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ABSTRACT

Many data sets collected from physical processes or human engineered systems exhibit self-similar properties
that are best understood from the perspective of multifractals. These signals fail to satisfy the mathematical
definition of stationarity and are therefore incompatible with Gaussian-based analysis. Efficient algorithms
for analyzing the multifractal properties exist, but there is a need to simulate signals that exhibit the same
multifractal spectrum as an empirical data set. The following work outlines two different algorithms for
simulating multifractal signals and addresses the strengths and weaknesses of each approach. We introduce
a procedure for fitting the parameters of a multifractal spectrum to one extracted empirically from data and
illustrate how the algorithms can be employed to simulate potential future paths of a multifractal process.
We illustrate the procedure using a high-frequency sample of IBM’s stock price and demonstrate the utility
of simulating multifractals in risk management.

1 INTRODUCTION

A large number of empirical data sets collected as signals from natural phenomena have been shown to
exhibit self-similar properties that are best understood from the perspective of fractals and multifractals.
Examples include electrocardiogram time series from the human heart (Shekatkar et al. 2017), financial
time series (Thompson and Wilson 2016), Internet traffic (Chakraborty et al. 2004), turbulence (Frisch and
Parisi 1980), and the sequence of nucleotides that constitute our DNA (Moreno et al. 2011). These signals
fail to satisfy the mathematical definition of stationarity and are therefore incompatible with Gaussian-based
analysis (Shumway and Stoffer 2006). We must therefore turn our attention to the power-laws that govern
the statistics of self-similar processes.

1.1 Multifractals

A stochastic process X(t) ∈R is said to be self-similar with Hurst exponent H ∈ [0,1) if for any c > 0 and

support t, E[|X(t + s)−X(t)|q] d
= c(q)sqH where the d over the equals sign indicates equal in distribution

and q∈R is the moment parameter (Mandelbrot and van Ness 1968). Mandelbrot and Van Ness showed that
the Hurst exponent H in the above definition plays a key role in the autocorrelation function of self-similar
processes. Specifically when 0<H < 0.5 the process exhibits short-range dependence and is anti-persistent.
Conversely when 0.5 < H < 1.0, the process exhibits long-range dependence and is persistent. Finally,
when H = 0.5, the increments of the stochastic process have zero autocorrelation.

The concept of multifractals generalizes the above definition such that increments of different sizes
are governed by different power-laws. Thus, instead of a global scalar exponent H there is a spectrum of
local Hölder exponents hq(t). In order to introduce multifractals, we must first define Hölder regularity.
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Formally, a process is Hölder regular if in the limit it approaches a differentiable polynomial. In this case,
we can define the Hölder exponent hq(t) as a measure of regularity if there is a polynomial P of degree less
than α such that |X(t)−P(t−t0)| ≤ c|t−t0|α where c is a constant greater than 0. Then the Hölder exponent
is the supremum α-value for which hq(t) = sup{α ≥ 0 : |X(t)−P(t− t0)| ≤ c|t− t0|α as |t− t0| → 0}. As
such, the Hölder exponent is a measure of local regularity about the point t (Ouahabi 2012). Given this
definition of local regularity, we say that a process is multifractal if E[|X(t + s)−X(t)|q] = c(q)sτ(q)+1.
The function τ(q) is often referred to as the scaling function and it replaces the scalar H in our definition
of self-similar processes. The collection of points that exhibit the same Hölder exponent hq are not sub-
intervals of a multifractal process, but rather they are scattered throughout the support. If we define this set
of iso-Hölder points as T = {t : hq(t) = hq} then it can be shown that the set T constitutes a fractal set
with fractal dimension Dh (Mandelbrot 1989). Furthermore, the definition of a multifractal measure ties
the fractal dimension of an iso-Hölder set to the scaling function τ(q) via the Legendre transform (Harte
2001). That is, Dh = minq{qhq− τ(q)}. Solving for Dh, it is easy to see that hq =

d
dq τ(q)|q=qo where qo

is the value of q that produces the minimum. Thus, the fractal dimension Dh is a relative measure of the
prevalence of a given Hölder expontent hq in a multifractal process with scaling function τ(q).

The objective of multifractal analysis is to quantify, in comparable finite terms, the properties of data
sets that exhibit this behavior. In this way we can compare complex systems to one another and thus measure
the relative complexity of given systems in various states. Extensive research of different algorithms for
analyzing the multifractal spectrum has led to efficient implementations that can quickly and accurately
extract an empirical spectrum from data (Jaffard, Lashermes, and Abry 2006). However, there is a need
to be able to simulate signals that exhibit the same multifractal spectrum as the empirical data set.

1.2 Cascades

One way to simulate multifractal signals is to use a multiplicative cascade process. As the name implies,
the procedure involves a cascade from coarse scales to finer scales through a set of multipliers at each scale.
One controls the properties of the signal by varying either the method of cascade from one scale to the next
or the distribution of the multipliers at each scale or both. This level of control allows for a wide variety
of signals to be created. The resulting multiplicative cascades are multifractal with positive increments.
Early cascade methods study extensively by Mandelbrot restricted the method of cascade to integer-based
branching at each subsequent scale (Mandelbrot 1974). These Canonical Mandelbrot Cascades have three
major drawbacks:

1. The iterative construction results in discrete scale invariance.
2. The increments are not stationary.
3. Strictly positive increments lead to a monotonically increasing signal, limiting the diversity of

signals that can be simulated.

Several approaches have been proposed to overcome these limitations. The method we focus on is
the Compound Poisson Cascade (CPC). The Poisson point process that underlies the construction of CPCs
removes the reliance on deterministic geometric grids used in previous constructions. This addresses the
mechanism responsible for discrete scale invariance and non-stationary increments. CPC increments are still
strictly positive so, to address the third drawback and thereby obtain a wider selection of simulated signals,
we embed the multifractal cascade into fractional Brownian motion (fBm) as the time or support parameter
(Calvet and Fisher 2002). The result is a well-behaved multifractal signal with positive and negative
increments. This process can then be used to simulate observed signals and perform risk management
analysis.
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1.3 Wavelet Leaders

In this section we give a brief overview of the algorithms used to extract multifractal spectra from empirical
data sets. More comprehensive descriptions can be found in Jaffard, Lashermes, and Abry (2006) and
Wendt (2008). Wavelet-based analysis relates the coefficients from wavelet decomposition to the scaling
function τ(q). A function ψ(t) is a wavelet function if it exhibits a short oscillation with an amplitude
that starts at zero and returns to zero with finite support. If the wavelet function ψ(t) is in L2(R) and the
functions ψ j,k(t) = 2 j/2ψ(2 jt−k) for j ∈ Z and k ∈ Z create an L2(R) orthonormal basis then this system
of functions is said to be an orthonormal wavelet basis. Functions f (x) that are in the L2(R) space can be
written as a decomposition of the orthonormal basis functions f (x) = ∑ j,k cx(2 j,k)ψ(2 jx− k) where the
wavelet coefficients are defined as cx(2 j,k) = 2 j ∫ f (x)ψ(2 jx− k)dx.

Note that if the wavelet function ψ(t) is m-times continuously differentiable, then its first m moments
integrate to zero. Due to the vanishing moments, if X(t) exhibits polynomial behavior of a degree less
than or equal to m, the wavelet coefficients are detrended transformations and do not carry that polynomial
information (Ouahabi 2012). Given a wavelet decomposition at many scales 2 j we can define the statistical
moments of order q using the structure function S(2 j,q) = 1

n j
∑

n j
k=1 |cx(2 j,k)|q where n j is the quantity of

translations k at scale 2 j, q∈Q, and [0,1]⊆Q. In the context of the multifractal formalism, wavelet-based
analysis then asks whether the structure function scales according to a power-law. That is, if the process
is multifractal then S(2 j,q) ∼ 2 jτ(q) as 2 j → 0, where τ(q) is the scaling function from the definition of
multifractals. Given τ(q) we need only to apply the Legendre transform to obtain the multifractal spectrum.

This work introduces a new procedure for fitting the parameters of a multiplicative cascade process to
the multifractal properties extracted from empirical data. We show how this procedure can be employed for
risk management and we analyze its performance on a financial time series to illustrate its utility. Section
2 describes the cascade algorithms and outlines our procedure for fitting and simulating multifractals that
match observed signals. In section 3 we describe the data we used for the experiment and outline our
experimental analysis. We also use these results in a forecasting exercise to illustrate the application to
risk management before concluding in section 4.

2 METHODS

2.1 Compound Poisson Cascades

As mentioned in section 1.2, Canonical Mandelbrot cascades have several limitations. We therefore restrict
our attention in this work to Compound Poisson Cascades (CPCs). CPCs require strictly positive multipliers
to create a multifractal process. We therefore examine log-Normal multipliers of the form W = eX , where
X ∼N

(
µ, σ2

)
. Following the description outlined by Wendt (2008), the CPC signal is defined as:

Qr(t) = c ∏
(ti,ri)∈Cr(t)

Wi (1)

where (ti,ri) are the positions of a 2-dimensional Poisson point process with intensity measure dm(t,r)
supported on the rectangle I = {(t ′,r′) : rmin ≤ r′ ≤ 1,−1

2 ≤ t ′ ≤ T + 1
2}. The Wi are the associated random

variables sampled from W . We define the cone of influence for point t as Cr(t) = {(t ′,r′) : 0 ≤ r′ ≤
1, t− r′

2 ≤ t ′ ≤ t + r′
2 }. The normalizing constant c is defined such that E [Qr(t)] = 1. Algorithm 1 outlines

the simulation procedure for CPCs. Note that we present one option for the intensity measure dm(t,r) = drdt
r2

that guarantees stationarity. The intensity measure is accounted for when calculating~t and~r in Algorithm
1. The construction procedure and resulting signals are also illustrated in Figure 1 that was adapted from
Wendt (2008).

538



Frezza, Thompson, Slater, and Jacyna

Figure 1: The cone Cr(t) and multipliers Wi, j, the signal Qr(t), Ar(t) the integral of Qr(t), and VH(t) that
results from combining Ar(t) with fractional Brownian motion with Hurst parameter H. Based on a figure
in Wendt (2008).

Algorithm 1: Constructs a CPC with multi-
pliers from a given distribution

Input:
n = length of signal (power of 2)
W = the distrubtion for the random multipliers
rmin = the minimum resolution for the signal
T = max time value
Output:
~Q = the CPC signal of length n

1 λ ← (T +1)
(

1
rmin
−1
)

2 N← 1 realization from Poisson(λ )
3 umax← 1

rmin
−1

4 ~uinit ←~0 : ‖~uinit‖= T +1
5 ~urand ← vector of N samples from Uni f orm(0,umax)
6 ~u← [~uinit ~urand ]

7 ~r← 1
1+~u

8 ~t← vector of N +T +1 samples from
Uni f orm(− 1

2 ,T −
1
2 )

9 ~W ← vector of N +T +1 samples from W

10 ~Q←~1 : ‖~Q‖= n
11 ~x← (0, T

n−1 ,
2T

n−1 ,
3T

n−1 , ...,T )
12 for i← 1 to N +T +1 do
13 ~J← which

(
|~x− ti| ≤ ri

2
)

14 foreach j in ~J do
15 Q j←W jQ j

16 c← r
exp(µ+ σ2

2 )−1
min

17 ~Q← c~Q
18 return ~Q

Algorithm 2: Combines a fractional
Brownian motion signal with CPM time

Input:
~Ar = a CPM signal of length n, used for time
increments
H = the Hurst parameter for the fractional
Brownian motion
dt = the time sampling rate
ot = the over sampling rate
Output:
~VH = the fractional Brownian motion signal
embedded in CPM time

1 z← max(~Ar)dt

2 N f Bm← 1+2ceiling(log2 z)

3 ~BH ← an fBm signal of length N f Bm with Hurst
param H

4 ~BH ← zH~BH

5 ~i← round(~Arot)
6 i1← max(i1,1)

7 ~VH ←
(

bi ∈ ~BH |i ∈~i
)

8 return ~VH

In Equation (1) we introduced a normalizing constant c such that E[~Q] = 1. For a CPC with log-Normal

multipliers (CPC-LN), c = rexp(µ+ σ2
2 )−1

min where the final resolution rmin =
1
n . Using these parameters, we
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can characterize the multifractal spectrum and its log-cumulants. Equation (2) is the scaling function for
a CPC-LN that — through the Legendre transform — defines the multifractal spectrum in Equation (4).
Because Equation (4) has no closed form solution, we define the expression Λ(h,q) and take the derivative
with respect to q in Equation (5). Setting ∂Λ

∂q = 0 and solving numerically for q at a given value of h yields
D(h). Since the multifractal spectrum can be fully described by its log-cumulants (see Wendt (2008)), we
provide (6) that is used to calculate cp for all p.

τ(q) = (η−1)q+1− eqµ+ q2σ2
2 +qeµ+ σ2

2 (2)

D(h) = min
q6=0

(d +qh− τ(q)) (3)

D(h) = min
q6=0

(
d +q(h+1−η)−1+ eqµ+ q2σ2

2 −qeµ+ σ2
2

)
︸ ︷︷ ︸

Λ(h,q)

(4)

∂Λ(h,q)
∂q

= h+1−η + eqµ+ q2σ2
2
(
µ +qσ

2)− eµ+ σ2
2 ⇒ 0 (5)

cp =
dp

dqp τ(q)|q=0 (6)

2.2 Fractional Brownian Motion in CPM Time

In this section we address the issue of strictly positive increments in the multifractal signal generated from
CPCs. The diversity of signals that can be simulated with only positive increments is limited, but by
allowing the support of a fractional Brownian motion (fBm) process to be represented by a multiplicative
cascade we can simulate a wider variety of signals (Calvet and Fisher 2002). We start by formally defining
Compound Poisson Motion (CPM) as A(t) = limr→0

∫ t
0 Qr(s)ds. The approximation Ar(t) to the limit

integral that defines CPM is just the cumulative sum of Qr(t). To construct a multifractal process with
positive and negative increments VH(t), we combine an fBm signal BH(t) with CPM time. The resultant
multifractal is well-defined and inherits properties from both the original fBm and CPM signals. The scaling
behavior of VH(t) is a direct consequence of the self-similarity of fBm combined with the scaling behavior
of CPM (Chainais et al. 2005; Pipiras and Taqqu 2017). The resulting signal has the rich interwoven
scaling characteristics of the CPM, as well as the added self-similarity of the fBm. Algorithm 2 outlines
the procedure for constructing the combined process and the bottom right panel of Figure 1 illustrates a
sample process path of VH(t).

As with the multifractal spectrum for the CPC, D(h) for this process has no closed-form solution. We
therefore derive the equation for the scaling function τ(q) that facilitates the numerical approximation of
D(h) via the Legendre transform. Using these equations and the procedure we introduce in the rest of this
section we can simulate replications of VH(t) with optimal parameters µ∗, σ∗2, η∗, and H∗.

τ(q) = qη +1− eqHµ+ q2H2σ2
2 +qHeµ+ σ2

2 (7)

D(h) = min
q6=0

(d +qh− τ(q)) (8)

D(h) = min
q6=0

(
d +q(h−η)−1+ eqHµ+ q2H2σ2

2 −qHeµ+ σ2
2

)
︸ ︷︷ ︸

Λ(h,q)

(9)

∂Λ(h,q)
∂q

= h−η + eqHµ+ q2H2σ2
2
(
µH +qσ

2H2)−Heµ+ σ2
2 ⇒ 0 (10)

540



Frezza, Thompson, Slater, and Jacyna

cp =
dp

dqp τ(q)|q=0 (11)

Equation (7) — derived directly from Equation (2) and the self-similarity of BH(t) — shows how
the VH(t) process scales with support t. Note that although one can calculate the log-cumulants directly
using Equation (11) with the relevant scaling function defined in Equation (7), it can also be shown that
cVH

p = H pcAr
p for all p > 1, where cAr

p are the log-cumulants of the CPM process used for the time increments
and H is the Hurst exponent of the BH(t) process. Note that c1 has a similar relationship with H, but also
contains the fractional integration parameter η .
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Figure 2: The different multifractal spectra of VH(t) achieved by varying one parameter and fixing the
other two. Each plot has 30 curves based on an evenly spaced parameter sweep between the lower and
upper values shown.

2.3 Fitting the Multifractal Properties of an Empirical Signal

Given the flexibility of CPCs combined with fBm, they are well-suited for fitting a wide variety of empirical
signals. Figure 2 illustrates how the µ , σ2, and H parameters affect the shape of the resultant multifractal
spectrum and gives a visualization of the range of signals that can be simulated. In addition we can vary the
fractional integration parameter η to shift the curve left for η < 0 and right for η > 0 without impacting
the shape. We use these four parameters to fit VH(t) to empirical data.

The shape of an empirically extracted multifractal spectrum is often difficult to match exactly. To find
the best fit we compare the use of two options: τ(q) from Equation (7) and D(h) from Equations (9) and
(10). In each case, we compare the theoretical values for a simulated signal VH(t) to the empirical values
extracted from data using the wavelet leaders approach described in section 1.3. There are approaches to
fitting multifractal properties that focus on matching the log-cumulants of the scaling function. In complex
cases, the curve fitting approaches for τ(q) and D(h) tend to fail more frequently. Algorithms for these
sorts of approaches have been explored by other researchers and are beyond the scope of the current work
(Wendt, Abry, and Jaffard 2007).

2.3.1 Fitting the Scaling Function τ(q)

The scaling function τ(q) is often easier to fit because it can have long sections that are close to linear.
Additionally, τ(q) has a closed-form solution for VH(t), which simplifies the fitting procedure and makes
it accurate and efficient. For this procedure, we utilize the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
Hessian Update Strategy. We start by defining the objective function in terms of the closed-form solution
for τ(q):

Zτ =
1
nq

qn

∑
q=q1

wq (τ(q)− τ̂(q))2 (12)
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(a) The logarithmically spaced q-values (b) The Hölder exponents h created from the log-spaced q-values

Figure 3: Moment orders q in the wavelet leaders algorithm.

where τ(q) is Equation (7), τ̂(q) is the estimated scaling function of the data, {q1, . . . ,qn} are the
log-spaced moment orders used to calculate τ̂(q), wq is the weight for the qth moment order, and nq is the
total number of moment order values. We include wq for more fine tuning in the fitting procedure. We
begin with wq = 1 for all q, which weights all points equally. If a portion of the fit deviates substantially
from the empirical estimate τ̂(q), we weight that section of the curve higher to increase the corresponding
portion of Equation (12). The ultimate impact is to emphasize deviations in that section of the curve.
This objective function is then minimized using BFGS to find the optimal parameters µ∗, σ∗2, H∗, η∗

which define the optimal fitted process V ∗H(t). BFGS allows for bounded optimization which is necessary
to ensure the following conditions:

σ
2 > 0 (13)

0 < H < 1 (14)

µ +σ
2 < log

√
2 (15)

Note we incorporate the condition in Equation (15) because CPCs have a level of degeneracy for certain
choices of µ and σ2. Equation (15) ensures a stable process and effective simulation.

2.3.2 Fitting the Multifractal Spectrum D(h)

Unlike the scaling function, the multifractal spectrum D(h) has no closed-form for the model CPC process
VH(t). As a result, fitting D(h) from Equation (9) requires a more complex procedure than fitting τ(q).
To use BFGS to optimally fit D(h) to the spectrum of the data D̂(h) we must now define the objective
function in terms of the numerical approximation of the Legendre transform:

ZD =
1
nh

hn

∑
h=h1

wh
(
D̃(h)− D̂(h)

)2 (16)

where D̃(h) is the numerical approximation of D(h), D̂(h) is the estimate of the empirical multifractal
spectrum, {h1, . . . ,hn} are the Hölder exponents used to calculate D̂(h), wh is the weight for the given
Hölder exponent h, and nh is the total number of Hölder exponents.

To numerically approximate D(h) we must first find the q-value that minimizes Λ(h,q) as defined
in Equation (9). Recall that the q-values are predetermined as input parameters to the wavelet leaders
algorithm (see Figure 3a). However, better fits can be achieved if the minimum q-values are extracted
from the resulting multifractal spectrum D̂(h). This amounts to solving for q-values that fall along the
extrapolated curve shown in Figure 3b. We thus set ∂Λ(h,q)

∂q = 0 and solve for q as shown in Equation
(10). We use the Brent root-finding algorithm to find the minimizing q∗ for each h (Brent 1971). Because
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Λ(h,q) depends on the decision parameters µ , σ2, H, η , we must re-solve for the q∗ values during each
evaluation of the BFGS algorithm as detailed in Algorithm 3. As with fitting τ(q), the bounds in (13) -
(15) are enforced to ensure valid solutions.

Algorithm 3: Fitting VH(t) to empirical
data using D(h).

Input:
~h = the vector of Hölder exponents associated
with the D̂(h) estimates from the empirical data.
D̂(h) = the multifractal spectrum estimates for
each h ∈~h.
Output:
Θ∗ = the optimal parameters

(
µ∗, σ∗2, H∗, η∗

)
of the best fit V ∗H(t) process.

1 Define: Θ←
(
µ, σ2, H, η

)
2 Define: Λh←

∂Λ(h,q)
∂q for a given h

3 Initialize Θ, ZD
4 while BFGS suboptimal do
5 Θ← BFGS Parameter Update(ZD, Θ)
6 D̃(h)←{}
7 foreach h ∈~h do
8 q∗h← Brent Root(Λh,Θ)
9 D̃(h)←{D̃(h),Λ(h,q∗h)}

10 ZD← 1
nh

∑wh
(
D̃(h)− D̂(h)

)2

11 return Θ∗

Algorithm 4: Scaling v(t), the simu-
lated increments of the VH(t) process.

Input:
X(t) = the empirical data.
v(t) = the signals simulated from the VH(t)
process where vi(t) is the ith replication.
Output:
ṽ(t) = the scaled simulated signals.

1 X ′(t)← X(~t)−X(~t−~1) # first difference of X(t)
2 Sv←{}
3 foreach i = 1 : nc do
4 v′i(t)← vi(~t)− vi(~t−~1) # first difference of

vi(t)
5 Sv←{Sv,v′i(t)}
6 foreach i = 1 : nc do
7 ṽi(t)←CumSum

(
v′i(t)
〈|Sv|〉 〈|X

′(t)|〉
)

8 return ṽ(t)

2.3.3 Deciding between Methods

The decision between the two methods depends on the intended application of the results. Figure 4 shows
the multifractal spectra resulting from fitting D(h) (top left) and fitting τ(q) (bottom left). Note that most
of the deviation in the D(h) fit occurs towards the center of the spectrum while most of the deviation
from the τ(q) fit is in the tails of the spectrum. The peak and center of the spectrum are representative
of the average behavior of the underlying process. The deviations in the tails of spectrum are the result
of rare events. The careful practitioner should weigh these characteristics when deciding between the two
methods. If average behavior is more important to their current analysis, fitting τ(q) is the more prudent
method. If, on the other hand, extreme events are the greater concern, fitting D(h) is advisable.

2.4 Scaling Simulated Increments

The multifractal spectrum of a signal is independent of the magnitude of its increments such that X(t)
and cX(t) have the same multifractal spectrum if X(t) is a multifractal and c is a scalar. As a result,
another aspect of fitting a cascade to data is the appropriate scaling of increments. After finding the optimal
parameters that define the best fit V ∗H(t) process, we simulate nc cascades. The increments of these cascades
are all on the same scale as one another but not the same scale as the increments of the data. The goal
of the simulation of these cascades is improving risk management and the model’s ability to encapsulate
rare events. Therefore, to preserve the rare events and simultaneously scale the increment magnitudes to
an appropriate level, we scale by the average magnitude of all of the cascade increments simulated and
the average magnitude of the increments of the empirical data as shown in Algorithm 4.
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Figure 4: The multifractal spectrum (left) and scaling function (right) from an empirical data set (blue)
and a simulated optimal fit V ∗H(t) (orange) obtained by fitting D̂(h) (top) or τ̂(q) (bottom).

3 EXPERIMENTS

3.1 Data

In this section we analyze a high-frequency data set from the New York Stock Exchange taken from the
Wharton Research Data Services (WRDS) data (Wharton 2013). WRDS has compiled trade and quote
(TAQ) data from various exchanges into a database to facilitate fine-scale analysis. We arbitrarily selected
IBM for the time frame covered by our limited data set; January 2, 1998 to December 31, 2003. The TAQ
data records every trade and quote submitted to the exchange for a given asset. The trades constitute a
change in price and when concatenated together represent a higher frequency price time series than just
the daily closing prices. During the time frame covered by our data, online trading was just getting started
so the average daily trades steadily increased from 1,310 trades per day in 1998 to over 4,445 trades per
day by the end of 2003. Our data set consists of 4,393,502 timestamped trades.

3.2 Fitting and Simulating

The objective of our experiment was to define a process V ∗H(t) with multifractal properties that most closely
matched the empirical scaling function τ̂(q) extracted from the IBM log price using the wavelet leaders
algorithm. The experiment employed the procedure described in section 2.3 to find the optimal parameters
µ∗, σ∗2, H∗, and η∗. The resulting fit is shown across the bottom of Figure 4 and has optimal parameters
µ∗ = 0.296, σ∗2 = 0.05, H∗ = 0.654, and η∗ =−0.158.

The scaling function τ̂(q) (and by extension the multifractal spectrum D̂(h)) completely describes how
the moments of the stochastic price process change across scales. In order to put the optimal fit to practical
use it is convenient to simulate many instantiations of the optimal process V ∗H(t). Using the algorithms
from section 2 and the optimal parameters for V ∗H(t), we generated 30 independent CPCs and combined
them with five fBm signals for a total of 150 replications of V ∗H(t). Matching the multifractal spectrum
ensures that the relative increments of the simulated signals match the original multifractal properties of the
empirical data. However, it does not ensure that the magnitude of the simulated increments is representative
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of the empirical signal. We therefore scaled each simulated V ∗H(t) according to the procedure outlined in
section 2.4 such that the average increment magnitude of all 150 signals was equal to the average increment
magnitude of the IBM signal as described. Figure 5 shows the data increments (left) and the corresponding
scaled cascade increments (right).

Figure 5: Left: the increments of the log price of IBM. Right: the scaled increments of the 150 simulated
signals VH(t).

For illustrative purposes we use the simulated signals to create a projection cloud and a 95% prediction
interval to forecast the future log price of IBM as shown in Figure 6. An important feature of this prediction
interval is the exponential expansion of the bounds. Traditional statistical models often do not account for
long range rare events that can occur more frequently when the moments exhibit power-law relationships
with scale. The right-hand side of Figure 6 shows an overlay of the actual daily closing price of IBM (black)
during the two months that follow the last trade in our data set. It is clear that the 95% prediction interval
encapsulates the movements in the closing price over the period considered and captures the increasing
risk of larger changes in price over longer forecasts.

Figure 6: IBM log price with: (Top left) simulated VH(t) and (Bottom left and right) the 95% confidence
interval (cyan) and 95% prediction interval (magenta).

3.3 Simulation Burn-in and Fractional Integration

As with most limit processes, fractional integration requires a sufficient number of data points to compute
the integrated values around a given support point. It follows that executing a simulation procedure that
requires fractional integration will require some degree of burn-in before the accuracy of the results become
reliable. We therefore incorporate a burn-in period for each simulation to allow the signal to converge.
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Figure 7 shows how the initial values are unusable and gives an indication of what value of burn-in might
be prudent. To further investigate the amount of burn-in required, we examine the box plots in Figure 8 that
compare the estimated log-cumulants across different burn-in periods. Comparison with the “no burn-in”
case illustrates the bias inherent in estimates that do not employ a burn-in period.
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Figure 7: A single simulation of V ∗H(t) illustrating the necessity of a burn-in period.

Figure 8 also shows the accuracy of the V ∗H(t) simulation compared with the empirically extracted
log-cumulants. For a 50,000 point burn-in, the distribution of c1 is centered on the empirically estimated
value. The distribution for c2 is negatively biased from the target value indicating that we should expect
the simulated signals to have slightly wider multifractal spectra than that of the data. Wider spectra exhibit
more power-laws and thus constitute a more conservative estimate in terms of forecasting.
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Figure 8: The log-cumulants of the IBM log price data (black) compared with V ∗H(t) at different values of
burn-in.

4 CONCLUSION

Advances in computational science have led to an explosion in the collection, archiving, and analysis
of data. Many of these data sets exhibit heavy-tails in the distribution of increments, auto-correlation
functions with seemingly infinite lag order, and bursts of volatility that belie the assumptions of stationarity.
These data sets are dominated by power-laws and self-similarity that are best analyzed through the lens
of multifractals. We now have efficient and accurate algorithms for extracting the multifractal properties
from data, but in order for that information to be of practical use we need to be employ those properties
in risk management tools such as forecasting and threshold modeling.

In this work we introduced a procedure for statistically matching the multifractal properties of an
empirical data set with a robust model for simulating multifractals. We illustrated the utility of the
procedure by fitting the parameters of IBM’s trade and quote time series from 1998 to 2001 and using the
simulations resulting from the procedure to forecast the future price path of the asset. This demonstrated
how this technique can be used to create prediction intervals around notoriously non-stationary time series
and thus benefit risk managers.
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