
Proceedings of the 2019 Winter Simulation Conference
N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds

GENERATIVE ADVERSARIAL NETWORK FOR IMPROVING
DEEP LEARNING BASED MALWARE CLASSIFICATION

Yan Lu Jiang Li

Department of Modeling, Simulation and
Visualization Engineering

Department of Electrical and Computer
Engineering

Old Dominion University Old Dominion University
5115 Hampton Blvd 5115 Hampton Blvd

Norfolk, VA 23529, USA Norfolk, VA 23529, USA

ABSTRACT

The generative adversarial network (GAN) had been successfully applied in many domains in the past, the
GAN network provides a new approach for solving computer vision, object detection and classification
problems by learning, mimicking and generating any distribution of data. One of the difficulties in deep
learning-based malware detection and classification tasks is lacking of training malware samples. With
insufficient training data the classification performance of the deep model could be compromised
significantly. To solve this issue, in this paper, we propose a method which uses the Deep Convolutional
Generative Adversarial Network (DCGAN) to generate synthetic malware samples. Our experiment results
show that by using the DCGAN generated adversarial synthetic malware samples, the classification
accuracy of the classifier – a 18-layer deep residual network is significantly improved by approximately
6%.

1 INTRODUCTION

Malicious software known as malware is one of the major computer security threats, it had been growing
exponentially in the past years. Many research attempts have been made to improve the adaptabilities and
capabilities of the malware defense systems to detect and classify the new malware instances automatically
in real time. These methods range from the traditional signature-based methods in the early days to the
current deep learning methods. The traditional signature-based malware detection approaches rely heavily
on domain expert knowledges and special software environments, which are both computation resources
consuming and time consuming. Besides, the traditional malware detection methods do not adapt well when
the malwares are modified polymorphically or metamorphically when the malwares evolve or propagate.

With the fast advancement of the deep learning models, many deep learning-based malware
classification approaches have been explored including the deep belief networks, the deep recurrent
networks, the deep convolutional neural networks and the deep residual networks etc. In most of these deep
learning based malware classification models, the malware raw bytecodes are usually converted into images
at first, which also converts the malware classification problem into an image classification problem. The
deep learning methods significantly reduced the massive domain expert knowledge needed in malware
classification. The malware classification accuracies have also been significantly improved by using deep
learning models comparing to the traditional methods, the best accuracy can be found at as high as 98.62%
on some particular malware benchmark dataset.

However, to train a deep learning model it needs large training data. In the real-world scenario, the new
types of malwares usually come in limit number of examples, which are also very difficult to collect from
all possible environments in short of time. Consequently, the deep learning models are restricted to good
generalization performance, the classification and detection performance will be compromised accordingly.

584978-1-7281-3283-9/19/$31.00 ©2019 IEEE

Lu and Li

To conquer the small data samples issue, in many previous related researches, the oversampling method
such as SMOTE (Chawla et al. 2002; Han et al. 2005) method, the adaptive synthetic sampling method,
and the minority oversampling method have been widely adopted. However, most of these methods focus
on solving the small data problem by re-using the existing data rather than generating new data. Goodfellow
et al. (2014) introduced the generative adversarial networks (GAN) framework in 2014. GAN is a deep
learning framework aimed to generate synthetic samples with the same distribution as the real data. After
the GAN network is released, GAN model has gained massive attention, it has been successfully applied to
many research fields such as computer vision and natural language processing in the past several years.

To explore the possibility of solving the small data issue and improving the classification performance
in the malwares classification by using GAN model, in this paper we present a method by using the Deep
Convolutional Generative Adversarial Network (DCGAN) to generate synthetic malware samples, and then
combined with the real malware data to improve the classification performance of a 18-layer deep residual
network (ResNet-18). Our experiment results show that the classification accuracy of the deep residual
network has been significantly improved by approximate 6% on the unseen testing data, the GAN generated
synthetic data has significant positive impact on improving the classification performance of the deep
residual model for malware classification.

The remainder of the paper will be organized as follows. At first, the related work section describes the
recent malware classification work, the methods section introduces the dataset we use, the structures of the
GAN model and the 18-layer residual network model. In the results section, our experiment results will be
discussed. In the conclusion section, our work in this paper and future work will be concluded.

2 RELATED WORK

The previous work on malware classification can be generally classified into two categories: non-machine
learning methods and machine learning methods.

The traditional non-machine learning malware classification methods are mostly heuristic and
signature-based. There are two types of traditional malware analysis methods: the static methods and
dynamic methods. The static methods extract the malware features from the static malware bytecodes, such
as processor instructions, null terminated strings and library imports; the dynamic methods extract the
features while the code is being executed, collecting information how the executed codes interact with the
operating system such as system API calls or interactions with the other OSs and the network. The feature
extracting procedure in the traditional malware detection approaches could be time consuming and also rely
heavily on domain expert knowledge, it also needs special tools and software environment which could be
computation resource consuming as well. Besides, the traditional malware detection methods do not adapt
well when the malwares are modified polymorphically or metamorphically by purpose to hide the real code
when evolve or propagate.

In order to address the limitation of the traditional malware classification methods, inspired by the fact
that the variants of malware families are sharing the similar code patterns, some machine learning methods
such as the Support Vector Machine (SVM) by Sahs and Khan (2012), Naïve Bayes classifier by Firdausi
et al. (2010), Kernel Machines by Shankarapani et al. (2010) and Random Forests by Dahl et al. (2013) are
applied into the applications of malware classification. However, the major drawback of these methods is
that the engineered hand-extracted features are still needed in these methods, furthermore these methods
use shallow learning techniques, they are not scalable to the new growing malware samples. To tackle this
problem, more sophisticated machine learning methods by using deep learning models such as deep
convolutional neural networks by Kalash et al. (2018), deep residual network by Lu et al. (2019), deep
belief network networks by Ding et al. (2016), and deep recurrent networks by Pascanu et al. (2015) emerge
in recent years. The applications of the deep learning models for malware classification are all related to
the strategy proposed by Nataraj et al. (2011) to present malware codes as grayscale images by using GIST
method to compute the texture features of the malware codes. By this strategy, the malwares are converted
to images, and malware classification problems are all converted to images classification problems. The
deep models could learn features from the images automatically, besides, the deep models are capable and

585

Lu and Li

scalable to learn very complex representations as well. However, to train a deep model it needs large set of
training data, most of the previous research are mostly focusing on the re-use of current data to train the
deep model, in our paper we propose a method which utilize another deep model – deep generative
adversarial network model to generate new data to assist training the deep classifier model. Based on our
research, none of similar research has been conducted before.

3 METHODS

3.1 Malware as Images

Inspired by the fact that variants in the same malware family have similar code patterns, Nataraj et al. (2011)
created a method which uses GIST method to compute texture features of the malware codes to convert the
malware codes into images. The patterns and features of the malware codes are well captured in the image
format. As shown in Figure 1, the variants from the FYI malware family and Diaplatform malware family,
the visual dis-similarity of the malwares in layouts and textures in the same family are very minimal, while
the appearances of malwares from different families are very different.

Figure 1: Variants of FYI malware family and Dialplatform malware family.

To convert the malware codes to images, by Nataraj et al. (2011) method it firstly converts the malware
binaries to 8-bit vectors (bytecodes).Then it converts the bytecodes into grayscale images with value ranged
from 0 to 255, each vector is converted to a pixel with value ranged from 0 to 255. In our experiments, we
furtherly convert the grayscale images into 3-channel RGB images by duplicating the grayscale channel for
three times, then concatenate all of the three channels to form a RGB image. The codes to images converting
procedure is as Figure 2 shown.

Figure 2: Converting malware binary codes to RGB images.

586

Lu and Li

3.2 Malimg Dataset

In our paper, we use Malimg dataset which is created by Nataraj et al. (2011) as training and testing data,
The Malimg dataset was used as the competition benchmark dataset in the Kaggle Microsoft Malware
Classification Challenge (BIG 2015), this dataset is adopted in many malware classification researches as
benchmark dataset as well. The Malimg dataset consists 25 malware families with different numbers of
samples in each class, the details are shown in Table 1. The largest family in this dataset is the Allaple.A
malware family, it consists 2949 malware samples; the smallest malware family is the Skintrim.N malware
family, it consists 80 malware samples.

Table 1: Malimg malware dataset.

No. Family Malware Name No. of Variants
1. Worm Allaple.L 1591
2. Worm Allaple.A 2949
3. Worm Yuner.A 800
4. PWS Lolyda.AA 1 213
5. PWS Lolyda.AA 2 184
6. PWS Lolyda.AA 3 123
7. Trojan C2Lop.P 146
8. Trojan C2Lop.gen!G 200
9. Dialer Instantaccess 431

10. Trojan Downloader Swizzor.gen!l 132
11. Trojan Downloader Swizzor.gen!E 128
12. Worm VB.AT 408
13. Rogue Fakerean 381
14. Trojan Alueron,gen!J 198
15. Trojan Malex.gen!J 136
16. PWS Lolyda.AT 159
17. Dialer Adialer.C 125
18. Trojan Downloader Wintrim.BX 97
19. Dialer Dialplatform.B 177
20. Trojan Downloader Dontovo.A 162
21. Trojan Downloader Obfuscator.AD 142
22. Backdoor Agent.FYI 116
23. Worm:AutoIT Autorun.K 106
24. Backdoor Rbot!gen 158
25. Trojan Skintrim.N 80

 The samples in Malimg dataset are all converted to grayscale images with a size of 32 by 32 originally.
In our experiment we furtherly convert the samples into 3-channel RGB images by duplicating one channel
for three times and then concatenate the three channel as RGB channels. The size of each malware sample
in each malware family is converted to 32 by 32 by 3 channels ultimately. Figure 3 shows one group of the
converted RGB images of the 25 classes malwares, each small square image named as “malware N” is one
random sample from that N class.

587

Lu and Li

Figure 3: Converted RGB images of the Malimg dataset.

3.3 Deep Residual Network

Many complex visual recognition and image classification tasks show benefits from very deep models.
However, when the deep model goes deep, it is getting harder to train the model, the performance of the
model starts to decline, the degradation problem is starting to be exposed as well. To solve this problem,
He et al. (2016) proposed the deep residual learning framework. The deep residual network is originated
from deep convolutional neural network, it uses identity mapping for the shortcut connections between the
input and weighted layers in the deep convolutional network. The deep residual network has led to a series
of breakthroughs for image classification tasks, it won the ImageNet ILSVRC 2015 classification task, it
achieved the state-of-the-art performances in many other computer vision and classification tasks as well,
such as winning the 1st places in ImageNet localization, COCO detection, COCO segmentation tasks in
ILSVRC and COCO 2015 competition. The strong evidences show that the deep residual framework is
generic and highly promising in computer vision problems.

In our proposed method we use an 18-layers deep residual net as the malware classifier. The architecture
of the deep residual network is as shown in Figure 4. It consists 17 convolutional layers with filters in
different sizes. Following each convolutional layer, there are a normalization layer (function), a rectified
linear unit layer (function), and a pooling layer (function). At the last layer there is a fully connection layer
and SoftMax layer (function) as the classifier. To avoid overfitting problem, dropout layers are added in
between of the convolutional layers and normalization layers.

588

Lu and Li

Figure 4: The architecture of 18-layers deep residual network.

3.4 Deep Convolutional Generative Adversarial Network (DCGAN)

To generate the synthetic malware samples, we use a DCGAN model. DCGAN is one of the most popular
and successful GAN network. A traditional GAN structure consists two parts of network: the generator and
the discriminator, as Figure 5 shown.

A GAN network can be trained to generated images from random noises. At the initialization stage, a
series of random noised generated as input to the generator, after the generator generates a fake image, this
fake image and the real image will be input to the discriminator. In the discriminator model, it classifies
whether the image is real of not: if the image is from the generator then the discriminator is supposed to
classify it as fake; if the image is from real data the discriminator is supposed to classify it as real. During
the training , the generator is constantly trying to fool the discriminator by generating better fake images,
while the discriminator is working to become better to distinguish the real and fake images. The equilibrium
of this model is when the discriminator is always guess at 50% confident that the generator output is real
or fake.

A GAN network can simultaneously learn from the trained data: the generator captures the potential
distribution of the real data and generates synthetic samples; while the discriminator discriminates the
difference between the real samples and the synthetic samples as accurately as possible. Multiple
convolutional and convolutional-transpose layers are used in the discriminator and generator.

Figure 5: A GAN network model.

3.5 GAN Generated Malware Samples

We train the GAN network for 10000 epochs to generate the fake samples, starting from the 1000 training
epochs, we save 25 generated samples for every 100 epochs for each class. So after the training is done,
we have 2250 generated synthetic samples for each class. Figure 6 shows four groups of examples of the
generated samples, each small square image named “malware N” is one random GAN-generated sample
from that N class.

589

Lu and Li

a) GAN-generated samples group 1. b) GAN-generated samples group 2.

 c) GAN-generated samples group 3. d) GAN-generated samples group 4.

Figure 6: GAN-generated malware samples examples (4 groups).

3.6 Training the Classifier with Synthetic Malware Data

We take the first 30 samples out of each malware class in the Malimg dataset as the unseen testing data.
We selected our baseline training data from the data after taking out the testing samples. The selection rules
are: if the size of the samples left in that malware class is more than 200, we randomly select 170 samples;
if the size of the samples left in that malware class is smaller than 200, we use all left samples in that class
as the training data. Then we combined all training data selected from the 25 classes as our baseline training
data. The baseline training data are all original real malware data. The classifier trained by this data is our
baseline model.

590

Lu and Li

We take 25 GAN-generated synthetic samples as a base unit. Then we take one time, two times, three
times, …, until ten times of the unit from each class in the synthetic samples and add it to the corresponding
class in the baseline training data. In other words, we take 25, 50, 75, 100, 125, 150, …, 250 fake samples
from each class of the GAN-generated data and then add it to the corresponding class of the baseline training
data. Then we train the 18-layer residual network by using the ten sets of new training data which are with
different percentage of fake synthetic data. Every time we add new synthetic samples, we re-train the model
until the residual network converges and then test it on the unseen testing data as described in 3.6. All
trainings are carried on GPU Nvidia Tesla V100, we use a batch size of 256, the time for each training
epoch is about 15 seconds.

4 RESULTS

4.1 Testing Accuracy

As Section 3.6 described, we use the baseline training data to train the classifier at first, the overall average
testing accuracy of the residual network is 0.8413. Then we add 25, 50, 75, 100…250 synthetic data into
each class and then re-train and re-test the classifier. The testing results are as shown in the Table 2, by
adding different numbers or percentages of the GAN-generated synthetic samples, the overall average
testing accuracy on the unseen testing data is improved from 0.84 to 0.90.

Table 2: Testing accuracies by adding different percentage of GAN-generated synthetic data.

Synthetic
Data

Samples

0

25

50

75

100

125

150

175

200

225

250

Average
Testing

Accuracy

0.84

0.86

0.87

0.83

0.88

0.88

0.89

0.90

0.89

0.89

0.90

4.2 Precisions, Recalls, and f1-scores

We also use the precision, recall and f1-scores to evaluate the performance of the deep residual network.
Generally for each class we use precision to show how precise/accurate of the deep residual network model.
We use recall to calculates how many of the actual positives the model catches by labeling it as positive.
We use f1-score function check the balance between precision and recall when there is a uneven class
distribution. The calculation are as the following formulas shown:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒/(𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒),

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒/(𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒),

										𝑓1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 × 	𝑟𝑒𝑐𝑎𝑙𝑙)/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙).

By expanding the training data samples using the GAN-generated synthetic malware data, the precision,
recall and f1-scores for most of the classes are improved as well, especially for the malware families with
small samples such as the Agent.FYI family, C2Lop.P family. Table 3 shows the comparison of the
precisions, recalls and f1-scores between the results with and without using 250 synthetic malware samples
in each class. All results are testing on the unseen testing data as described in Section 3.6, 30 testing samples
from each class.

591

Lu and Li

Table 3: Malware classification result by deep residual network.

 Precision
0/250

Recall
0/250

f1-score
0/250

Testing
Samples
Number

Allaple.L 1.00/1.00 1.00/1.00 1.00 /1.00 30
Allaple.A 1.00/1.00 1.00/1.00 1.00/1.00 30
Yuner.A 0.54/0.62 0.63/0.60 0.58/0.61 30

Lolyda.AA 1 0.68/0.65 0.87/0.80 0.76/0.72 30
Lolyda.AA 2 0.94/1.00 1.00/1.00 0.97/1.00 30
Lolyda.AA 3 1.00/1.00 1.00/1.00 1.00/1.00 30

C2Lop.P 0.42/0.52 0.60/0.53 0.49/0.52 30
C2Lop.gen!G 0.55/0.61 0.20/0.63 0.29/0.62 30
Instantaccess 1.00/1.00 0.93/0.97 0.97/0.98 30
Swizzor.gen!l 1.00/1.00 1.00/1.00 1.00/1.00 30
Swizzor.gen!E 0.86/0.97 1.00/0.97 0.92/0.97 30

VB.AT 1.00/1.00 1.00/1.00 1.00/1.00 30
Fakerean 0.88/0.97 0.97/1.00 0.92/1.00 30

Alueron,gen!J 0.97/1.00 0.97/1.00 0.97/0.98 30
Malex.gen!J 0.97/1.00 1.00/1.00 0.98/1.00 30
Lolyda.AT 0.93/1.00 0.90/0.97 0.92/0.98 30
Adialer.C 0.67/0.81 0.87/0.83 0.75/0.82 30

Wintrim.BX 1.00/1.00 1.00/1.00 1.00/1.00 30
Dialplatform.B 0.94/0.93 0.97/0.90 0.95/0.92 30

Dontovo.A 1.00/0.97 0.97/1.00 0.98/0.98 30
Obfuscator.AD 0.44/0.81 0.37/0.73 0.40/0.77 30

Agent.FYI 0.37/0.72 0.23/0.70 0.29/0.71 30
Autorun.K 0.97/0.97 0.97/1.00 0.97/0.98 30
Rbot!gen 0.91/1.00 0.67/0.83 0.77/0.91 30

Skintrim.N 1.00/1.00 1.00/1.00 1.00/1.00 30

micro avg 0.84/0.90 0.84/0.90 0.84/0.90 750
macro avg 0.84/0.90 0.84/0.90 0.84/0.90 750

weighted avg 0.84/0.90 0.84/0.90 0.84/0.90 750
samples avg 0.84/0.90 0.84/0.90 0.84/0.90 750

5 CONCLUSION

In this paper, we proposed a method by using Generative Adversarial Network (GAN) to generate synthetic
malware samples to solve the small data issue in malware classification problem. Our experiment results
show that by using GAN-generated synthetic malware samples, the classification performance of the deep
residual network is significantly increased by approximately 6%.

Before adding the GAN-generated malware samples, the training data size of some classes is fairly
small, such as the Skintrim.N family, it only has 50 original training data. The overall average testing
accuracy of the deep residual network is 84%. The classification accuracies of some classes such as the
Agent.FYI or Yuner malware family are a lot lower than the other classes. After adding the GAN-generated
synthetic malware samples to train the classifier, the overall average testing accuracy of the deep residual

592

Lu and Li

model on the unseen testing data is improved, the highest testing accuracy is found at 90%. The precisions,
recalls, and f1-scores of the classes with smaller samples size are also correspondingly improved. By using
the GAN model generated synthetic data, the performance of the malware classification model is improved
significantly. Besides, by our proposed method we convert the malwares raw bytecodes into RGB images,
then use deep learning model for classification. This malware classification method significantly reduced
the domain expert knowledge needed comparing to the traditional malware classification methods.

REFERENCES

Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. 2002. “SMOTE: Synthetic Minority over-sampling
Technique”. Journal of artificial intelligence research 16:321-357.

Dahl, G. E., J. W. Stokes, L. Deng, and D. Yu. 2013. “Large-scale Malware Classification Using Random Projections and Neural
Networks”. In Proceedings of the 2013 International Conference on Acoustics, Speech and Signal Processing, May 26th – 31st,
2013, Vancouver, Canada, 3422-3426.

Ding, Y., S. Chen, and J. Xu. 2016. “Application of Deep Belief Networks for Opcode Based Malware Detection”. In Proceedings
of the 2016 International Joint Conference on Neural Networks, July 14th – 19th, 2016, Vancouver, Canada, 3901-3908.

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. 2014. “Generative
Adversarial Nets”. In Proceedings of the 2014 Advances in neural information processing systems, December 8th –13th, 2014,
Montreal, Canada, 2672-2680.

Firdausi, I., A. Erwin, and A. S. Nugroho. 2010. “Analysis of Machine Learning Techniques Used in Behavior-based Malware
Detection”. In Proceedings of the 2010 Second International Conference on Advances in Computing, Control, and
Telecommunication Technologies, December 2nd – 3rd, 2010, Jakarta, Indonesia, 201-203.

Han, H., W. Y. Wang, and B. H. Mao. 2005. “Borderline-SMOTE: A New Over-sampling Method in Imbalanced Data Sets
Learning”. In Proceedings of the International conference on intelligent computing, August 23rd – 26th , 2005, Hefei, China,
878-887.

He, K., X. Zhang, S. Ren, and J. Sun, 2016. “Deep Residual Learning For Image Recognition”. In Proceedings of the 2016 Institute
of Electrical and Engineers Conference on Computer Vision and Pattern Recognition, June 26th – July 1st , 2016, Las Vegas,
Nevada, 770-778.

Kalash, M., M. Rochan, N. Mohammed, N. D. Bruce, Y. Wang, and F. Iqbal. 2018. “Malware Classification with Deep
Convolutional Neural Networks”. In Proceedings of the 2018 9th International Conference on New Technologies, Mobility
and Security, February 26th – 28th, 2018, Paris, France,1-5.

Lu,Y., J. Graham, and J. Li. 2019. “Deep Learning Based Malware Classification Using Deep Residual Network”. In Proceedings
of the 2019 Modeling, Simulation and Visualization Student Capstone Conference, April 18th, 2019, Suffolk, Virginia.

Nataraj, L., S. Karthikeyan, G. Jacob, and B. S. Manjunath. 2011. “Malware Images: Visualization and Automatic Classification”.
In Proceedings of the 8th International Symposium on Visualization for Cyber Security, July 20th, 2011, Pittsburg,
Pennsylvania, 4.

Pascanu, R., J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas, A. 2015. “Malware Classification with Recurrent
Networks”. In Proceedings of the 2015 International Conference on Acoustics, Speech and Signal Processing, April 19th –
24th, 2015, Brisbane, Australia, 1916-1920.

Sahs, J. and L. Khan. 2012. “A Machine Learning Approach to Android Malware Detection”. In Proceedings of the 2012 European
Intelligence and Security Informatics Conference, August 22nd – 24th, 2012, Odense, Denmark, 141-147.

Shankarapani, M., K. Kancherla, S. Ramammoorthy, R. Movva, and S. Mukkamala. 2010. “Kernel Machines for Malware
Classification and Similarity Analysis”. In Proceedings of the 2010 International Joint Conference on Neural Networks,
July18th – 23rd, 2010, Barcelona, Spain, 1-6.

AUTHOR BIOGRAPHIES

YAN LU is a doctoral candidate of Department of Modeling, Simulation and Visualization Engineering at Old Dominion
University. She works with deep learning, computer vision. She holds master degree in Computer Science from Virginia
Commonwealth University and master degree in Circuit and System from Chinese Academy of Sciences. Her email address is:
yxxlu003@odu.edu.

JIANG LI is an Associate Professor in the Department of Electrical and Computer Engineering at Old Dominion University. He
received his Ph.D degree in electrical engineering from the University of Texas at Arlington. His research interests include the
computer vision, deep learning, and machine learning. His email address is: jli@odu.edu

593

