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ABSTRACT

We investigate some theoretical properties of kernelized control functionals (CFs), a recent technique for
variance reduction, regarding its stability when applied to subsets of input distributions or biased generating
distributions. This technique can be viewed as a highly efficient control variate obtained by carefully
choosing a function of the input variates, where the function lies in a reproducing kernel Hilbert space
with known mean thus ensuring unbiasedness. In large-scale simulation analysis, one often faces many
input distributions for which some are amenable to CFs and some may not due to technical difficulties. We
show that CFs retain good theoretical properties and lead to variance reduction in these situations. We also
show that, even if the input variates are biasedly generated, CFs can correct for the bias but with a price
on estimation efficiency. We compare these properties with importance sampling, in particular a version
using a similar kernelized approach.

1 INTRODUCTION

We study some theoretical properties of kernelized control functions (CFs) regarding its stability when
applied in stochastic simulation analysis. CF is a recent technique first proposed by Oates et al. (2017),
which can be viewed as a highly efficient control variate by suitably choosing a function on the input
variates. For instance, suppose we want to estimate Eπ [ f (X)] by Monte Carlo simulation, where Eπ [·]
denotes the expectation for X under distribution π . CF seeks to find a function sm(·) applied on X such
that Eπ [sm(X)] is known, and that f (X)− sm(X) has a very low variance so that the sample average of

f (X)− sm(X)+Eπ [sm(X)]

for randomly simulated X is a highly efficient (possibly super-efficient, i.e., exceeding the canonical square-
root convergence) estimator for Eπ [ f (X)]. This function sm(·) is constructed as a functional approximation
for f (·) by utilizing a beginning set of samples. It lies in a reproducing kernel Hilbert space (RKHS) with
the special property that any element can be disintegrated into a constant and a function that has mean
zero under π . The latter property is a consequence of applying a Stein operator, with respect to π , to a
“primary” RKHS in order to obtain the approximation basis for sm(·).

Our interest in this technique is to apply this to potentially large-scale simulation analysis. In this
situation, typically the modeler faces several, possibly many input models or distributions. To apply CF, one
needs to know the parametric forms of these input distributions (up to normalizing constants, for constructing
the Stein operators) and also ensures that these distributions satisfy a set of technical conditions. It could
well be the case that some of these input distributions are amenable to this technique while some are not.
Thus, whereas Oates et al. (2017) (and subsequent related works Oates et al. 2019; Liu et al. 2016; Liu
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and Lee 2017; Chwialkowski et al. 2016) assume all input distributions are known, we focus on whether
CF behaves stably when applied to only a subset of these distributions.

We show that CF retains super-efficiency in terms of the error rate associated with the subset of
applicable input distributions. For those distributions where CF does not apply on, the final output gives
the canonical square-root error rate. Thus, if the amenable input distributions contribute to most of the
variance, then the CF outputs are effectively super-efficient. We prove this result on partially applied CF via
a direct use of the so-called regularized least-square (RLS) functional approximation that looks for a closest
function in an RKHS from data (Cucker and Smale 2002). Moreover, we contrast this conclusion with a
closely related method referred to as black-box importance sampling (Liu and Lee 2017; Chwialkowski
et al. 2016; Liu et al. 2016), which relies on assigning weights over the samples, where the weights are
optimized from a kernel induced by the same Stein operator as CF. However, since this method does not
approximate the function f but rather uses the weights, it is plausible that without additional adjustment
it could have subpar performance when the kernel is induced by only part of all input distributions.

Our second interest is to investigate the convergence of CF when the input variates are generated from
a “wrong” or approximating distribution than the underlying model. We show that, if the likelihood ratio
between the approximating and the underlying distributions are controllable, then CF can automatically
correct for the bias, though with a price on estimation efficiency (i.e., sub-canonical convergence). This
property can be attributed to the fact that sm are able to well approximate f , in terms of variance under π ,
even if the utilized data have a different distribution. In this sense, CF can act as a bias corrector that is
similar to importance sampling. It also can be viewed as a more powerful version of the weighted Monte
Carlo studied in Glasserman and Yu (2005). However, its loss of efficiency (at least as a consequence of our
analysis) indicates that importance sampling, or a combination with it, is more efficient in bias reduction
than CF.

The remainder of this paper is as follows. Section 2 first describes our setup and notations. Section 3
develops some machinery from RLS that we need to utilize in our analysis. Section 4 presents our result
on partially applied CF. Section 5 studies the bias reduction property of CF under a deviating generating
distribution.

2 SETUP AND THE CONTROL FUNCTIONAL FRAMEWORK

Consider a random vector (X ,Y ) where X takes values in an open set Ω ⊂ Rd and Y takes values in an
open set Θ ⊂ Rp. We assume X admits a positive (marginal) density πx(x) > 0 on Ω with respect to
d-dimensional Lebesgue measure, which has a parametric form that is known up to a normalizing constant.
Similarly, we also denote πy|x(y|x) as the distribution of Y given X , and π as the joint distribution of (X ,Y )
(these can be viewed as densities without ambiguity, but the assumption of having a density is not necessary
for these distributions).

Our goal is to estimate the expectation of f (X ,Y ), which we write as µ := Eπ [ f (X ,Y )]. Our premise is
that we can run simulation and have access to a collection of i.i.d. samples D = {(xi,yi)}n

i=1 where (xi,yi)
are sampled from π (or some other distributions as discussed in Section 5). The vector X is assumed to be
the “dominating” factor in the simulation, contributing to the most output variance, whereas Y contributes
a small variance (which will be rigorized later). Moreover, we assume that ∇x logπx(x) is well-defined and
is computable for given xi’s, so that we can apply CF on X as we will discuss. Throughout this paper, we
also suppose f : Ω×Θ→ R satisfies Eπ [ f (X ,Y )2]< ∞.

For convenience, for any measurable function g : Ω×Θ→ R, we write µ(g) = Eπ [g(X ,Y )]; for any
measurable function g : Ω→ R, we write µx(g) = Eπx [g(X)]. Let L2(πx) denote the space of measurable
functions g : Ω→ R for which µx(g2) is finite, with the norm written as ‖ · ‖L2(πx). Let Ck(Ω,R j) denote
the space of (measurable) functions from Ω to R j with continuous partial derivatives up to order k. The
region Ω can be bounded or unbounded; in the former case, the boundary ∂Ω is assumed to be piecewise
smooth (i.e., infinitely differentiable).
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Following the framework in Oates et al. (2017), we divide the data D into two disjoint subsets as
D0 = {(xi,yi)}m

i=1 and D1 = {(xi,yi)}n
i=m+1, where 1≤m≤ n. We use D0 to construct a CF sm(·) ∈ L2(πx)

that is a partial approximation to f (that only depends on x), and consider the function

fm(x,y) = f (x,y)− sm(x)+µx(sm).

The final estimator is then given by a sample average of fm(·, ·) on D1, i.e.,

µ̂ :=
1

n−m

n

∑
j=m+1

fm(x j,y j).

It is clear that we have unbiasedness, since Eπ [µ̂|D0] = µ( fm) = µ for any given D0 and hence Eπ [µ̂] = µ ,
where here Eπ [·|D0] and Eπ [·] are with respect to the data distribution.

Denote the “score function” of the density πx by u(x) := ∇x logπx(x). The CF sm is in the form

sm(x) := c+ψ(x)

ψ(x) := ∇x ·φ(x)+φ(x) ·u(x)

where c∈R is a constant and φ ∈C1(Ω,Rd). Note that, under suitable conditions (that we describe below),
µx(ψ) = 0 via integration by parts, which constitutes the Stein operator applied on the function φ .

Next we specify our choice of each component of φ(x). Suppose φi : Ω→ R is in a Hilbert space
H ⊂ L2(π)∩C1(Ω,R) with inner product 〈·, ·〉H : H ×H → R. Moreover, we require that H is an
RKHS. This implies that there exists a symmetric positive definite function k : Ω×Ω→ R such that for
all x ∈Ω, we have k(·,x) ∈H and for all x ∈Ω and h ∈H , we have h(x) = 〈h(·),k(·,x)〉.

The vector-valued function φ(x) : Ω→Rd is defined in the Cartesian product space H d :=H ×·· ·×H ,
which is an RKHS with the inner product 〈φ ,φ ′〉H d = ∑

d
i=1〈φi,φ

′
i 〉H . We will see next that under some

reasonable assumptions ψ also belongs to an RKHS H0 with a kernel denoted k0.
Following Oates et al. (2017), we make the following assumptions and conclusions:

Assumption 1 The density πx belongs to C1(Ω,R).
Assumption 2 Let n(x) be the unit normal to the boundary ∂Ω of the state space Ω. For πx-almost all
x ∈Ω the kernel k satisfies ∮

∂Ω

k(x,x′)πx(x′)n(x′)S(dx′) = 0

and ∮
∂Ω

∇xk(x,x′)πx(x′) ·n(x′)S(dx′) = 0.

The notation
∮

∂Ω
denotes a surface integral over ∂Ω and S(dx′) denotes the surface element at x′ ∈ ∂Ω.

Assumption 3 The kernel k belongs to C2(Ω×Ω,R).
Assumption 4 The gradient-based kernel k0 satisfies

sup
x∈Ω

k0(x,x)< ∞.

This implies that ∫
Ω

k0(x,x)πx(x)dx < ∞.

These assumptions conclude the following:

1. Assumption 1 allows u(x) to be well-defined.
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2. With Assumptions 1 and 2, µx(ψ) = 0 and so µx(sm) = c.
3. With Assumptions 1 and 3, ψ belongs to H0, the RKHS with kernel

k0(x,x′) := ∇x ·∇x′k(x,x′)+u(x) ·∇x′k(x,x′)+u(x′) ·∇xk(x,x′)+u(x) ·u(x′)k(x,x′).

4. With Assumptions 1, 2 and 3, the gradient-based kernel k0 satisfies∫
Ω

k0(x,x′)πx(x′)dx′ = 0

for πx-almost all x ∈Ω.
5. With Assumptions 1, 2, 3 and 4, we have H0 ⊂ L2(πx).

Next, let C denote the RKHS of constant functions with kernel kC (x,x′) = 1 for all x,x′ ∈ Ω. The
norms associated to C and H0 is denoted by ‖ · ‖C and ‖ · ‖H0 respectively. H+ = C +H0 denotes
the set {c+ψ : c ∈ C ,ψ ∈H0}. Equip H+ with the structure of a vector space, with addition operator
(c+ψ)+(c′+ψ ′) = (c+ c′)+(ψ +ψ ′) and multiplication operator λ (c+ψ) = (λc)+(λψ), each well-
defined due to uniqueness of the representation f = c+ψ, f ′ = c+ψ with c,c′ ∈ C and ψ,ψ ′ ∈H0. It
is known that H+ can be constructed as an RKHS with kernel k+(x,x′) := kC (x,x′)+ k0(x,x′) and with
norm ‖ f‖2

H+
:= ‖c‖2

C +‖ψ‖2
H0

.
We will use crucially the decomposition

f (X ,Y ) = f̄ (X)+ ε(X ,Y )

where f̄ (X) = E[ f (X ,Y )|X ] can be viewed as the contribution of the fluctuation on f from X , and
ε(X ,Y ) = f (X ,Y )− f̄ (X) is the residual. Note that, by definition, f̄ (X) and ε(X ,Y ) are uncorrelated.

To state our next assumption, we denote (H+)
π
0 := { f ∈H+ : f = 0 a.e. with respect to πx} and

(H+)
π
1 := (H+)

π⊥
0 the orthogonal complement (H+)

π
0 in H+. (H+)1

π
is the closure of (H+)

π
1 in L2(πx),

which is equal to H+
π

. See the definitions before Lemma 3 for reference. We assume a basic well-posedness
condition:
Assumption 5 f̄ ∈H+

π
.

We note that usually f̄ is unknown in practice so it is not easy to check Assumption 5. However, Oates
et al. (2019) showed that under some reasonable conditions, H+

π
= L2(πx), and in this case, Assumption

5 appears mild. We also list the following stronger assumption that is used in Oates et al. (2017) and Oates
et al. (2019):
Assumption 6 f̄ ∈ (H+)

π
1 .

To make precise that X is the “dominating” factor in contributing to the simulation noise, we make
the following assumption:
Assumption 7 M0 := Eπ [ε(X ,Y )2]< ∞ where M0 is a small constant.

We have seen that when the decomposition of sm into c and ψ is known, then finding its mean µx(sm) is
straightforward and equal c. The effectiveness of the discussed approach lies on the approximation quality
of sm for f̄ . For the choice of sm, we will use the so-called regularized least-squares (RLS) functional
approximation in the RKHS H+. The next section presents our RLS analysis, which obtains sm in a
different path from Oates et al. (2017) who does not consider the extra component Y and uses a more
simplified machinery.

3 REGULARIZED LEAST SQUARE FUNCTIONAL APPROXIMATION

This section develops some theoretical results about RLS. Let z = ( f (x1,y1), · · · , f (xm,ym))
T . The samples

we need are {(x j,z j = f (x j,y j))} j=1,··· ,m. Suppose π is the underlying sampling distribution. For this
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section, we do not assume any information about π . We call fπ a regression function defined by

fπ(x) =
∫

zdπ(z|x) = Eπ [ f (X ,Y )|X = x]

which is f̄ in the setting in Section 2.
The aim here is to learn the regression function fπ(x) by constructing a good approximating function

sm from the data. Let H be a generic RKHS associated with the kernel k(x,y). Let ‖ · ‖H denote the
norm on H . Note that kx = k(x, ·) is a function in H .

For this section, we only impose the following assumption:
Assumption 8 κ := supx∈Ω

√
k(x,x) < ∞, M0 := Eπ [(z− fπ(x))2] < ∞. For any g ∈ H , g(x) is π-

measurable. fπ ∈ L2(π).
It follows that for any g ∈H ,

sup
t∈Ω

|g(t)|2 = sup
t∈Ω

|〈g,kt〉|2 ≤ sup
t∈Ω

‖g‖2
H ‖kt‖2

H ≤ κ
2‖g‖2

H .

So under Assumption 8, any g ∈H is a bounded function. We point out the following inequality that we
will use frequently:

‖g‖Lp(π) ≤ κ‖g‖H ,∀1≤ p≤ ∞.

The RLS functional approximation is given by

sm(x) := argmin
g∈H

{
1
m

m

∑
j=1

( f (x j,y j)−g(x j))+λ‖g‖H

}

where λ > 0 is a regularization parameter. Note that although we have y j available, the needed data in this
approximation are only the numbers {z j = f (x j,y j)} j=1,··· ,m and {x j} j=1,...,m. A nice property of RLS is
that there is an explicit formula for its solution, as stated below.
Lemma 1 Let K = (k(xi,x j))m×m, k̂(x) = (k(x1,x), · · · ,k(xm,x))T . Then the RLS solution is given as
sm(x) = β T k̂(x) where β = (K +λmI)−1z.

Lemma 1 shows us a way to calculate sm in practice. On the other hand, to derive the property of sm,
we need to use some tools from functional analysis. To begin, we give an equivalent form of sm in terms
of linear operators. Define the sampling operator Sx : H → Rm associated with a discrete subset {xi}m

i=1
of X by

SX(g) = (g(xi))
m
i=1, f ∈H .

The adjoint of the sampling operator, ST
x : Rm→H , is given by

ST
X(c) =

m

∑
i=1

cikxi ,c ∈ Rm.

Note that the compound mapping ST
x Sx is a positive self-adjoint operator on H . Let I denote the

identity mapping on H . We have:
Lemma 2 The RLS solution can be written as follows:

sm =

(
1
m

ST
x Sx +λ I

)−1 1
m

ST
x (z).
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A proof can be found in Smale and Zhou (2005). It is also easy to derive this result directly from
Lemma 1.

Next, we use the following established theorem. This result can be found in Theorem 2.4 and Proposition
2.10 in Sołtan (2018).
Theorem 1 [Continuous Functional Calculus] Let A be a bounded self-adjoint linear operator. Let C(σ(A))
be the set of real-valued continuous functions defined on the spectrum of A. Then for any f ∈C(σ(A)),
f (A) is self-adjoint and ‖ f (A)‖= supx∈σ(A) | f (x)|.

Define L : L2(π)→ L2(π) as the integral operator

(Lg)(x) :=
∫

Ω

k(x,x′)g(x′)π(x′)dx′, x ∈Ω, g ∈ L2(π).

This operator can be viewed as a linear operator on L2(π) or on H . Unless specified otherwise, we always
assume the domain of L is L2(π). Sun and Wu (2009) shows that L is a compact and positive self-adjoint
operator on L2(π). Denote

H0 := { f ∈H : f = 0 a.e. with respect to π} and

H1 := H ⊥
0 , the orthogonal complement H0 in H .

Note that both H0 and H1 are closed subspaces in H with respect to the norm ‖ · ‖H . It is well-known
that H /H0 is isometrically isomorphic to H1. So H1 is essentially the quotient space of H induced by
the equivalence relation a.e. with respect to π , the same equivalence relation in L2(π). In practice, we may
treat H1 as H .

Let H1
π

be the closure of H1 in L2(π). The following theorem indicates a useful property of the
integral operator L (a proof can be found in Sun and Wu (2009)).

Lemma 3 L1/2 is an isometric isomorphism from (H1
π
,‖ · ‖L2(π)) onto (H1,‖ · ‖H ).

Denote Range(Lr) the range of Lr where L is regarded as a positive self-adjoint operator on L2(π).
When we write L−rg ∈ L2(π), it should be understood as g ∈ Range(Lr) and L−rg is a preimage of g.

Next, consider an oracle or a data-free limit of sm as

fλ := argmin
g∈H

{
µx((g− fπ)

2)+λ‖g‖2
H

}
.

We have the following explicit expression (a proof can be found in Cucker and Smale (2002)):
Lemma 4 The solution of fλ is given as fλ = (L+λ I)−1L fπ .

To show that sm− fπ is small, we split it into two parts

sm− fπ = (sm− fλ )+( fλ − fπ). (1)

The first part in (1) comes from the statistical noise in the RLS regression, whereas the second part can
be viewed as the bias of the functional approximation. We study the asymptotic error of each part in the
next set of results. A proof of the following proposition can be found in Sun and Wu (2009).
Proposition 1 Suppose that L−r fπ ∈ L2(π) where 0≤ r≤ 1. Then ‖ fλ − fπ‖L2(π) ≤ λ r‖L−r fπ‖L2(π).

If we want to obtain a better bound for fλ − fπ by using this proposition, we may want r to be as large
as possible, but meanwhile L−r fπ ∈ L2(π) becomes a more restrictive constraint. However, we have the
following proposition that can bypass this tradeoff.
Proposition 2 The range of L satisfies

Range(L)
π
= H

π
.
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Proof. Take any f1 ∈H
π
= H1

π
. For any ε > 0, there exists f2 ∈H1 such that ‖ f1− f2‖L2(π) ≤ ε . It

follows from Lemma 3 that there exists g1 ∈H1
π

such that L1/2g1 = f2. There exists g2 ∈H1 such that
‖g1− g2‖L2(π) ≤ ε

κ
. Again, it follows from Lemma 3 that there exists h1 ∈H1

π
such that L1/2h1 = g2.

Then we have

‖Lh1− f2‖L2(π) ≤ κ‖Lh1− f2‖H = κ‖L1/2g2−L1/2g1‖H = κ‖g2−g1‖L2(π) ≤ ε

and
‖Lh1− f1‖L2(π) ≤ ‖Lh1− f2‖L2(π)+‖ f2− f1‖L2(π) ≤ 2ε.

This implies that f1 ∈ Range(L)
π

so
Range(L)

π ⊃H
π
.

On the other hand, since
Range(L)⊂ Range(L1/2)⊂H

we have
Range(L)

π ⊂H
π
.

The following two propositions can be obtained via direct computation. Proofs can be found in Sun
and Wu (2009).
Proposition 3 We have

‖sm− fλ‖H ≤
1
λ
‖∆‖H

where

∆ :=
1
m

m

∑
i=1

(zi− fλ (xi))kxi−L( fπ − fλ ).

Proposition 4 We have

Eπ [‖∆‖2
H ]≤ 1

m
κ

2(µx(( fπ − fλ )
2)+M0).

With this, we have the following estimate:
Corollary 2 We have

Eπ [‖sm− fλ‖2
H ]≤ κ2(µx(( fπ − fλ )

2)+M0)

λ 2m
.

Proof. Combining Proposition 3 and Proposition 4, we obtain

Eπ [‖sm− fλ‖2
H ]≤ κ2(µx(( fπ − fλ )

2)+M0)

λ 2m
.

Also note that
µx((sm− fλ )

2)≤ κ
2‖sm− fλ‖2

H .

Finally, putting everything together we have:
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Corollary 3 Suppose that L−r fπ ∈ L2(π) where 0≤ r ≤ 1. Then

Eπ [µx(( fπ − sm)
2)]≤

(
2κ4

λ 2−2rm
+2λ

2r
)

µx((L−r fπ)
2)+

2κ4M0

λ 2m
.

In particular, taking λ = m−1/2, we have

Eπ [µx(( fπ − sm)
2)]≤Cκm−r

µx((L−r fπ)
2)+2κ

4M0

where Cκ = 2κ4 +2 only depends on κ .

Proof. Proposition 1 shows that if L−r fπ ∈ L2(π), then

µx(( fλ − fπ)
2)≤ λ

2r
µx((L−r fπ)

2).

We note that
µx(( fπ − sm)

2)≤ 2(µx(( fπ − fλ )
2)+µx(( fλ − sm)

2)).

So taking expectation, we have

Eπ [µx(( fπ − sm)
2)]≤

(
2κ4

λ 2m
+2
)

µx(( fπ − fλ )
2)+

2κ4M0

λ 2m
≤
(

2κ4

λ 2−2rm
+2λ

2r
)

µx((L−r fπ)
2)+

2κ4M0

λ 2m
.

Corollary 3 shows that sm computed through RLS approximates fπ closely, measured by a mean square
error under π of order m−r. It appears that Corollary 3 is more refined than the theory used by Oates et al.
(2017). Accordingly, we will prove a better result in the next section.

4 CONTROL FUNCTIONALS ON PARTIAL INPUTS

This section presents the properties of µ̂ defined in Section 2. Note that H in Section 3 coincides with
H+ in Section 2. First, the following expression of sm is a direct consequence of Lemma 1.
Lemma 5 Let

z = ( f (x1,y1), · · · , f (xm,ym))
T

K+ = (k+(xi,x j))m×m

k̂+(x) = (k+(x1,x), · · · ,k+(xm,x))T

and
k̂0(x) = (k0(x1,x), · · · ,k0(xm,x))T .

Then the RLS solution is given as sm(x) = β T k̂+(x) where β = (K++λmI)−1z.
We remark that sm(x) is a linear combination of z. Moreover, these coefficients only depend on the

RKHS H0, free of the function of interest f . The following computes the mean of sm (the proof is
straightforward and thus skipped):
Lemma 6 Let sm(x) = β T k̂+(x) as given in Lemma 1. We have µx(sm) = β T 1.

Combining Lemmas 5 and 6 gives us an explicit form of the estimator µ̂ . To describe the error of µ̂ ,
we first state the following observation of Oates et al. (2017) that translates the error of sm into the error
of the two-phase estimator µ̂ .
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Proposition 5 Assume
Eπ [µ(( f − sm)

2)] = I1.

Then the mean square error of µ̂ is given by

Eπ [(µ̂−µ)2] = Eπ [Eπ [(µ̂−µ)2|D0]]≤
I1

n−m
.

Proof. For i = m+1, . . . ,n, we have Eπ [ fm(xi,yi)−µ|D0] = 0. By the independence of D,

Eπ [(µ̂−µ)2|D0] =

(
1

n−m

)2 n

∑
i=m+1

Eπ [( fm(xi,yi)−µ)2|D0].

It is well-known that E[(X−a)2] is minimized when a = E(X). This implies that

Eπ [( fm(xi,yi)−µ)2|D0]≤ Eπ [( fm(xi,yi)−µ(sm))
2|D0].

The right-hand side is exactly Eπ [( f − sm)
2|D0]. Therefore

Eπ [(µ̂−µ)2|D0]≤
(

1
n−m

)2 n

∑
i=m+1

µ(( f − sm)
2) =

1
n−m

µ(( f − sm)
2).

The main theorem in this section is:
Theorem 4 Suppose Assumptions 1-5, 7 hold and take an RLS estimate with λ = m−

1
2 and take m = O(n).

Then the estimator µ̂ is an unbiased estimator of µ with

Eπ [(µ̂−µ)2] = O(Cκ(C f n−2 +M0n−1))

where C f is a constant free of m (and n), Cκ = 2κ4 +2 and the outside O only depends on the ratio m/n.

Proof of Theorem 4. We apply the results from Section 3. We first check that the setting here accords
with the conditions in Section 3. Recall that the set of samples in Section 3 corresponds to {(x j,z j =
f (x j,y j))} j=1,··· ,m, and the fπ there corresponds to f̄ (x) here. It follows from Assumption 4 and k+(x,x′) =
1+ k0(x,x′) that

κ = sup
x∈Ω

√
k+(x,x)< ∞

so Assumption 8 is satisfied. Besides, M0 there is exactly M0 here since by definition, we have

M0 = Eπ [(z− fπ(x))2] = Eπ [( f (x,y)− f (x))2] = Eπ [ε(x,y)2]< ∞.

Assumption 5 assumes that f̄ ∈H+
π

which is a weaker condition than L−r f̄ ∈ L2(πx) so we cannot apply
Corollary 3 directly. However, we have shown in Proposition 2 that H+

π
= Range(L)

π
. Consider the

following approximation approach: Fix ε = M0. There exists a g ∈ Range(L) such that ‖ f̄ −g‖2
L2(πx)

≤ ε .

Let h = f −g so h̄ = f̄ −g. Let sh
m, sg

m be the RLS functional approximation of h, g respectively. As we
point out after Lemma 5, sh

m is a linear functional of h, so we write

h− sh
m = ( f − sm)− (g− sg

m).
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Next we apply Corollary 3 (with r = 1) to the samples {(xi,g(xi))}: Since g ∈Range(L) and g is a function
of x only, Mg

0 = 0 and
Eπ [µx((g− sg

m)
2)]≤Cκm−1

µx((L−1g)2).

Again, we apply Corollary 3 (with r = 0) to the samples {(xi,h(xi,yi))}: We note that h ∈ L2(π) and ḡ = g
so

Mh
0 := Eπ [(h(x,y)− h̄(x))2] = Eπ [( f (x,y)− f̄ (x))2]

which is the same as M0 and thus

Eπ [µx((h̄− sh
m)

2)]≤Cκ µx(h̄2)+(Cκ −2)M0 ≤ (2Cκ −2)M0

where Cκ = 2κ4 +2.
Combining the above, we obtain

Eπ [µx(( f̄ − sm)
2)]≤ 2((2Cκ −2)M0 +Cκm−1

µx((L−1g)2)).

Finally it remains to show a bound for
Eπ [µ(( f − sm)

2)].

To this end, we split f − sm into two parts as follows:

Eπ [µ(( f − sm)
2)] = Eπ [µ(( f̄ + ε− sm)

2)]≤ 2(Eπ [µx(( f̄ − sm)
2)]+Eπ [ε(X ,Y )2]) = 2(Eπ [µx(( f̄ − sm)

2)]+M0).

Hence we obtain
Eπ [µ(( f − sm)

2)]≤ 8CκM0 +4Cκm−1
µx(L−1g)2).

Using Proposition 5 and noting that m = O(n), we can write

Eπ [(µ̂−µ)2] = O(Cκ(C f n−2 +M0n−1)).

Consider a case where M0 is a relatively small number compared with C f . Then the bound in Theorem
4 essentially becomes

Eπ [(µ̂−µ)2] = O(n−2).

Therefore even in the case that we know very little about Y , the CF method applied on X only still improves
the Monte Carlo rate. Note that Theorem 4 provides a different rate from Oates et al. (2017), the reason
being that in our proof we employ a more refined inequality developed in Section 3 together with a different
approximation approach.

5 BIASED GENERATING DISTRIBUTION

In this section, we digress our investigation and consider the case where we could only generate X from a
distribution qx different from πx. We have explicit closed-form formula for πx as described in Section 2,
but we may not have that for qx (though Monte Carlo samples are available). For this section, suppose the
auxiliary variable Y does not show up (so we write q = qx, π = πx) and the regression function is f itself,
leaving the discussion with the presence of auxiliary variables to future work.

We use the same CF method on X : We construct the RKHS H and H+ based on π , then construct
the estimator sm in exactly the same way (note that sm only depends on H+ and the data, free of the
underlying distribution), and we obtain the formula for µx(sm) as we did in Lemma 6. Our goal is still to
estimate µ . In this case, we do not have unbiasedness anymore since Eq[ fm(X)−µ|D0] is not necessarily
equal to 0. However, we will see that we can still construct reasonable estimators for µ under q under the
CF framework.
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We introduce further notations. For any measurable function g : Ω→R, we write νx(g)=
∫

Ω
g(x)qx(x)dx.

Let L2(qx) denote the space of measurable functions g : Ω→ R for which νx(g2) is finite, with the norm
written as ‖ · ‖L2(qx). Let Lq : L2(qx)→H+ denote the integral operator

(Lqg)(x) :=
∫

Ω

k(x,x′)g(x′)qx(x′)dx′, x ∈Ω, g ∈ L2(qx).

While sm is constructed from H+ (induced by the original distribution π), the results on RLS that we
developed in Section 3 can still be applied. In fact, π in Section 3 (independent of the choice of RKHS)
stands for the underlying distribution of the samples which is exactly q in this section. In particular,
Corollary 3 (with distribution q) is still valid in the current case.

We introduce the following assumptions that will be used in this section:
Assumption 9 f ∈ (H+)

q
1.

Assumption 10 Eπ [πx/qx]< ∞.
The following theorem reveals that the estimator µx(sm) (computed in Lemma 6) is a rough approximation

to µ under q. (For this estimator, we set n = m and use the entire data set D to construct sm.)
Theorem 5 Suppose Assumptions 1, 2, 3, 4, 9 and 10 hold and take a RLS estimate with λ = m−1/2.
Then the estimator µx(sm) is an estimator of µ with

Eq[(µx(sm)−µ))2] = O(m−
1
2 ).

Proof. First we note that fq = f , M0 = 0 and

f ∈ (H+)
q
1 ⊂ Range(L

1
2
q ).

It follows from Corollary 3 that

Eq[νx(( f − sm)
2)]≤Cκm−

1
2 νx((L

−1/2
q f )2) =Cκm−

1
2 ‖ f‖2

H+

where Cκ = 2κ4 +2. Next, we have

|µx(sm)−µ| ≤ Eπ [|sm− f |] =
∫

Ω

|sm(t)− f (t)|πx(t)dt.

It follows from Cauchy-Schwarz inequality that(∫
Ω

|sm(t)− f (t)|πx(t)dt
)2

≤
(∫

Ω

|sm(t)− f (t)|2qx(t)dt
)(∫

Ω

(πx(t))2

qx(t)
dt
)

= νx(( f − sm)
2)Eπ [πx/qx].

Therefore we obtain
Eq[(µx(sm)−µ))2]≤ Eq[νx(( f − sm)

2)](Eπ [πx/qx])
2.

Then the result follows from Assumption 10.

Theorem 5 implies that the CF estimator still retains consistency regardless of the generating distribution
of X , as long as this distribution is close to the target distribution in the sense of a controllable likelihood ratio.
However, the convergence rate is subcanonical. This theorem can be compared with the corresponding results
in importance sampling (e.g., Liu and Lee 2017) that achieves a better convergence Eq[(µ̂−µ))2] =O(m−1).
In our future work, we will refine our analysis to improve our convergence rate as well as expanding the
analyses to more general settings.
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