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ABSTRACT

Modeling & Simulation (M&S) and Machine Learning (ML) have been used separately for decades. They
can also straightforwardly be employed in the same study by contrasting the results of a theory-driven
M&S model with the most accurate data-driven ML model. In this paper, we propose a paradigm shift
from seeing ML and M&S as two independent activities to identifying how their integration can solve
challenges that emerge in a big data context. Since several works have already examined this interaction
for conceptual modeling or model building (e.g., creating components with ML and embedding them in
the M&S model), our analysis is devoted on three relatively under-studied stages: calibrating a simulation
model using ML, dealing with the issues of large search space by employing ML for experimentation,
and identifying the right visualizations of model output by applying ML to characteristics of the output or
actions of the users.

1 INTRODUCTION

Machine Learning (ML) and Modeling & Simulation (M&S) have been around for several decades. Given
the explosion of research in data science, a recurring question in the recent years is to (re-)assess the role
that ML and M&S can play in the big data ecosystem. At a high-level, these approaches proceed in very
similar ways: they derive a model from some of the evidence (the ‘training set’ of ML or the ‘calibration
step’ of M&S) and use the remainder to evaluate the model (the ‘testing set’ of ML or the ‘validation step’
of M&S). A complementary use occurs when a project builds a model using each method, and assesses
whether results are consistent regardless of the model building method. Although Voinov et al. have
reported that there are relatively few projects “where more than one method has been tried for the same
problem within the same project” (Voinov et al. 2018), a complementary use is an easy starting point as
each method can be followed independently without calling for technical innovations.

Alternatively, M&S and ML may be used for different questions within the same project. For instance,
a purely data-driven ML model is implicitly built on the specific context in which the data was collected.
Such a model can thus provide a baseline by accurately predicting what will happen if the context remains
unchanged. In contrast, many M&S models employ a mix of assumptions and data which allows stakeholders
to deal with nonstationary distributions and/or test new scenarios (i.e. ‘what-if questions’) that predict what
will happen after changing the context. Consider eating behaviors as a sample application: we can use
machine learning to accurately determine what individuals currently eat (Rosso and Giabbanelli 2018), and
we can make projections over 10 years by accounting for aging and secular trends in nutrition. We can also
use modeling and simulation (e.g., agent-based models) to determine what individuals will eat in 10 years if
we implement policies such as increasing taxes on unhealthy food items, subsidizing healthier options, or
influencing social norms (Khademi et al. 2018). In this situation, the effect of the policies on key outcomes
(e.g., prevalence of hypertension and diabetes) may be evaluated by contrasting the simulations with the
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most accurate projection from machine learning (e.g., through a ‘difference in differences’ approach). Once
again, this approach does not require technical innovations as the M&S and ML model-building processes
can take place independently.

Using the lens of big data, this paper promotes a paradigm shift from seeing M&S and ML as
two independent model-building activities to identifying how a closer integration can help tackle specific
challenges. Such integration requires a detailed understanding of both M&S and ML, for instance to use the
right ML solution given the characteristics of data generated by M&S, or to study how a simulation model
can be partially re-designed through ML. This paradigm shift is applicable to address numerous challenges.
The challenge may stem from the large datasets collected for a project: we may have tracked thousands
of individual-level factors over a large population, and we would need to extract the most relevant factors
for a behavior of interest when creating an agent-based model of this population (Giabbanelli and Crutzen
2017). Challenges may also stem from the data generated during a project: complex M&S models may
produce a massive amount of data from which we need to identify patterns. Note that using ML to assist
with such M&S tasks results in a hybrid M&S study (Mustafee and Powell 2018), defined as the use of
machine learning methods (or generally non-M&S methods) in one or more stages of an M&S study (e.g.,
implementation / model development, experimentation, conceptual modeling).

In this paper, we explain which big data challenges can arise at several stages of a M&S study, and
how machine learning can be used in technically innovative ways to address some of these challenges.
While a M&S study goes through several stages, several of them have already received attention when
it comes to using ML and M&S. At the conceptual modeling stage, ML can help to define the structure
of a model by articulating/hypothesizing relevant factors and their interactions (Sandhu et al. 2019).
When designing the model, some components may be trained by machine learning and embedded into the
simulation model (Wallis and Paich 2017), such as when agents derive models from their own observations.
Consequently, we focus on three stages that have received relatively less attention: model calibration,
experimentation, and the visualization of results. Since a systematic review of ML at each one of these
stages would be better served by three independent studies, this paper provides a curated set of references
to assist the reader in exploring the use of ML within each stage. Several of these references focus on the
techniques, while others build on the experience of our team and our collaborators to illustrate challenges
through real-world projects.

The remainder of this paper is structured around each of the three stages of M&S, organized in the
order in which they are typically performed. In section 2, we focus on calibrating a simulation model using
machine learning, that is, how ML can automatically adjust parts of a simulation model by creating, deleting,
or tuning rules. A calibrated and validated computational model can then be used to run simulations, and
section 5 accordingly targets this experimentation stage. Finally, experiments may need to be visualized
either by modellers or by end-users, which is addressed in section 6. We conclude this paper by outlining
the next steps to promote a tighter integration of ML and M&S.

2 MACHINE LEARNING FOR MODEL CALIBRATION

Models often have to account for phenomena that are difficult to directly observe, and hence to measure.
One way to handle this situation is through parametric uncertainty (Briggs et al. 2012). For instance, our
model of social influence on eating and physical activity behaviors included two parameters with unknown
values: the level at which social norms become strong enough to trigger a change in behavior (threshold),
and the extent to which the behavior is then changed (impact) (Giabbanelli et al. 2012). We had quantitative
evidence on the expected model output and the value of all other parameters. We thus varied the two
parameters until we identified a range of values in which the model’s output matched expectations. This
simple calibration process did not need machine learning solutions. However, parametric uncertainty is
only one of many forms of uncertainty in a model. As observed by Jackson and others, “it is then important
to characterize uncertainty not only regarding the values of model parameters within each assumption but
also between different assumptions, as they may lead to different conclusions” (Jackson et al. 2011). Said
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otherwise, there is uncertainty when we are forced to make structural choices or ‘assumptions’ that affect
the model’s dynamics. Such assumptions are particularly common when modeling the decision-making
processes of individuals, which includes several unobservable factors such as the threshold and impact
aforementioned.

Within the context of Agent Based Modeling (ABM), there are at least two approaches to reduce
structural uncertainty in the agents’ rules via machine learning. One approach posits that, since humans
have a brain, their virtual counterpart can be equipped with a neural network as well. This solution was
implemented and presented at the 2017 Winter Simulation Conference, showing that a deep neural network
can be trained and embedded within each agent (Negahban 2017). This novel data-driven approach treats
cognition as a blackbox with a focus on accuracy. However, if the goal is to preserve the data- and
theory-driven nature of a model, then the agents’ decision-making processes can only be adjusted rather
than entirely derived using machine learning. To this end, we discuss a second approach in this section.

Fuzzy Cognitive Maps (FCMs) are a modeling approach rooted in soft computing. They externalize
the perspectives or ‘mental models’ held by participants into a computational model that articulates key
factors and the rules governing their dynamics. For instance, our study at the 2018 Spring Simulation
showed how mental models were externalized from 264 participants as FCMs, and compared them to
understand differences between their rules (Lavin et al. 2018). Creating computational models in the form
of FCMs may be as simple for participants as completing a questionnaire which is then automatically
transformed into an FCM (Giabbanelli and Crutzen 2014). As an FCM contains the mental model of a
person, it can be embedded within an agent. Hybrid ABM/FCM simulation models thus equip each agent
with an FCM (Giabbanelli et al. 2019). However, the simplicity of building an FCM starts to become
a problem at this stage because individuals may not be aware of all the factors that truly shape their
decision-making processes, or they may struggle to assess the causal strengths of rules connecting factors.
To reduce this uncertainty when data is also available, Papageorgiou has pioneered the use of machine
learning for FCMs (Papageorgiou 2012). For example, unsupervised learning techniques can fine-tune the
strengths of the rules (Papageorgiou et al. 2006), which may include removing a rule entirely (through a
strength of 0) or adding in a rule (Figure 1). Note that machine learning algorithms can, but do not have
to, use big data to adjust the model’s rules. For instance, a study trained the model using a survey of 10
questions administered to 2,903 respondents (Dikopoulou et al. 2017), which is less than a 1 Mb file.
Paradoxically, the absence of such training data would create the big data problem: without data to guide
the search for the true model structure, we may have to generate a massive number of plausible model
structures (i.e. large search space), assess each one, and navigate the results to select a suitable candidate.
Said otherwise, the ability to employ machine learning to automatically tune a model avoids the big data
problem of generating a massive number of possible rules.

In summary, modeling techniques such as FCMs have already been tightly coupled with machine
learning for over a decade. This may not have reached the broader M&S community yet, where approaches
such as ABM are more commonplace, but hybrid ABM/FCM models could leverage machine learning
to automatically refine the agents’ rules. A limiting factor to adopt this approach is a lack of familiarity
with these tools. We need not only proficiency with several modelling approaches to avoid falling into the
pitfalls of hybridization (Giabbanelli et al. 2017), but also a deep understanding of how machine learning is
automatically re-engineering some of the model’s structure. This may prompt the M&S community to tighten
the relation between modeling and machine learning in the curriculum of new modelers, going even further
than “teaching computational modeling in the data science era” as we previously discussed (Giabbanelli
and Mago 2016). As some M&S curriculum may already be part of degrees (e.g., systems engineering)
that have limited room for an additional specialization, a practical alternative is to promote collaborations
between experts in M&S and experts in machine learning. While our interdisciplinary practice of modeling
often rests on the trio of modeller-experts-stakeholders, this need for technical collaborations may lead to
adding a machine learning expert as a fourth role.
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Figure 1: Machine learning can calibrate a model, such as a Fuzzy Cognitive Map, which can then perform
complex functions such as governing the decision-making activities of each agent in an Agent-Based Model.
Adapted from (Dikopoulou et al. 2017) and (Giabbanelli et al. 2017).

2.1 Opportunity #1

Uncertainty is common in simulation models. Parametric uncertainty can be solved in small models by
calibration rather than machine learning, e.g. by identifying a narrow range of parameter values that replicate
the target model behavior. When models have structural uncertainty and data is available, machine learning
can navigate the larger space of possible structures, thus avoiding the big data problem of generating many
model structures and comparing their simulation outcomes. In particular, machine learning has been used
for over a decade to fine-tune the structure of Fuzzy Cognitive Maps, which can now be used in Agent-Based
Models to provide the agents’ mental model. Given the multiplicity of case studies and the maturity of
methods, the main barrier to using machine learning for model calibration is the expertise needed. Indeed,
when a machine learning algorithm adjusts a model’s structure, we must understand both the algorithm
and the model. This can impact practices in M&S either by having experts on modeling and on machine
learning in the same team, or by changing the curriculum to equip the next generation of modelers with
machine learning skills.

3 MACHINE LEARNING AT THE EXPERIMENTATION STAGE

After calibrating and validating the model within its intended context of use, we can now perform experiments.
In public policy-making, experiments may consist of establishing a baseline and comparing it with a series
of potential interventions. For instance, Firmansyah and colleagues first computed the expected pollution
level of a city in the absence of new interventions (Firmansyah et al. 2019). This baseline outcome was
then compared to alternative (or ‘future’) scenarios such as an increase in green space or a change in
the energy mix. This type of experiment is relatively low on computations compared to the next two
types that we will discuss. Indeed, the number of experiments is essentially a function of the number
of scenarios and replications if the model is stochastic. Consider 1 baseline and 2 alternative scenarios,
where each must be repeated 10 times: we will need 3×10 = 30 runs. However, in many cases, the goal
is not only to test what we should intervene on (e.g., do we change green space or the energy mix?) but
also to accurately characterize to which extent (e.g., how much more green space do we need to make a
difference?). Each scenario would then have to be run at different levels. In the model of Khademi et
al., the authors explored the five year prevalence of hypertension with respect to three different levels of
change in social norms on food behaviors (Khademi et al. 2018). The number of experiments is now
growing as a function of scenarios, levels, and replications. This number grows even larger when the
scenarios need to be identified from the model’s behavior instead of being pre-determined. For example,
the pollution level in Firmansyah’s model is driven directly by several parameters (e.g., green space, waste
infrastructure, energy mix) and indirectly by many others. Any of these parameters is a potential policy
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Figure 2: A cellular automaton model of HIV represents the state of each biological cell as a color.
Visualizing the state of the whole model consists of visualizing a color grid. Here, the user is visually five
out of 12 time ticks of the model. As it is a stochastic model, another run can look different. Adapted
from (Giabbanelli et al. 2019).

lever, thus we may start by having at least as many scenarios as there are parameters. In practice, we have
significantly more policy scenarios than parameters since a scenario can be defined by a synergistic action
on several parameters jointly (Giabbanelli and Crutzen 2017). As a result, the number of experiments can
grow exponentially in the number of parameters and level. For instance, if ten parameters have only two
levels, then we have 2×2 . . .×2︸ ︷︷ ︸

210

combinations, each of which needs to be repeated in stochastic models.

The exponential growth is not a challenge if two conditions are met: (i) the number of parameters and
their levels is small, and (ii) each simulation run can be computed quickly. Design of Experiments (DoE)
techniques such as factorial analyses are particularly effective in this situation (Giabbanelli and Crutzen
2013; Giabbanelli et al. 2012). Our analysis presented at the 2017 Winter Simulation Conference showed
that all combinations could be explored for models with low computational costs having up to 25 binary
parameters (Lavin and Giabbanelli 2017). However, there are also many cases of practical relevance where
at least one of these two conditions is violated. If only (i) is violated, then we have a big data explosion
(similarly to the previous section) but the problem may still be tractable. If both are violated, then it
becomes prohibitive to even generate the big dataset of simulation results.

When using causal connections in a Fuzzy Cognitive Map as policy levers, Firmansyah’s model includes
98 parameters (Firmansyah et al. 2019) and the Provincial Health Services Authority model of obesity has
as many as 269 parameters (Drasic and Giabbanelli 2015). Even if each parameter only had two levels
and computations were fast, generating 2269 combinations would still be beyond the scope of big data. In
contrast, detailed biological models for the spread of the Human Immunodeficiency Virus (HIV) may have
few parameters but a single run can be extremely costly (Figure 2) given the number of cells in a human
body, the need to track the different genome of each infected cell, a temporal resolution in hours but a
duration spanning years. Such cases call for innovative and efficient approaches to run experiments.

A well-chosen Design of Experiments allows us to select a few combinations of parameter values
to approximate a model’s behavior (Sanchez et al. 2018; Law 2017), but two observations suggest that
machine learning can go further. First, the computational costs of experiments are not always identical,
even when using the same model. For instance, one combination of parameter values in the HIV model can
produce a low viral load (so we must simulate until the end to guarantee that the patient remains healthy),
but another may quickly lead to the onset of AIDS (so the simulation can stop). Similarly, a simulation
of an epidemic can stop if the virtual population has died. Second, the outcome for each combination of
parameter values is not necessarily unique: a similar combination may yield an indistinguishable outcome
within the application context. Taken together, these observations suggest that a machine learning model
can be used to predict the cost of an experiment and, particularly for the costly ones, predict their outcomes
from the experiments that we have already performed. The type of machine learning model to build depends
on whether we seek a fine-grained numerical prediction or a coarser categorical prediction. For a given
experiment, a binary classification can tell us whether computations are too costly, or predict very different
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outcomes (e.g., the disease either prevails or disappears). A multi-class classification could categorize the
computations (e.g., very/moderately/not expensive) or the outcome (e.g., most/few/no people are infected).
Finally, a regression can output the specific cost (e.g., in minutes) or outcome (e.g., prevalence of a disease).

Some of this potential has been shown in the last few years. Noting that Agent-Based Models “are
quite heavy computationally” but that we need a “large number of simulations”, van der Hoog concluded
that the aforementioned issue of “computational intractability is therefore looming and ubiquitous”. His
suggested solution is “to use machine learning algorithms in order to reduce the computer simulation to a
lighter form, by emulating the models”, that is, through surrogate modelling. He then proposed to use deep
neural networks either at a micro-level, to predict each agent’s behavior, or at a macro-level, to emulate
the entire Agent-Based Model (van der Hoog 2019). This proposition was realized by Lamperti et al., who
successfully created a machine learning surrogate of an ABM using XGBoost and decision trees (Lamperti
et al. 2018). The authors also noted how this machine learning approach differs from kriging, which is
hard to apply to models with many parameters and can lead to very smooth response surfaces unlike those
produced by an ABM. As machine learning surrogates can be built effectively, the next task is to select the
right type of surrogate (e.g., support vector machine, neural networks). Gorissen developed an automatic
approach for this model type selection problem (Gorissen et al. 2009). Finally, as we need to perform some
experiments to create training data for the machine learning model, we should identify which experiments
are likely to capture the rugged response surface of a simulation model. Edali and Yucel showed that
sequential sampling can perform this task accurately (Edali and Yücel 2019).

3.1 Opportunity #2

Finding the best policy levers in a model may require a tremendous amount of experiments. This big data
generation can become intractable when there is also a high computational cost associated with performing
each experiment. Machine learning can address this issue by creating a computationally cheaper model, that
is, via surrogate modeling. A surrogate can leverage previous experiments to predict the outcome instead
of performing new simulations, and/or identify identify which simulations are really needed. Future work
may also use machine learning to predict the cost of an experiment before deciding whether to conduct it.

4 VISUALIZING MODEL RESULTS WITH MACHINE LEARNING

4.1 How Can Visualizations of Big Data Offer Insight into a Model’s Behavior?

Visualization can take place at many stages of M&S for different reasons. For instance, in the first phase
of conceptual modeling, we may visualize a dataset to identify important elements that would need to be
included in the model. In a later phase of conceptual model, we can visually compare the structure of a
model with the available evidence (Giabbanelli and Jackson 2015). During verification, we can visually
explore the outputs vis-a-vis the expected model behavior, that is, we already have a notion of what would
be wrong visually. For example, noticing that agents get stuck or witnessing the unlikely disappearance of
a disease would then suggest errors in the implementation. Visualizing results of a verified and validated
model is a different task: instead of looking for implementation errors by knowing what we should see, we
try to learn from the output. We are thus looking for a variety of patterns across space (e.g., can regions
be clustered in terms of model output?), time (e.g., are the entities’ states stabilizing or oscillating?), and
runs of the model (e.g., is there a lot of variability in the outputs?). Identifying patterns through this
big, multi-faceted data is arduous. Consider that we are looking for temporal patterns through as cycling
through states (Giabbanelli and Baniukiewicz 2019). A simple visualization would be to display the state
of all agents at a given time tick. To go to another time tick, we can click and refresh the entire view
(Figure 2). In this situation, we would be unlikely to notice whether some of the agents are starting to
cycle through the same sequence of states as they had fifteen steps ago. While we could visualize the data
as time series, we may not be able to look at the time series of states for every single agent either. The
big data nature of the output entails that there is too much information to track or even display at once.
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Figure 3: This advanced environment provides multiple visualizations at the same time, such as a state-
transition graph (top-left) and a bar chart (bottom-left). The main pane uses clock glyphs to wrap the
successive states of a cell over time within a single display: the value at t = 0 is positioned at ‘noon’, then
the next value continues clock-wise. Adapted from (Giabbanelli and Baniukiewicz 2019).

There are at least two ways in which machine learning can assist modelers with finding patterns in
large multi-faceted data. First, machine learning can filter the data: instead of directly looking at the
simulation output, we visualize the results of a machine learning model applied to this output. For example,
hierarchical clustering can reveal how the output may be decomposed into spatial regions that are similar in
states. Alternatively, we can visualize the simulation output with help from machine learning techniques,
for instance by highlighting regions based on the cluster to which they belong. Similar situations were
named ‘visually enhanced mining’ and ‘computationally enhanced visualizations’ respectively (Bertini and
Lalanne 2010). Note that both situations differ from ‘interactive model analysis’ in which an interactive
visualization serves to improve a machine learning model (Liu et al. 2017).

While the broad principles of applying machine learning to visualizations of simulation outputs are
easy to enunciate, the specifics still need to be defined by the M&S research community. Consider the case
of visually enhanced mining, in which machine learning acts as filter. To create a software environment in
which modelers could provide simulation data and automatically visualize results from machine learning
algorithms, we would need three broad steps: (i) select suitable machine learning algorithms based on
characteristics of the outputs and/or questions from modellers, (ii) run these algorithms on the outputs,
and (iii) present the results through visualizations. Step (ii) may require an efficient implementation given
the big data nature of the output, but it does not require innovation as it boils down to applying a suitable
algorithm onto data. Research on step (iii) has already provided many possible solutions to visualize certain
types of machine learning approaches, such as decision tree classifiers (van den Elzen and van Wijk 2011),
random forest classifiers (Welling et al. 2016), or association rules (Hahsler and Karpienko 2017). Even
visualizations of highly complex machine learning models such as deep neural networks have emerged in
the recent years (Kahng et al. 2018).
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The crux of the issue in developing the whole ‘visually enhanced mining’ environment is thus step (i):
how to automatically select which machine learning algorithms are worth running on a set of simulation
outputs? We cannot run a large collection of machine learning and tell modellers to somehow sift through
the results, because that would be translating a big data problem (simulation output) into yet another big data
problem (visualizing many machine learning models). The challenge may even be greater when developing
‘computationally enhanced visualizations’: given features of the data, questions from modellers, and the
visualizations used, which machine learning methods should be selected to enhance these visualizations?
While practices in machine learning are well-established to select features of a dataset given a method, here
we face the inverse problem of selecting machine learning models given the features of a dataset. Some
reviews have been devoted to listing properties of the dataset and suitable classifiers, such as the highly
cited work of Lotte et al. within the context of ElectroEncephaloGraphy (Lotte et al. 2007). Undertaking
a similar effort within M&S would already be significant, but most benefits will be unlocked once this
selection can be automatized.

4.2 Opportunity #3

The big data nature of a simulation output makes it challenging to create visualizations that are conducive
to generating new insights into the model’s behavior. These visualizations may be augmented or filtered
using machine learning. However, either approach needs to select a suitable set of machine learning
algorithms given the properties of the simulation output and/or questions from modellers. Selection itself
is a machine learning task. A leap forward for the visualization of simulation outputs would thus be to use
machine learning twice: first to select the right algorithms, and then applying them to create or enhance a
visualization.

4.3 How Can we Adapt Visualizations to the Needs of the End-Users?

For modellers, a visualization may only be one of various ways to assess a model’s behavior. We can rely
on a variety of statistics displayed in table form. We may also employ software engineering techniques to
guide the assessment when there are formal descriptions, such as a model description in the Systems Biology
Markup Language (Hucka et al. 2018), or descriptions of experiments with NEDL or SESSL (Peng et al.
2014). The situation is different for the end-users who may not be able or interested to look into the code,
statistics, and formal descriptions. This audience may thus rely more heavily on interactive visualizations.
While the practice of accessible design provides detailed recommendations in general, two challenges are
of particular interest here. First, seasoned modellers may be used to visualizations that turn out to be
unfamiliar for the end-users. This can apply to more advanced visualizations such as parallel coordinates
or using glyphs (Figure 3), but it also holds for forms that modellers may assume to be more ‘universally’
understood. For instance, we developed a software that lets policymakers interact with a weighted, directed
network (Giabbanelli and Baniukiewicz 2018). Our usability test showed that policymakers occasionally
struggled in using such large node-links diagrams (Giabbanelli et al. 2016). The struggle may be subtle
as end-users may be able to correctly accomplish a task using a visualization of outputs, yet it takes them
too long to be feasible in practice, or they may not be confident that they did it correctly (Giabbanelli and
Baniukiewicz 2019). The second challenge is that models that are truly useful for end-users may kept on
being employed much beyond the duration of the initial engagement with modellers. That is, users will
eventually be on their own using the models and examining visualizations of outputs. In this context, they
may realize that they have new questions, which may be cumbersome or even impossible to answer using
the visualizations provided. Revising the software every time creates a barrier (e.g., human, financial) and
may not always be an option.

Machine learning presents opportunities to address both challenges for end-users as it can adapt the
visualization to their needs. While the previous subsection focused on adapting to the data’s characteristics,
the emphasis here is on learning the right visualization from the trace of user interactions. In short, we
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Figure 4: Two possible visualizations from the same simulation outputs: (a) a stack bar chart, aggregating
the state of all entities; and (b) a time series, showing the state of one entity.

can know what a user did by logging mouse motions, clicks (e.g. to select or undo), and pauses (Dou
et al. 2009; Brown et al. 2014). For some category of end-users, devices that perform eye tracking may
also be available to capture exactly what they are looking at. From these traces, we may infer what a user
wishes to do, and propose a visualization that is more supportive of this goal. Consider the example in the
previous section where we show the state of all entities at one time tick of the simulation. A user wishing
to see which entities changed state from t to t +1 may be repeatedly going back-and-forth between these
two time ticks. The software may realize that the user wishes to perform a comparison, and thus adapt the
visualization by highlighting entities whose state changes while dimming the other ones.

There can be a problematic temptation to believe that machine learning can perfectly reveal what users
truly desire based on what they do. The reality is more nuanced, so an operational definition is needed
to appreciate practical opportunities and limitations. Let us denote by V the set of all visualizations that
the application can provide. At a given time t, a user interacts with a subset Vt ⊆ V of the visualizations,
such as a bar chart and state-transition graph (Figure 3). The actions performed by users (e.g., clicking
on a button, selecting an entity) are logged as a time-ordered sequence a1, . . . ,ai, . . .an where each action
tells us what the user did within an environment Vt at time t. The machine learning task is to predict what
Vt+1 should be given the actions a1, . . . ,at . This is similar to the use of machine learning on-the-fly to
adapt data structures, where the sequence of actions (e.g., adding, deleting, searching) serves to predict the
structure into which we swap (Eastep et al. 2011). One essential limitation is that the prediction depends
on what the user was able to do with the previous visualizations. For instance, if all the user can do is
interact with a pie chart showing aggregate simulation results (e.g., half of the agents are infected), we
cannot tell that the goal was actually to track the state of a specific agent over time. The other limitation
is that several candidates for Vt+1 can be equally likely given the log of actions. Consider that a user
visualizes the state of each entity at the beginning of the simulation, then moves onto the next time tick,
and so on until the end of the simulation (Figure 2). The user may have wanted to get a sense for the
prevalence of different states throughout the simulation, which can be done through an aggregate such as
a stacked bar chart (Figure 4-a). Alternatively, the user may have been tracking the state of one specific
entity, and a time series for this entity would be useful (Figure 4-b). The user may even have wanted
to see the spread of an infection from a given point, in which case a contour plot may have worked. A
machine learning model may thus suggest likely visualizations to the user, but should not automatically
switch to one. As automatically guiding a user through visualizations is an open field of research, several
prototypes have been proposed but mature solutions are still in development (Ceneda et al. 2017). In the
“Small Multiples, Large Singles” approach, users start with a large visualization and are shown several
possible next steps as ‘small visualizations’ to succeed in their task (van den Elzen and van Wijk 2013).
More recently, Voyager (and its successor Voyager 2) supported users in “browsing of recommended
charts chosen according to statistical and perceptual measures” (Wongsuphasawat et al. 2016).
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4.4 Opportunity #4

Visualizations support end-users in generating insight from simulation results. However, the needs and
abilities of end-users may be difficult to precisely capture for modellers when creating visualizations, or
they may change beyond the initial engagement with modellers. Machine learning can use the sequence
of interactions that end-users have with current visualizations to suggest which visualizations should be
next to support their task. There are limitations since the same interactions may be associated with several
tasks, and these interactions are constrained by visualizations provided to end-users. Automatically guiding
end-users through visualizations of simulation outputs using machine learning is an important area of future
work to support the use and impact of models.

5 CONCLUSION

Neither Modeling & Simulation nor Machine Learning are novel research fields. This article explored the
many benefits that can emerge from using existing methods in machine learning to support several key steps
performed in the simulation community, such as investigating the model’s parameter space or visualizing
the results of experiments. As the lack of big data methods in Modeling & Simulation might partly stem
from a lack of expertise, this article also contributes to drawing the attention of our community to the new
field of possibilities that machine learning offers with respect to current and future simulation challenges.

When a new approach with high potential is identified, there can be a temptation for end-users to
aim at becoming experts in the approach. This is certainly attractive from a logistical standpoint, as
end-users can then take care of their own needs, at their pace. However, acquiring another expertise can
be challenging for simulationists. As getting students to graduate later by taking additional courses is an
undesirable institutional outcome, simulation expertise is more likely to be traded for machine learning
expertise by replacing M&S courses with ML courses. Time for professional training is also a finite bucket,
as professionals may hardly be able to attend machine learning workshops and conferences unless they
reduce exposure to simulation conferences. Adding roles to team members can thus backfire compared
to considering, as we propose here, the addition of an expert in machine learning on suitable simulation
projects. To enable this addition and make it fruitful, we form two recommendations. First, simulationists
should be exposed to what machine learning can do for them, and what it needs (e.g., data requirements,
computational costs). This would position simulationists as informed end-users who can identify reasonable
questions in a given context. Second, bridges should be made between communities such that simulationists
can identify the machine learning experts they need for their specific questions. Tracks such as ‘Big Data
in Simulation’ (WinterSim’19) or ‘AI and Simulation’ (SpringSim’20) contribute to creating such bridges.
Failure to build an interface between ML and M&S by ignoring either of these two points can not only
bring disappointment but, if it happens repeatedly, set the field back instead of moving it forward.
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