2 Tree construction.
1: Require: sequence of occurrences Ω

2: N0← createNode(O) . Source node of the graph
3: for ω in Ω do
4: Ncur← N0 . Current node
5: for δ in ω do
6: s← label(δ )
7: if Ncur has a child node with the label s then
8: Ncur← Ncur. f indChildWithLabel(s)
9: else

10: node = createNode(s)
11: Ncur.addChild(node)
12: Ncur← node
13: return N0 . the tree structure

Example 2 We consider episode E = {relax, TV, eat} and the label execution order of the episode
occurrences: ω1 = 〈relax, TV, eat〉, ω2 = 〈TV, relax, eat〉 and ω3 = 〈relax, eat, TV〉.
Let A be the macro-activity on E with Ω = 〈ω1,ω2,ω3〉 as occurrences. Figure 2 shows the tree structure
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built by applying the tree construction algorithm (Algorithm 2). Each branch describes a potential order
of label execution and therefore they have the same length as the episode E.

O relax TV eat

eat TV

TV relax eat

0.67

0.33

0.5

0.5

1

1 1

1

Figure 2: Example of tree construction.

Let GA be the directed graph built from the occurrences of the macro-activity A . It can be formally
defined as GA = 〈V,A,L ,D ,P〉 where:

• V is a set of nodes with a designated root node O ∈V , such that ∀v ∈V , there is exactly one path
from O to v. V ∗ =V\{O}

• A is a finite set of ordered pairs of nodes of V called directed arcs. The directed arcs with O as
starting node are called source arcs. A∗ = A\{source arcs}

• L : V → E is a labeling function that associates a label to a node
• D : (V ∗∪A∗)→ ∑D is a function that associates to a node or a directed arc a probability density

function (PDF) D . A PDF for a continuous random variable X is a function fX : R→ [0,1] that
describes the probability for X to take a given value. ∑D is the set of PDFs for random variables
representing durations (R+). The PDF on nodes describe events duration on the corresponding
label and PDF on arcs describe idle time duration between two consecutive events.

• P : A→ [0 ; 1] is a function that associates a transition probability to every directed arc of A.

For a given node v ∈V , let v• ⊂ A be the set of v output arcs. if v is not a terminal node (node without
exiting arcs) we have ∑a∈v•P(a) = 1, otherwise it is 0.

3.2 Petri Net Model

A graph model has been proposed in the last Section. It offers a representation of the inhabitant behavior
patterns through macro-activities. For now, the different patterns are modeled separately, so there is a
need to group them back in a bigger model for the overall behavior modeling. Although the graph model
is easily readable and understandable, we need to run this model to assess its validity and to perform
scenario simulation. Instead of describing a new simulation algorithm for the graph model, we convert it
to a runnable Petri net (Heiner, Herajy, Liu, Rohr, and Schwarick 2012). This conversion will also allow
the aggregation of all the macro-activities into a unique formal entity.

For that, we use a Stochastic Timed Petri net (STPN). A STPN is a timed Petri net with distributions
on delays attached to transitions (seen as events here) and probabilities attached to arcs (Definition 8). As
for Petri nets, tokens are processed from the preset of a transition to its postset but this is not immediate.
The time that elapses is sampled according to a historical distribution attached to the transition. In this
context, the token represents the house inhabitant and the transitions are the activities. After the firing of
a transition (execution of an activity), the token is transferred to the output place which is followed by
probabilistic arcs representing the likelihoods of next activities.

Definition 8 (Stochastic Timed Petri net (STPN)) A STPN is a tuple N = (P,T,F,λ ,θ ,π) where:
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(a) Initial state.
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(b) Firing of t0.
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(c) Token production.

Figure 3: Example of stochastic timed Petri net.

• P is a set of places.
• T is a set of transitions.
• F ⊆ (P×T )∪ (T ×P) is a set of directed arcs
• λ : T →Π∪{ε} a labeling function which assigns to each transition t ∈ T a label, from the label

alphabet Π, or an empty string ε .
• θ : T →∑D is the application of temporisation associating a probability density function for delays

to a transition. Transitions with null delays are called immediate transitions.
• π : FP•→ [0;1] is the choice function assigning a probability to directed arcs of FP• (set of directed

arcs exiting from a place). Places having more than one probabilistic arc are called choice places.

For a given place p ∈ P, let Fp• be the set of directed arcs exiting from p. If p is not an exit place then
∑a∈Fp• π(a) = 1 otherwise it is 0. The STPN also verify the following properties: (i) the weight of all the
directed arcs in the net is 1; (ii) at any time, the sum of tokens in the net is 1; (iii) the firing delay of a
temporized transition is randomly draw at the timestamp of the firing, according to the transition PDF.
Example 3 We consider the STPN presented in Figure 3. Let x be the timestamp of the system at an
initial state (Figure 3a). The initial marking of the net allows the timed transition t0 to be enabled. The
firing delay according to the net is normally distributed. After the transition is enabled, a firing delay d0 is
randomly drawn according to the distribution described (Figure 3b). Once the firing delay is elapsed the
token is transferred into the choice place p0 at the timestamp x+d0 (Figure 3c). In the next state, there are
two possibilities: either the transition t1 (with the firing delay following an uniform distribution) is enabled
with probability 0.2 or the transition t2 (with a constant firing delay) is enabled with probability 0.8.

3.3 Macro-Activity Graph Model to STPN Conversion Algorithm

Let GA = 〈V,A,L ,D ,P〉 be a graph built from the macro-activity A . The goal here is to convert GA to
a STPN. Let N = (P,T,F,λ ,θ ,π) be that STPN. The graph source node is converted into an immediate
transition (with an empty string as label) followed by a place. Each of the graph nodes left is converted
into a place followed by a temporized transition such that the node and the transition have the same label
and PDF. Source arcs from the graph are converted into probabilistic arcs, with the same probability as the
graph arc, followed by an immediate transition and a place. The rest of the graph directed arcs are converted
into probabilistic arc, with the same probability as the graph arc, followed by a temporized transition, with
the same PDF and label as the graph arc, followed by a place. The places corresponding to the graph sink
nodes are merged into a final place followed by a final transition. Figure 4 gives an example of conversion
from a macro-activity graph model to a STPN where Di denotes the PDF of events duration generated by
the graph node i and D j

i the idle time from node i to j.

3.4 The Resident Behavior net

The Resident Behavior net (RB-STPN) is a STPN compiling all the macro-activities discovered. Let ∑A

be the set of all the macro-activities discovered in the input event log. We define µA : R+ → [0 ; 1]
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(a) Graph model.

(b) STPN model.

Figure 4: Example of conversion from graph model to STPN.

the occurrence time probability density function of A . It describes for each timestamp, the probability
of occurrence of A . At any given time, the inhabitant is either performing one macro-activity or doing
“nothing”. We define the macro-activity Aidle as the macro-activity describing the idle behavior of the
inhabitant (time period without activity).

Figure 5 shows a representation of a RB-STPN where all the macro-activities are combined into a
chain representing the life of the inhabitant. The blocks A1, . . . ,An,Aidle represent the macro-activities
respective STPNs. They are linked to choice places through probabilistic arcs with probability depending
on the current timestamp x of the system. The RB-STPN describes the fact that the inhabitant performs a
macro-activity when the time is suitable and when finished performs the next one and so on.

Figure 5: Resident Behavior STPN with x as the system current timestamp.

4 NUMERICAL EXPERIMENTS

The RB-STPN defined above is executable and can be directly used to simulate the lifestyle of the inhabitant.
A token is generated into the starting place of the RB-STPN and a clock for the system is set for a starting
timestamp. Transitions enabled by a choice place are randomly chosen according to the probability of
the probabilistic arcs. All temporized transitions are fired as soon as possible. The firing of a temporized
transition t with a non-empty string as label generates an event δ = (s, t,d) with s = λ (t) the label of the
transition, t the current timestamp of the system and d the firing delay of the transition. The event sequence
generated describes the simulated log of activity. To validate our model, we use a ratio of the available
data as training data for our model and the rest is used for validation. The goal of the validation is to
assess how much the RB-STPN built describes the daily behavior of the resident.
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4.1 Key Performance Indicators

4.1.1 Activities Daily Profile

We extract the occurrence time distribution of the activities along the days. The distributions are extracted
from the testing set (real data) and from the generated set (simulated data) Then we compute two different
metrics between simulation results and real data to validate the quality of the model:

• Histogram Intersect: The activity profile distribution is computed through a histogram with 288
bins, one bin per five minutes. The metric is computed as the intersection between the profile
histograms in the training set and the simulated results. Higher the intersection area, means better
matching between the activity time distribution in the simulated data and real data.

• Density Intersect: Instead of computing the intersection between the histograms, we compute the
activity profile probability density using a kernel density estimator (KDE). The distance is computed
here as the intersection area between the profiles kernel density estimates. The purpose here is to
remove the time discretization bias.

For these two indicators, the closer they are from 1, the better is the activity’s daily profile representation
in the resident behavior simulation model.

4.1.2 Daily Sequence Alignment

The activities execution order is an important aspect of the inhabitant lifestyle so we need to validate
that the sequences generated by the model are close to the one from real data. We use the Sequence
Alignment Needleman-Wunsch Algorithm (Needleman and Wunsch 1970) to compare the training set
and the simulation results in a sequential manner. The purpose of the algorithm is to find the optimal
alignment between two sequences. The similarity between two sequences is defined as the quality of the
alignment. Let us consider two sequences S1 and S2 the alignment between S1 and S2 is computed as
follows {∀a1 ∈ S1,∀a2 ∈ S2}, Match: +8 (a1 = a2), Mismatch: −2 (a1 6= a2), and each gap symbol: −2
(a1 = ‘− ‘ or a2 = ‘− ‘). As an example, let us define two sequences; S1 and S2, as follows: S1 : DBBAADB,
S2 : DCCABDAB. Figure 6 shows the optimal alignment between the two sequences and we compute the
alignment score obtained is 8−2−2+8−2−2−2+8 = 24.

Figure 6: Example of sequence alignment.

For each day in the validation period, we extract the sequence of activities in the training set and the
simulation results and we compute the sequence alignment score. A random sequence of activities is also
generated to compare the model results to a totally random model. Let S be the sequence to validate (from
the simulation or randomly generated), S∅ an empty sequence of activities. The score is normalized as
presented in Equation (1).

scorealignment =
align(Sreal, S) − align(Sreal,S∅)

align(Sreal, Sreal) − align(Sreal,S∅)
(1)

4.2 Case Study

To validate the accuracy of our resident behavior modeling, we used the Aruba dataset provided by the
CASAS team in the Washington State University (Cook 2010). The data was collected in the house of an
elderly woman for 220 days. The residence was equipped with 34 sensors and 11 activities were labeled.
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More than 1,7million sensors recording collected. 6440 occurrences of activities are present overall the
dataset: bed to toilet(156), eating (255), enter home(427 instances), housekeeping (33), leave home(427),
meal preparation (1596), relax(2907), others(6), sleeping(398), wash dishes(64), work(171). To build
the resident’s behavior model, we used 80% of the dataset (176 days) and the 20% left (44 days) were
used for validation. After the model is built, we generate multiple replications (10 replications) through
simulation where each replication is an activity log of 44 days generated by the model. Then we compute
the key performance indicators on each replication and average the results or compile them to obtain a
95% confidence interval.

Figure 7: Activities daily profile distance between training dataset and simulation results.

Figure 7 shows the results obtained for the activities daily profiles, for each activity, we computed the
histogram Intersect and the density Intersect. The results look significantly better when checked from a
density intersect point of view. That is because instead of checking each of the histogram’s bin separately,
the profile is smoothed on neighboring bins. The three least frequent activities (others , housekeeping
and bed to toilet), which combined represent less than 1% of the available data, have the poorest
daily profile representations in the model. This is due to the lack of data. On the other side, the most
frequent activities (relax and meal preparation) which represent approximately 70% of the dataset
have one of the best representation. This result makes sense because the more information we have on an
activity, the more accurate will be its modeling.

Figure 8: Daily sequence alignment score between real and simulation data.
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Figure 8 on the other side shows the results obtained for the sequence alignment of the simulated data
(mean value for all the replications), for the randomly generated sequence and the real data. We see that
on an average, 64% of the sequence generated by the model is aligned with the real data against 25% for
randomly generated sequences. The graph also shows a negative peak on the 32th day of the dataset for
the simulated data. After further investigation, on that day, only three activities were recorded, two early in
the day and one at night. Since the abnormal behavior lasted only for one day, we can assume that maybe
there was some problem with the sensors, or it was a day for infrastructure maintenance. By definition,
our model focus on the daily average behavior of the resident so as soon as the resident deviates from his
average behavior, the model give poor results. We can use this to raise alerts in case of sudden drift of the
resident behavior which can show signs of falls or cognitive related problems.

5 CONCLUSION AND FUTURE WORK

The purpose of this work was to propose a modeling framework of human behavior in smart homes.
A novel framework has been presented to model a smart home resident’s behavior based on high-level
activities-labeled data and taking into account the patterns and relationships between these activities.

The resident’s behavior model is built from scratch by learning from high-level activities gathered in a
smart home environment, without prior domain knowledge. Based on the results, it appears that activities-
labeled data gathered in a smart home are sufficient to build a virtual representation of the inhabitant
lifestyle. This work proves the feasibility of a simulation model which can mimic the lifestyle of a smart
home inhabitant. The proposed approach has been designed for people living alone. One main downside
of the model presented here is that the training data is considered static, meaning that each day is treated
independently, our future work aims at considering the chronological link between days as the evolution
of the model parameters with time through the training data. This model could also be easily augmented
with time series analysis used as a way to describe model parameters evolution through time and time
series forecasting to predict their evolution.
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