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ABSTRACT

We consider using simulation to estimate the mean hitting time to a set of states in a regenerative process.
A classical simulation estimator is based on a ratio representation of the mean hitting time, using crude
simulation to estimate the numerator and importance sampling to handle the denominator, which corresponds
to a rare event. But the estimator of the numerator can be inefficient when paths to the set are very long.
We thus introduce a new estimator that expresses the numerator as a sum of two terms to be estimated
separately. We provide theoretical analysis of a simple example showing that the new estimator can have
much better behavior than the classical estimator. Numerical results further illustrate this.

1 INTRODUCTION

Consider a (nondelayed) regenerative process living on a state space S , and let A be some subset of
states. We are interested in estimating the mean µ of the hitting time to A . In many practical settings, the
mean hitting time is large, making crude simulation inefficient. For example, this is the case for the mean
time to failure (MTTF) in a reliability context (e.g., see Goyal et al. 1992), or when examining excessive
backlogs in queuing systems (e.g., see Parekh and Walrand 1989, among others). Goyal et al. (1992) and
Glynn et al. (2017) consider a classical estimator of µ based on a ratio representation of µ , where the
numerator in the ratio is estimated using crude simulation, and the denominator is independently handled
via importance sampling (IS), which is a variance-reduction technique (VRT) that is well-suited to analyze
rare events; see Glynn and Iglehart (1989) and Rubino and Tuffin (2009). Shahabuddin et al. (1988) call
this approach measure-specific importance sampling (MSIS).

While the classical MSIS estimator can perform well on many models, it can do poorly in some
contexts. This can occur when paths in which the set A is hit before a regeneration are very long (and of
not-too-small probability) compared to cycles in which A is not hit. We thus introduce a new estimator of
the mean hitting time that expresses the numerator of µ as a sum of two terms estimated separately using
MSIS. Theoretical analysis on a simple model demonstrates that the new estimator can have strictly better
performance than the classical estimator. Numerical results further illustrate this.

The rest of the paper proceeds as follows. Section 2 defines the problem. We review the classical
estimator of the mean hitting time in Section 3, and Section 4 introduces the new estimator. We provide
a theoretical analysis of a simple model in Section 5 to show that the new estimator can have strictly
better performance than the classical estimator. Section 6 provides numerical results illustrating the better
performance of the new estimator but also that it can be as efficient as the classical one for important
classes of models. Some concluding remarks appear in Section 7.
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2 PROBLEM DESCRIPTION AND NOTATION

Consider a continuous-time stochastic process X = [X(t) : t ≥ 0] evolving on a state space S . We can
also handle a discrete-time process [Xm : m = 0,1,2, . . .] by letting X(t) = Xbtc for each t ≥ 0, where
b·c denotes the floor function. We assume that X is (classically) regenerative, with regeneration times
0 = Γ0 < Γ1 < Γ2 < · · · , so the process “probabilistically restarts” at each Γi (p. 19 of Kalashnikov 1994).
For example, an irreducible discrete-time or continuous-time Markov chain (DTMC or CTMC) on a finite
state space is regenerative, with successive hits to a fixed state forming a sequence of regeneration times.

Let A ⊂S be a subset of states (e.g., “failed states” of a reliability system), and define T = inf{t ≥
0 : X(t) ∈A } as the hitting time (or first passage time) to A . Our goal is to estimate

µ = E[T ], (1)

which is the expected hitting time to A and is often called the MTTF in reliability settings.
For i≥ 1, let τi = Γi−Γi−1, and we call the path segment [X(Γi−1+s) : 0≤ s < τi] the ith (regenerative)

cycle of X , which has length τi. The regenerative property ensures that (τi, [X(Γi−1 + s) : 0 ≤ s < τi]),
i ≥ 1, is a sequence of independent and identically distributed (i.i.d.) pairs of cycle lengths and cycles.
Let τ be a generic copy of τi. For i≥ 1, let Ti = inf{t ≥ 0 : X(Γi−1 + t) ∈A } be the time elapsing after
Γi−1 until the next hit to A . For x,y ∈ℜ, let x∧ y = min(x,y), and define I (·) as the indicator function,
which equals 1 (resp., 0) when its argument is true (resp., false). Because X is regenerative, we have that
(Ti∧ τi,I (Ti < τi)), i≥ 1, form an i.i.d. sequence of pairs.

3 CLASSICAL ESTIMATOR OF THE MEAN HITTING TIME

We now review a classical simulation estimator of µ , which has been previously studied in Goyal et al.
(1992) and Glynn et al. (2017). Define

p = P(T < τ), (2)

and for a random variable Y and event B, let E[Y ;B] = E[Y I (B)]. Then µ in (1) satisfies

µ = E[T ;T < τ]+E[τ +T − τ;T > τ] = E[T ;T < τ]+E[τ;T > τ]+E[T − τ;T > τ]

= E[T ∧ τ;T < τ]+E[T ∧ τ;T > τ]+E[T − τ | T > τ]P(T > τ) = E[T ∧ τ]+µ(1− p), (3)

where E[T − τ | T > τ] = µ by the regenerative property. Rearranging leads to representing µ as a ratio

µ =
E[T ∧ τ]

p
≡ ζ

p
(4)

where, because p=E[I (T < τ)], both the numerator and denominator in (4) are expectations of cycle-based
quantities, i.e., expectations of quantities that are measurable with respect to a single cycle.

In practice, it is often the case that hitting A rarely occurs before τ . Then the denominator p in (4)
is a small probability, and estimating at least this quantity requires applying a VRT if we want to get an
accurate answer in reasonable computational time. This fact motivated Shahabuddin et al. (1988) to exploit
(4) to estimate µ via MSIS. The key idea of MSIS is to use crude simulation to estimate expectations that
are easy to estimate, and independently apply IS to estimate expectations based on rare events, which make
them difficult to estimate with crude simulation. MSIS then allocates a fraction 0 < β < 1 (resp., 1−β )
of the simulation budget to estimate expectations based on non-rare (resp., rare) events. If the budget is
the total number n of observations of (T ∧ τ,I (T < τ)) to simulate, then we use βn (resp., (1−β )n)
observations to estimate expectations not based on (resp., based on) rare events. We assume that βn is an
integer; otherwise, we simulate bβnc (resp., b(1−β )nc) observations with crude simulation (resp., IS).

In many (but not all) situations, the numerator ζ = E[T ∧ τ] in (4) is easy to estimate using crude
simulation. To do this, we generate (Ti∧τi,I (Ti < τi)), i= 1,2, . . . ,βn, as βn i.i.d. copies of (T ∧τ,I (T <
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τ)) sampled using crude simulation. We then estimate ζ by

ζ̂n,β =
1

βn

βn

∑
i=1

Ti∧ τi. (5)

When the denominator p = P(T < τ) = E[I (T < τ)] of (4) is a rare-event probability, it can be
difficult to estimate via crude simulation. To see why, let us examine what happens as p→ 0. Define the
relative error (RE) of an estimator to be its standard deviation divided by the quantity being estimated.
The crude estimator I (T < τ) of p has variance p(1− p), so the RE of I (T < τ) is RE[I (T < τ)] =√

p(1− p)/p =
√
(1− p)/p→ ∞ as p→ 0. Thus, it becomes more difficult to estimate p as p→ 0.

This motivates applying IS to estimate p. To do this, let P denote the probability measure under the
original system dynamics, and let P′ be another probability measure such that P is absolutely continuous
(e.g., p. 422 of Billingsley 1995) with respect to P′. We call P′ the IS measure, and let E ′ denote its
corresponding expectation operator. Then applying a change of measure leads to

p = E[I (T < τ)] =
∫

I (T < τ)dP =
∫

I (T < τ)
dP
dP′

dP′ = E ′[I (T < τ)L], (6)

where L = dP/dP′ is called the likelihood ratio. This representation suggests estimating p as follows. Let
(T ′i ∧τ ′i ,I (T ′i < τ ′i ),L

′
i), i = 1,2, . . . ,(1−β )n, be i.i.d. copies of (T ∧τ,I (T < τ),L) generated using IS,

which are independent of the crude sample (Ti∧ τi,I (Ti < τi)), i = 1,2, . . . ,βn. We then estimate p by

p̂n,β =
1

(1−β )n

(1−β )n

∑
i=1

I (T ′i < τ
′
i )L
′
i. (7)

Taking the ratio of the estimators in (5) and (7) yields a classical MSIS estimator of µ as

µ̂n,β =
ζ̂n,β

p̂n,β
(8)

if p̂n,β > 0, and µ̂n,β = 0 if p̂n,β = 0. As seen in Goyal et al. (1992), the estimator µ̂n,β satisfies a central
limit theorem (CLT). Specifically, assume that Var[T ∧τ]< ∞ and Var′[I (T < τ)L]< ∞, where Var (resp.,
Var′) denotes the variance operator under the original (resp., IS) measure. Then the delta method (e.g.,
Section 3.3 of Serfling 1980) implies that

√
n[µ̂n,β −µ]⇒ N(0,σ2

C,β ) as n→ ∞

for any fixed 0 < β < 1, where ⇒ denotes convergence in distribution (e.g., Section 25 of Billingsley
1995), N(a,s2) is a normal random variable with mean a and variance s2, and

σ
2
C,β =

1
p2

(
1
β
Var[T ∧ τ]+

µ2

(1−β )
Var′[I (T < τ)L]

)
. (9)

Here the subscript C in σ2
C,β denotes that this is the asymptotic variance of the classical estimator µ̂n,β .

3.1 Estimators Based on a CPU Budget

Rather than defining the computation budget in terms of the number n of observations of (T ∧τ,I (T < τ))
to simulate, we can instead specify the budget as the total amount b of CPU time available for simulating.
For MSIS, fix a constant 0 < γ < 1, and let γb (resp., (1− γ)b) be the amount of the total CPU budget b
allocated to simulating with crude simulation (resp., IS). For each i = 1,2, . . . , let Wi be the (random) amount
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of CPU time to generate (Ti∧ τi,I (Ti < τi)) using crude simulation. We assume that Wi, i = 1,2, . . ., are
i.i.d., which is reasonable because X is regenerative, and assume that 0 < ν ≡ E[Wi]< ∞. Let

Mγ(b) = sup

{
k ≥ 0 :

k

∑
i=1

Wi ≤ γb

}
, (10)

which is the number of crude observations obtained in γb units of CPU time. Then define the crude
estimator of the numerator ζ in (4) based on overall CPU budget b and MSIS allocation parameter γ as

ζ̂γ(b) =
1

Mγ(b)

Mγ (b)

∑
i=1

Ti∧ τi (11)

if Mγ(b)≥ 1, and let ζ̂γ(b) = 0 if Mγ(b) = 0.
Similarly, for each i = 1,2, . . . , let W ′i be the (random) amount of CPU time to generate (T ′i ∧τ ′i ,I (T ′i <

τ ′i ),L
′
i) using IS. We assume that W ′i , i = 1,2, . . ., are i.i.d., and assume that 0 < ν ′ ≡ E[W ′i ]< ∞. Let

M′γ(b) = sup

{
k ≥ 0 :

k

∑
i=1

Wi ≤ (1− γ)b

}
, (12)

which is the number of IS observations obtained in (1− γ)b units of CPU time. Then we define the IS
estimator of the denominator p in (4) based on overall CPU budget b and allocation parameter γ as

p̂γ(b) =
1

M′γ(b)

M′γ (b)

∑
i=1

I (T ′i < τ
′
i ) (13)

if M′γ(b)≥ 1, and let p̂γ(b) = 0 if M′γ(b) = 0. Taking the ratio of (11) and (13) leads to the estimator

µ̂γ(b) =
ζ̂γ(b)
p̂γ(b)

(14)

if p̂γ(b) > 0, and µ̂γ(b) = 0 if p̂γ(b) = 0. Applying a random-time-change argument (Theorem 14.4 of
Billingsley 1999) and the delta method, we can then show that

√
b[µ̂γ(b)−µ]⇒ N(0, σ̄2

C,γ) as b→ ∞ for
any fixed 0 < γ < 1, where

σ̄
2
C,γ =

1
p2

(
ν

γ
Var[T ∧ τ]+

ν ′µ2

(1− γ)
Var′[I (T < τ)L]

)
. (15)

Section III.D of Goyal et al. (1992) derives the optimal value of γ to minimize σ̄2
C,γ as γ∗ = θ/(1+θ)

with θ =
√
(νVar[T ∧ τ])/(µ2ν ′Var′[I (T < τ)L]).

4 A NEW ESTIMATOR FOR THE MEAN HITTING TIME

In certain situations, estimating the numerator ζ = E[T ∧τ] in (4) using crude simulation may be inefficient.
For example, this can occur when E[T ∧τ;T < τ] is not insignificant compared to E[T ∧τ], which Section 5
will demonstrate through a simple example. In this case, we can obtain another representation for µ by
replacing E[T ∧ τ] in (4) with E[T ∧ τ;T > τ]+E[T ∧ τ;T < τ], as in (3), which leads to

µ =
E[(T ∧ τ)I (T > τ)]+E[(T ∧ τ)I (T < τ)]

p
≡ φ +κ

p
, (16)
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where we note that φ , κ , and p are all cycle-based expectations.
Now we apply MSIS, with crude simulation (resp., IS) to estimate φ (resp., κ and p). Thus,

φ̂n,β =
1

βn

βn

∑
i=1

(Ti∧ τi)I (τi < Ti) (17)

is a crude estimator of φ , where (Ti∧ τi,I (Ti < τi)), i = 1,2, . . . ,βn, is the same crude sample used to
construct ζ̂n,β in (5). (We could choose 0 < β < 1 here to be different than what was used in Section 3.)
We estimate p using p̂n,β from (7). Finally, for κ in (16), we apply a change of measure, as was done in
(6), to express κ = E[(T ∧ τ)I (T < τ)] = E ′[(T ∧ τ)I (T < τ)L]. This leads to an IS estimator of κ as

κ̂n,β =
1

(1−β )n

(1−β )n

∑
i=1

(T ′i ∧ τ
′
i )I (T ′i < τ

′
i )L
′
i (18)

where (T ′i ∧τ ′i ,I (T ′i < τ ′i ),L
′
i), i= 1,2, . . . ,(1−β )n, is the same IS sample used in computing (7). Replacing

φ , κ , and p in (16) with their respective estimators in (17), (18), and (7) results in a new estimator of µ as

µ̃n,β =
φ̂n,β + κ̂n,β

p̂n,β
(19)

if p̂n,β 6= 0, and µ̃n,β = 0 otherwise.
Moreover, as in Section 3.1, we can also define another new estimator of µ analogous to that in (19)

but instead based on a fixed amount b of CPU time. To do this, define a crude estimator of φ as

φ̂γ(b) =
1

Mγ(b)

Mγ (b)

∑
i=1

(Ti∧ τi)I (τi < Ti)

if Mγ(b) ≥ 1, and let φ̂γ(b) = 0 if Mγ(b) = 0, where Mγ(b) is defined in (10) and γ is the MSIS CPU
allocation parameter. Also, for IS estimators of p and κ , we use p̂γ(b) as in (13), and we estimate κ by

κ̂γ(b) =
1

M′γ(b)

M′γ (b)

∑
i=1

(T ′i ∧ τ
′
i )I (Ti < τi)L′i

if M′γ(b)≥ 1, and let κ̂γ(b) = 0 if M′γ(b) = 0, where M′γ(b) is defined in (12). Then we define

µ̃γ(b) =
φ̂γ(b)+ κ̂γ(b)

p̂γ(b)
(20)

as another new estimator of µ if p̂γ(b) 6= 0, and let µ̃γ(b) = 0 if p̂γ(b) = 0.
We can apply the delta method and a random-time-change argument to establish the following CLT,

where the subscript N in σ2
N,β and σ̄2

N,γ below denotes that these are the asymptotic variances for the new
estimators µ̃n,β and µ̃γ(b), respectively.

Proposition 1 If η2 ≡ Var[(T ∧ τ)I (τ < T )]< ∞ and ψ2 ≡ Var′[((T ∧ τ)−µ)I (T < τ)L]< ∞, then
√

n[µ̃n,β −µ]⇒ N(0,σ2
N,β ) as n→ ∞

for any fixed 0 < β < 1, where

σ
2
N,β =

1
p2

(
η2

β
+

ψ2

1−β

)
. (21)
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If in addition 0 < ν < ∞ and 0 < ν ′ < ∞, then
√

b[µ̃γ(b)−µ]⇒ N(0, σ̄2
N,γ) as b→ ∞

for any fixed 0 < γ < 1, where

σ̄
2
N,γ =

1
p2

(
νη2

γ
+

ν ′ψ2

1− γ

)
. (22)

Note that ψ2 = Var′[(T ∧ τ)I (T < τ)L]+µ2Var′[I (T < τ)L]−2µCov′[(T ∧ τ)I (T < τ)L,I (T <
τ)L], where Cov′ denotes covariance under IS, so (21) and (22) capture the dependence between the IS
estimators of κ and p. Also, the value of σ̄2

N,γ in (22) depends on γ , and we can minimize σ̄2
N,γ using

γ
∗ =

δ

1+δ
, with δ =

(
νVar[(T ∧ τ)I (τ < T )]

ν ′Var′[(T ∧ τ)I (T < τ)L−µI (T < τ)L]

)1/2

. (23)

5 THEORETICAL ANALYSIS OF A SIMPLE MODEL

Through a theoretical analysis of a simple example, we next show that the new estimator µ̃n,β (resp., µ̃γ(b))
can strictly outperform its classical counterpart µ̂n,β (resp., µ̂γ(b)). We will consider a sequence of models
indexed by a rarity parameter ε , and letting ε → 0 will lead to p ≡ pε from (2) satisfying pε → 0. We
should index all variables by a subscript ε , but we leave out the subscript ε to simplify the notation.

Consider a reliability system with Q+ 1 identical components in total. The system starts with all
components operational. After a first component fails, it can be repaired, which occurs with probability
1− ε . But if a second component fails before the first is repaired, which occurs with probability ε , then
the rest of the components deterministically fail one by one until all are failed, bringing the entire system
down. Once the system is down, the system resets with all components again operational.

We can model the evolution of the system as a DTMC X = [Xm : m = 0,1,2, . . .] on state space
S = {0,1,2, . . . ,Q+1}, with A = {Q+1}, where in state s ≥ 0, exactly s components are failed. The
transition probability matrix P= [P(s;s′) : s,s′ ∈S ] has P(0;1)= 1, P(1;2)= 1−P(1;0)= ε , P(s;s+1)= 1
for 2≤ s≤ Q, and P(Q+1;0) = 1; all other P(s;s′) = 0. Let regenerations be returns to state 0.

We let Q = 1/εr for some constant r ≥ 0, and will examine the behavior of our estimators of µ for
different r. Setting r = 0 leads to a 3-state model, but r > 0 results in a large state space when ε is small.

Figure 1 gives the transition diagram of the model, which has only two possibilities for paths of T ∧τ:

• 0→ 1→ 0, which occurs with probability 1− ε; and
• 0→ 1→ 2→ ·· · → Q+1, which occurs with probability ε .

For IS, we replace ε in the transition probabilities with a parameter α , which may depend on ε , where
we assume that α ≡ αε → a ∈ (0,1) as ε → 0. Specifically, IS uses a transition probability matrix
P′= [P′(s;s′) : s,s′ ∈S ], where P′(1;2) =α , P′(1;0) = 1−α , and P′(s;s′) =P(s;s′) for all other transitions.
Thus, for a path up to T ∧τ in which T < τ , the likelihood ratio is L = ∏

Q
s=0 P(s;s+1)/P′(s;s+1) = ε/α .

We will examine the RE of our estimators µ̂n,β from (8) and µ̃n,β from (19), where the RE here uses the
square root of the asymptotic variance from its CLT. Thus, the relative error of µ̂n,β is RE[µ̂n,β ] = σC,β/µ

for σ2
C,β from (9), and RE[µ̃n,β ] = σN,β/µ for σ2

N,β from (21). We say that an estimator has bounded (resp.,
vanishing) RE (BRE, resp., VRE) if the RE remains bounded (resp., vanishes) as ε → 0.

The numerator of µ in (4) satisfies

ζ = E[T ∧ τ] = 2(1− ε)+(Q+1)ε = 2+(Q−1)ε = Θ(εmin(0,1−r)) (24)

as ε → 0 because Q = ε−r, where for functions f (ε) and g(ε), the notation f (ε) = Θ(g(ε)) denotes that
f (ε)/g(ε)→ c as ε→ 0 for some constant c 6= 0. Note that for r > 1, we have that ζ → ∞ as ε→ 0. The
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0 1 2 · · · Q+1

1 ε

1− ε

1 1

1

Figure 1: A simple example with Q+2 states and only two possibilities for paths of T ∧ τ .

denominator of (4) is p = ε , so

µ =
2+(Q−1)ε

ε
= Θ(ε−max(1,r)). (25)

5.1 Asymptotic Behavior of the Classical Estimators µ̂n,β and µ̂γ(b)

We first analyze the behavior of the classical estimator µ̂n,β from (8). For the crude estimator in (5) of the
numerator ζ , simple calculations yield Var[T ∧τ] = ε−ε2−2Qε +Q2ε +2Qε2−Q2ε2. As a consequence,

Var[T ∧ τ] = 0 when r = 0 (26)

because then T ∧ τ is always 2, so the crude estimator of ζ has zero relative error when r = 0. But

Var[T ∧ τ] = ε− ε
2−2ε

1−r + ε
1−2r +2ε

2−r− ε
2−2r = Θ(ε1−2r) when r > 0 (27)

as ε → 0. Hence, (24) implies that the relative error of the crude estimator of ζ when r > 0 is

RE[T ∧ τ] =

√
Var[T ∧ τ]

ζ
=

Θ(ε(1−2r)/2)

Θ(εmin(0,1−r))
= Θ(εmax(1/2−r,−1/2)),

so as ε→ 0, the RE vanishes for 0 < r < 1/2, remains bounded for r = 1/2, and is unbounded for r > 1/2.
The denominator of (4) is p = ε = E[I (T < τ)] = E ′[I (T < τ)L]. For its IS estimator p̂n,β , we have

Var′[I (T < τ)L] = E ′[(I (T < τ)L)2]− p2 =
ε2

α
− ε

2 = ε
2
(

1
α
−1
)
, (28)

so the RE of the IS estimator p̂n,β is Θ(1) as ε → 0; i.e., the estimator p̂n,β has BRE as ε → 0.
We now analyze the asymptotic variance σ2

C,β in (9) of µ̂n,β . When r = 0, we see that

σ
2
C,β =

1
ε2

[
1
β

0+Θ(ε−2max(1,r))
ε2

1−β

(
1
α
−1
)]

= Θ(ε−2)

by (26) and (28); i.e., σC,β = Θ(ε−1). Hence, (25) implies that

RE[µ̂n,β ] = Θ(1) when r = 0 (29)

as ε → 0, so µ̂n,β has BRE when r = 0.
But when r > 0, the RE of µ̂n,β may not be bounded. Putting (27) and (28) into (9) for r > 0 yields

σ
2
C,β =

1
ε2

[
1
β

Θ(ε1−2r)+Θ(ε−2max(1,r))
ε2

1−β

(
1
α
−1
)]

= Θ(εmin[−1−2r,−2max(1,r)]),

422



Nakayama and Tuffin

as ε → 0, so σC,β = Θ(εmin[−1−2r,−2max(1,r)]/2). Hence, (25) implies that

RE[µ̂n,β ] = Θ(εmin[−1−2r,−2max(1,r)]/2+max(1,r)) = Θ(εmin[max(1/2−r,−1/2),0]) when r > 0 (30)

as ε → 0. By (29), we conclude that µ̂n,β has BRE when 0≤ r ≤ 1/2, but its RE→ ∞ when r > 1/2.
We can also examine the relative error of the estimator µ̂γ(b) in (14) based on a CPU time b as the

computing budget; i.e., define REb[µ̂γ(b)] = σ̄C,γ/µ , where σ̄C,γ is as in (15). In this case, we assume that
the mean CPU time ν (resp., ν ′) to generate an observation with crude simulation (resp., IS) is

ν = E[T ∧ τ] = 2(1− ε)+(Q+1)ε = 2− ε + ε
1−r = Θ(εmin(0,1−r)), (31)

ν
′ = E ′[T ∧ τ] = 2(1−α)+(Q+1)α = 2−α +αε

−r = Θ(ε−r). (32)

For r = 0, putting (25), (26), (28), (31), and (32) into (15) and ignoring the Θ(1) terms yield

σ̄
2
C,γ =

1
ε2

[
Θ(εmin(0,1−r))

γ
·0+Θ(ε−r)Θ(ε−2max(1,r))

ε2

1− γ

]
= Θ(ε−2),

so REb[µ̂γ(b)] = Θ(1) as ε → 0 when r = 0. If instead r > 0, then using (27) rather than (26) leads to

σ̄
2
C,γ =

1
ε2

[
Θ(εmin(0,1−r))

γ
Θ(ε1−2r)+Θ(ε−r)Θ(ε−2max(1,r))

ε2

1− γ

]
= Θ(ε−max(1+2r,3r))+Θ(ε−max(2+r,3r)) = Θ(ε−max(2+r,3r))

because in the penultimate step, the first option in each max is larger if and only if r < 1, in which case
1+2r < 2+ r. Hence, we see that σ̄C,γ = Θ(ε−max(2+r,3r)/2). Recall that µ = Θ(ε−max(1,r)) by (25), and
note that max(1,r) = r if and only if max(2+ r,3r) = 3r. Thus, for all r > 0, we get

REb[µ̂γ(b)] = Θ(ε−r/2), (33)

which is unbounded as ε → 0.

5.2 Asymptotic Behavior of the New Estimators µ̃n,β and µ̃γ(b)

We next derive the RE of the new estimator µ̃n,β in (19) for each r≥ 0. To calculate the asymptotic variance
σ2

N,β in (21), note that η2 = Var[(T ∧τ)I (τ < T )] = 4(1−ε)− [2(1−ε)]2 = 4ε(1−ε) = Θ(ε). Also, by
(25), the variance ψ2 in the second term of (21) satisfies

ψ
2 = E ′[((T ∧ τ)−µ)2 I (T < τ)L2]− (E[((T ∧ τ)−µ)I (T < τ)])2

=
(
Q+1−2ε

−1− (Q−1)
)2

ε
2/α−

(
[Q+1−2ε

−1− (Q−1)]ε
)2

= 4(α−1−1)(1− ε)2.

As a consequence, (21) becomes

σ
2
N,β =

1
ε2

(
1
β
[4ε(1− ε)]+4

α−1−1
1−β

(1− ε)2
)
= Θ(ε−2) (34)

as ε → 0, giving σN,β = Θ(ε−1). Thus, (25) implies that

RE(µ̃n,β ) = Θ(εmax(0,r−1)), (35)
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so as ε→ 0, the new estimator µ̃n,β has BRE for 0≤ r ≤ 1, and VRE for r > 1. In contrast, (29) and (30)
show that the RE of the classical estimator µ̂n,β is bounded for 0≤ r ≤ 1/2 and unbounded for r > 1/2.

Now consider the relative error of the new estimator µ̃γ(b) in (20) having CPU time b as the computing
budget; i.e., REb[µ̃γ(b)] = σ̄N,γ/µ with σ̄N,γ as in (22). Modifying (34) to incorporate ν and ν ′ yields

σ̄
2
N,γ =

1
ε2

(
ν

γ
[4ε(1− ε)]+4ν

′α
−1−1
1− γ

(1− ε)2
)
= Θ(εmin(−1,−r))+Θ(ε−2−r) = Θ(ε−2−r)

as ε → 0, by (31) and (32). Hence, we get

REb[µ̃γ(b)] = Θ(εmax(−r/2,r/2−1)), (36)

which is bounded for r = 0 and for r = 2, unbounded for 0 < r < 2, and vanishing for r > 2. Comparing (36)
with (33) for the classical estimator µ̂γ(b) based on CPU time, we see that the new estimator outperforms
the classical estimator for r > 1, and has the same asymptotic exponent when 0≤ r ≤ 1.

6 NUMERICAL RESULTS

We next give numerical results for different models simulated for a fixed total number n of observations to
obtain the estimators µ̂n,β in (8) and µ̃n,β in (19). We used the following approach to determine the MSIS
allocation parameter β for µ̃n,β to take into account the expected CPU times ν and ν ′, where as before, ν

is the mean time to generate each of the βn observations of (T ∧τ,I (T < τ)) with crude simulation, and
ν ′ is the mean time to generate each of the (1−β )n observations of (T ∧ τ,I (T < τ),L) via IS. Recall
that γ∗ in (23) is the optimal MSIS CPU allocation parameter to minimize the asymptotic variance σ̄2

N,γ in
(22) of the estimator µ̃γ(b) based on a computation budget of CPU time b, and we want to determine the
value of β that corresponds to γ∗. For any large b, we obtain approximately γ∗b/ν (resp., (1− γ∗)b/ν ′)
observations with crude simulation (resp., IS), so we equate γ∗b/ν to βn, yielding β = γ∗b/(νn). The
total number of crude and IS observations obtained with CPU budget b and MSIS allocation γ∗ is roughly
[γ∗b/ν ]+[(1−γ∗)b/ν ′], which we set equal to n. This then leads to β = ν ′δ/(ν ′δ +ν), with δ from (23).
For the classical estimator µ̂n,β , we applied a similar approach for determining β but using γ∗ defined after
(15) rather than γ∗. In both cases, we ran a presimulation of 10% of the total number n of observations
for each of crude simulation and IS to estimate the unknown quantities in γ∗ and γ∗. After computing the
resulting value of β from the presimulation, we projected β to lie in [0.1,0.9] to ensure that the sample
sizes are sufficiently large to obtain stable variance estimates.

6.1 The Simple (Q+2)-state Example

We first check numerically the gains with the new estimator on the example introduced in Section 5. Table 1
displays the results obtained with n = 106 observations of (T ∧τ,I (T < τ)) and α = 0.5 for IS. The “Rel.
Err.” column contains estimates of σC,β/µ (resp., σN,β/µ), which is the relative error of the estimator µ̂n,β

in (8) (resp., µ̃n,β in (19)) based on an observation budget n, where σ2
C,β and σ2

N,β are from (9) and (21),
respectively. These results confirm the RE theory as ε→ 0 in (30) and (35), even if here γ∗ and γ∗ depend
on ε due to the optimization for each set of parameters. Specifically, as ε shrinks, the relative error of the
classical estimator remains bounded for r = 1/2, but it increases for r > 1/2, as in (30). But for the new
estimator, the relative error remains bounded for r ≤ 1 and vanishes for r > 1, as in (35).

The behavior changes when we further account for the CPU time. To study this, the last column
of Table 1 gives the work-normalized relative variance (WNRV), defined as the estimate of σ2

C,β/n (or

σ2
N,β/n) multiplied by CPU time divided by the squared estimator of µ . Hence, WNRV1/2 provides an

estimate of the RE based on a CPU budget, as in (33) and (36). Examining WNRV makes sense to analyze
the relative precision for a computational budget (L’Ecuyer et al. 2010): having BRE and even VRE may
not be sufficient to have small error for a given budget if CPU time increases as ε → 0. Even if we have
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Table 1: Results for the mean time to reach to state Q+1 in the example of Section 5.

Estimator ε r Est. 0.95 Confidence Interval Rel. Err. CPU (sec) WNRV
Classical 0.5 3 1.1008e+01 (1.0972e+01, 1.1043e+01) 1.639e+00 1.11e-01 2.98e-07
New 0.5 3 1.1001e+01 (1.0993e+01, 1.1009e+01) 3.641e-01 8.95e-02 1.19e-08
Classical 0.1 3 1.0197e+03 (1.0114e+03, 1.0280e+03) 4.151e+00 3.26e+00 5.62e-05
New 0.1 3 1.0190e+03 (1.0189e+03, 1.0190e+03) 2.501e-02 4.91e+00 3.07e-09
Classical 0.01 3 1.0042e+06 (9.8265e+05, 1.0258e+06) 1.095e+01 1.63e+03 1.95e-01
New 0.01 3 1.0002e+06 (1.0002e+06, 1.0002e+06) 2.604e-04 4.49e+03 3.05e-10
Classical 0.1 2 1.1902e+02 (1.1817e+02, 1.1987e+02) 3.646e+00 3.81e-01 5.06e-06
New 0.1 2 1.1899e+02 (1.1894e+02, 1.1904e+02) 2.095e-01 5.46e-01 2.40e-08
Classical 0.01 2 1.0102e+04 (9.8883e+03, 1.0316e+04) 1.080e+01 1.64e+01 1.91e-03
New 0.01 2 1.0199e+04 (1.0198e+04, 1.0199e+04) 2.549e-02 4.41e+01 2.86e-08
Classical 0.001 2 1.0345e+06 (9.6769e+05, 1.1012e+06) 3.293e+01 1.50e+03 1.63e+00
New 0.001 2 1.0020e+06 (1.0020e+06, 1.0020e+06) 2.610e-03 4.36e+03 2.97e-08
Classical 0.1 1 2.9078e+01 (2.8967e+01, 2.9190e+01) 1.952e+00 9.06e-02 3.45e-07
New 0.1 1 2.9023e+01 (2.8975e+01, 2.9071e+01) 8.373e-01 8.74e-02 6.13e-08
Classical 0.01 1 2.9772e+02 (2.9498e+02, 3.0045e+02) 4.691e+00 2.05e-01 4.51e-06
New 0.01 1 2.9893e+02 (2.9847e+02, 2.9940e+02) 7.926e-01 5.66e-01 3.56e-07
Classical 0.001 1 2.9755e+03 (2.9084e+03, 3.0426e+03) 1.151e+01 1.51e+00 2.00e-04
New 0.001 1 2.9989e+03 (2.9943e+03, 3.0034e+03) 7.703e-01 5.58e+00 3.31e-06
Classical 0.01 0.5 2.0946e+02 (2.0886e+02, 2.1006e+02) 1.459e+00 9.18e-02 1.95e-07
New 0.01 0.5 2.0930e+02 (2.0886e+02, 2.0973e+02) 1.054e+00 9.61e-02 1.07e-07
Classical 1e−4 0.5 2.0109e+04 (2.0033e+04, 2.0186e+04) 1.941e+00 3.30e-01 1.24e-06
New 1e−4 0.5 2.0099e+04 (2.0058e+04, 2.0141e+04) 1.049e+00 6.94e-01 7.65e-07
Classical 1e−6 0.5 1.9994e+06 (1.9952e+06, 2.0035e+06) 1.054e+00 7.37e+00 8.19e-06
New 1e−6 0.5 2.0011e+06 (1.9970e+06, 2.0053e+06) 1.054e+00 6.66e+00 7.40e-06

BRE or VRE for a specific r, the WNRV may not be bounded or vanish. Table 1 shows that the WNRV
of the new estimator vanishes for r = 3, remains bounded for r = 2, and increases for r = 1 and r = 1/2.
In contrast, the classical estimator has WNRV that increases as ε shrinks for all r > 0. This is again in
line with (36) and (33), even if γ∗ and γ∗ are not fixed here but depend on ε .

6.2 Highly Reliable Markovian System (HRMS)

We next want to compare the two estimators on an HRMS, a type of model extensively studied in the
literature. We consider a system with c = 3 component types, with redundancy ni = 5 for each type
i = 1,2,3. Each component has an exponentially distributed time to failure with rate λi for components of
type i, where λi = ε , for some parameter ε . Any failed component has an exponentially distributed repair
time with rate 1. Component failure and repair times are all independent. The system is down whenever
fewer than two components of anyone type are operational.

Table 2 gives results for the MTTF with n = 105. For IS, we used either the zero-variance approximation
(0-var) of L’Ecuyer and Tuffin (2012) or balanced failure biasing (BFB) of Shahabuddin (1994) with α = 0.8.
It can be checked that the classical and new MTTF estimators give very similar results, and that the results
get closer as ε decreases (for ε = 0.001 they are exactly the same up to the 8 first digits). Hence, the new
and classical estimators are similar in performance for this type of model. We do not include CPU times
and WRNV because computational times are equivalent and do not change as ε → 0.

6.3 M/M/1 Queue

We also simulated the queue-length process of an M/M/1 queue. Our goal is to estimate the mean time to
reach a given buffer size N. We fix the service rate at 1 and consider different values of the arrival rate λ

to investigate both the impact of N and traffic intensity ρ = λ/1. For IS, we swap the arrival and service
rates, as in Parekh and Walrand (1989).
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Table 2: Results of MTTF estimation for the HRMS with c = 3 and ni = 5.

Estimator ε Est. Confidence Interval Rel. Err.
Classical, 0-var 0.1 3.4090e+02 (3.1811e+02, 3.6370e+02) 1.08e+01
New, 0-var 0.1 3.4007e+02 (3.1766e+02, 3.6248e+02) 1.06e+01
Classical, BFB 0.1 2.9984e+02 (2.6856e+02, 3.3113e+02) 1.68e+01
New, BFB 0.1 2.9949e+02 (2.6899e+02, 3.3000e+02) 1.64e+01
Classical, 0-var 0.01 1.7553e+06 (1.7417e+06, 1.7688e+06) 1.24e+00
New, 0-var 0.01 1.7554e+06 (1.7419e+06, 1.7689e+06) 1.24e+00
Classical, BFB 0.01 1.7412e+06 (1.6790e+06, 1.8033e+06) 5.76e+00
New, BFB 0.01 1.7412e+06 (1.6790e+06, 1.8033e+06) 5.76e+00
Classical, 0-var 0.001 1.6785e+10 (1.6760e+10, 1.6811e+10) 2.46e-01
New, 0-var 0.001 1.6785e+10 (1.6760e+10, 1.6811e+10) 2.46e-01
Classical, BFB 0.001 1.6600e+10 (1.5849e+10, 1.7350e+10) 7.29e+00
New, BFB 0.001 1.6600e+10 (1.5849e+10, 1.7350e+10) 7.29e+00

Table 3 gives results for n = 106 total number of observations of (T ∧τ,I (T < τ)). Although the new
estimator sometimes increases the relative error, it always decreases the WNRV, as can be seen through the
WNRV improvement factor (WNRVIF), which for the new estimator is defined as the ratio of the WNRV
of the new estimator to that of the classical estimator. For example, for λ = 0.9 and N = 500, the new
estimator provides an improvement of 66%.

Table 3: Results for the mean time to reach to buffer size N for an M/M/1 queue.

Estimator λ N Est. 0.95 Confidence Interval Rel. Err. CPU time (sec) WNRV WNRVIF
Classical 0.1 5 1.234e+05 (1.233e+05, 1.235e+05) 4.013e-01 1.019e-01 1.64e-08
New 0.1 5 1.234e+05 (1.233e+05, 1.235e+05) 3.994e-01 9.135e-02 1.46e-08 1.10
Classical 0.1 10 1.234e+10 (1.233e+10, 1.235e+10) 4.090e-01 1.793e-01 3.00e-08
New 0.1 10 1.235e+10 (1.234e+10, 1.236e+10) 4.148e-01 1.585e-01 2.73e-08 1.10
Classical 0.1 50 1.234e+50 (1.233e+50, 1.235e+50) 4.673e-01 6.218e-01 1.36e-07
New 0.1 50 1.235e+50 (1.234e+50, 1.236e+50) 4.745e-01 5.459e-01 1.23e-07 1.10
Classical 0.5 5 1.139e+02 (1.136e+02, 1.143e+02) 1.510e+00 1.234e-01 2.81e-07
New 0.5 5 1.139e+02 (1.136e+02, 1.142e+02) 1.447e+00 9.878e-02 2.07e-07 1.36
Classical 0.5 10 4.077e+03 (4.063e+03, 4.092e+03) 1.845e+00 1.802e-01 6.13e-07
New 0.5 10 4.077e+03 (4.062e+03, 4.092e+03) 1.827e+00 1.574e-01 5.25e-07 1.17
Classical 0.5 50 4.491e+15 (4.472e+15, 4.511e+15) 2.228e+00 5.397e-01 2.68e-06
New 0.5 50 4.491e+15 (4.471e+15, 4.510e+15) 2.230e+00 4.075e-01 2.03e-06 1.32
Classical 0.5 100 5.060e+30 (5.035e+30, 5.084e+30) 2.488e+00 8.645e-01 5.35e-06
New 0.5 100 5.050e+30 (5.025e+30, 5.076e+30) 2.560e+00 5.734e-01 3.76e-06 1.42
Classical 0.9 50 1.868e+04 (1.843e+04, 1.893e+04) 6.873e+00 8.051e-01 3.80e-05
New 0.9 50 1.890e+04 (1.865e+04, 1.915e+04) 6.774e+00 6.821e-01 3.13e-05 1.21
Classical 0.9 100 3.766e+06 (3.709e+06, 3.823e+06) 7.734e+00 1.248e+00 7.47e-05
New 0.9 100 3.737e+06 (3.680e+06, 3.794e+06) 7.785e+00 9.614e-01 5.83e-05 1.28
Classical 0.9 500 7.444e+24 (7.299e+24, 7.589e+24) 9.919e+00 3.649e+00 3.59e-04
New 0.9 500 7.595e+24 (7.445e+24, 7.745e+24) 1.007e+01 2.136e+00 2.17e-04 1.66

7 CONCLUDING REMARKS

The classical MSIS ratio estimator of the expected hitting time to a set can perform poorly when E[T ∧τ;T < τ]
makes a non-negligible contribution to the numerator E[T ∧τ] in the ratio formula (4) for µ . We modified
the classical estimator to obtain a new estimator, which can perform much better in certain settings, as
we showed via a theoretical analysis of a simple model and through numerical experiments. It would be
interesting to precisely characterize the types of models for which the new estimator will be more efficient
than the classical estimator. Also, we are further investigating CLTs in which simultaneously the CPU time
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b grows large and the rarity parameter ε shrinks, as in Proposition 5 of Glynn et al. (2017), which may
be more appropriate to study models such as the (Q+2)-state model in Section 5.
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