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ABSTRACT

We consider the problem of estimating the output variance in simulation analysis that is contributed from
the statistical errors in fitting the input models, the latter often known as the input uncertainty. This
variance contribution can be written in terms of the sensitivity estimate of the output and the variance of
the input distributions or parameters, via the delta method. We study the direct use of this representation
in obtaining efficient estimators for the input-contributed variance, by using finite-difference and random
perturbation to approximate the gradient, focusing especially in the nonparametric case. In particular, we
analyze a particular type of random perturbation motivated from resampling that connects to an infinitesimal
jackknife estimator used in bagging. We illustrate the optimal simulation allocation and the simulation
effort complexity of this scheme, and show some supporting numerical results.

1 INTRODUCTION

Simulation analysis consists of the repeated generation of random variates from pre-specified input models
which, fed through the system logic, produces outputs that are used for prediction and decision-making.
When the input models are misspecified or noisily estimated from data, these input errors can propagate to
the outputs and lead to an incorrect conclusion. This calls for a need to quantify the impact of these errors,
a problem often known as input uncertainty or extrinsic uncertainty, among other names in the literature.
For general overview, see, e.g., Barton et al. (2002), Henderson (2003), Chick (2006), Barton (2012), Song
et al. (2014), Lam (2016), and Nelson (2013) Chapter 7.

A common way in quantifying input uncertainty is to estimate the variance of the output that is
contributed from the input noise. These variances carry information on the amount of variability coming
from each individual input model or relative to the Monte Carlo noise in running the simulation replications.
Moreover, they can be used as constituent ingredients to construct confidence intervals that account for
both the noises from the inputs and the Monte Carlo runs. Established approaches to estimate these
input-contributed variances (or “input variance” for short) roughly fall into two categories. First is to use
bootstrap resampling (e.g., Cheng and Holland 1997; Song and Nelson 2015). This consists of resampling
the input data to construct resampled input models, which are then used to drive simulation replications.
The input variance can be approximated using the bootstrapped variance and a removal of the bias induced
from the Monte Carlo noise via an analysis-of-variance. In the Bayesian contexts, this also leads to related
approaches utilizing posterior sampling (Zouaoui and Wilson 2003; Zouaoui and Wilson 2004). The second
line of approach uses delta-method approximation, which involves estimating the sensitivity or gradient
of the outputs with respect to the input distributions or parameters, and combining with the estimation
variance of these input quantities. These approaches include the two-point method (Cheng and Holland
1998) and regression-based approaches (Wieland and Schmeiser (2006); Lin et al. 2015; Song and Nelson
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2019). The first line of methods has been studied under both parametric and nonparametric frameworks,
whereas the second line of methods has thus far focused on the parametric case.

A recurrent challenge in estimating input variance is the high computational cost, and relatedly the
complexity in the simulation plan, in obtaining accurate estimates. On a high level, this is due to the
convolution of the input and Monte Carlo noises for which, to obtain accurate estimation, one would need to
disintegrate these two effects or wash away the Monte Carlo noise by abundant simulation runs. In bootstrap
resampling, this challenge manifests in a nested sampling where one first resamples the input data (capturing
the input noise) and then runs a number of replications per resample (capturing the Monte Carlo noise). Both
layers need adequate sample sizes and lead to a multiplicatively large overall required simulation size. In
delta-method approximation, the corresponding challenge comes from the gradient estimation. In general,
without structural information, this involves a finite-difference estimator that requires a perturbation size
selection to control both bias and variance, and maintaining a small overall error requires again a large
enough Monte Carlo size.

In this paper, we consider the delta-method approximation to estimate input variance. Our focus is the
investigation of the required simulation replication size needed for the involved gradient estimation, and
in turn consistent and accurate estimation of the variance. We consider especially the nonparametric case,
which to our best knowledge has not been studied and also exhibits additional complications compared to the
parametric counterpart. In the basic form, our approach to estimate gradient is to use random perturbation,
namely by first generating a random vector in the dimension of the parameters, and suitably projecting to
each dimension to obtain a finite-difference estimate for the derivative with respect to each parameter. On
a high level, this idea follows from the two-point method in Cheng and Holland (1998) and especially the
regression approaches in Wieland and Schmeiser (2006) and Song and Nelson (2019). On the other hand, it
also bears some differences with these works. First, by choosing the distribution of the perturbation vector
properly, and using a “score function” multiplier like in simultaneous perturbation or smoothing used in
zeroth-order stochastic optimization (e.g., Spall 1992; Nesterov and Spokoiny 2017; Flaxman et al. 2005),
the projection of each dimension in our scheme automatically gives rise to small-bias gradient estimate
thanks to the cancellation of higher-order errors. Second, in the nonparametric case, the input parameter is
the entire input distribution function (potentially an infinite-dimensional object), and correspondingly the
gradient is measured via the so-called influence function (Hampel 1974) in nonparametric statistics theory,
which arises as a functional derivative. The length of the random perturbation vector or the “effective”
dimension of the problem then grows with the input data size, and leads to a different analysis and ultimate
simulation replication size requirement than the parametric case. Lastly, in this paper, we focus on a
particular type of random perturbation using a multinomial distribution that is motivated from resampling.
We demonstrate some connections of this scheme with the infinitesimal jackknife estimator for variance
estimation in bagging (Wager et al. 2014). We also show some results on the optimal simulation allocation,
and demonstrate how a small overall simulation effort of this scheme can be attained.

2 SETTING AND OVERVIEW OF THE APPROACH

Consider a target performance measure ψ(F1, . . . ,Fm) that depends on independent input probability dis-
tributions F1, . . . ,Fm (As an example, think of them as the interarrival and service times in a queueing
system). Suppose that, given these distributions, the simulator can generate unbiased copies for ψ .

We consider the situation where F1, . . . ,Fm are not known, but instead i.i.d. data for each Fi are available.
Call them X (i)

1 , . . . ,X (i)
ni where ni is the sample size for model i. Then one can form the empirical distribution

F̂i(·) = (1/ni)∑
ni
j=1 δ

X (i)
j
(·) (where δx(·) is the delta measure at x), and a point estimate of ψ(F1, . . . ,Fm)

from R simulation runs is given by

ψ̂(F̂1, . . . , F̂m) =
1
R

R

∑
r=1

ψ̂r(F̂1, . . . , F̂m)
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where ψ̂r(F̂1, . . . , F̂m) is an individual simulation run. The variance of ψ̂(F̂1, . . . , F̂m) is

Var(ψ̂(F̂1, . . . , F̂m))≈
m

∑
i=1

VarFi(IFi(X (i)))

ni
+

τ2

R

where each term in the summation is the variance contributed from input model i (i.e., the input variance)
and the last term is the variance contributed from the simulation noise (see Proposition 8 in Glynn and
Lam 2018, and a parametric version in Theorem 1 in Cheng and Holland 1997). Here VarFi(·) refers to
the variance under Fi and X (i) is a generic variable generated from Fi. IFi(·) is the influence function for
input model i, which is defined as the directional derivative

IFi(x) = IFi(x;F1, . . . ,Fm) = lim
ε→0+

ψ(F1, · · · ,Fi−1,(1− ε)Fi + εδx,Fi+1, . . . ,Fm)−ψ(F1, · · · ,Fm)

ε
.

In other words, IFi(x) represents the infinitesimal effect in mixing Fi with the delta mass at x, δx. This
function has mean zero under Fi, i.e., EFi [IFi(X (i);F1, . . . ,Fm)] = 0. The constant τ2 =Var(ψ j(F1, . . . ,Fm))
is the variance of one simulation replication, under the true input distributions (or estimated distributions,
which give rise to the same variance asymptotically under suitable smoothness conditions).

Our goal is to estimate the input variances VarFi(IFi(X (i))). First of all, an asymptotically accurate
estimate based on the input data is the empirical influence function variance given by

1
ni

ni

∑
j=1

IFi(X
(i)
j ; F̂1, . . . , F̂m)

2. (1)

This estimate generally has an error of order Op(1/
√

mini=1,...,m ni) in estimating VarFi(IFi(X (i))). The
function IFi(x; F̂1, . . . , F̂m) needs simulation approximation, i.e., we use the estimate

1
ni

ni

∑
j=1

ÎF i(X
(i)
j ; F̂1, . . . , F̂m)

2 (2)

where we use a random perturbation approach to estimate IFi. In other words, letting F = (F1, . . . ,Fm) and
F̂ = (F̂1, . . . , F̂m), we consider

ÎF i(X
(i)
j ; F̂) =

1
R

R

∑
r=1

ψ̂r(F̂1, · · · , F̂i−1,(1−h)F̂i +hG, F̂i+1, . . . , F̂m)

h
S j(G) for all i = 1, . . . ,m, j = 1, . . . ,ni

where G is a discrete distribution supported on the data{X (i)
1 , . . . ,X (i)

ni } that is randomized, and S j(G) for each j
is some “score function” of the perturbation such that E[ψ(F̂1, · · · , F̂i−1,(1−h)F̂i+hG, F̂i+1, . . . , F̂m)S j(G)/h|F̂ ]≈
IFi(X

(i)
j ; F̂) for all i = 1, . . . ,m and j = 1, . . . ,ni. Note that, given the input data, every realization of G can

be identified with a vector of probability weights (G1, . . . ,Gni) on the ni observations through the relation
PG({X (i)

j }) = G j for each j = 1, . . . ,ni where PG denotes the probability under the distribution G, therefore
for convenience G will be referred to as a random discrete distribution or a random vector on the probability
simplex {(G1, . . . ,Gni)∈Rni : ∑

ni
j=1 G j = 1,G j ≥ 0 for all j} interchangeably. To get a meaningful estimate

for VarFi(IFi(X (i))), we would like to control the approximation error of (2) for (1) to be op(1).
Since one can always estimate each input variance VarFi(IFi(X (i))) separately by fixing all others at

the empirical distributions, for simplicity we focus on the case of a single input model F (m = 1) with n
i.i.d. observations X1, . . . ,Xn and our goal is to estimate the input variance VarF(IF(X)). A convenient
formula for Si(G) can be derived for exchangeable random perturbations, i.e., G such that (G1, . . . ,Gn) and
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(Gπ(1), . . . ,Gπ(n)) have the same distribution for all permutations π : {1,2, . . . ,n} → {1,2, . . . ,n}. Hence
we have E[G1] =

1
n and ∑

n
i=1(Gi− 1

n) = 0, which implies ∑
n
i=1 E[(G1− 1

n)(Gi− 1
n)] = 0 =Var(G1)+(n−

1)Cov(G1,G2), i.e., Cov(G1,G2) =− 1
n−1Var(G1). Therefore, we let

Si(G) =
n−1

nVar(G1)
(Gi−

1
n
).

For sufficiently smooth ψ(·), the perturbed performance measure admits a first order Taylor expansion
ψ((1− h)F̂ + hG) ≈ ψ(F̂)+ hEX∼G[IF(X ; F̂)|F̂ ] = ψ(F̂)+ h∑

n
i=1 IF(Xi; F̂)Gi (see, e.g., Van der Vaart

2000 Chapter 20) around the empirical distribution F̂ . Therefore

E
[ψ((1−h)F̂ +hG)

h
Si(G)|F̂

]
≈ E

[ψ(F̂)

h
Si(G)+

n

∑
i′=1

IF(Xi′ ; F̂)(Gi′−
1
n
)Si(G)|F̂

]
=

n−1
nVar(G1)

∑
i′ 6=i

IF(Xi′ ; F̂)Cov(Gi′ ,Gi)+
n−1

n
IF(Xi; F̂)

=−1
n ∑

i′ 6=i
IF(Xi′ ; F̂)+

n−1
n

IF(Xi; F̂) = IF(Xi; F̂)

recovering the influence function, where the last equality follows because ∑
n
i=1 IF(Xi; F̂) = 0.

3 PERTURBATION MOTIVATED FROM RESAMPLING

In this section we analyze a special yet flexible class of random perturbations that are motivated from
resampling of the input data. Consider the multinomial distribution (s, 1

n 1) with 1 = (1,1, . . . ,1) ∈Rn that
counts s independent and uniform draws from n objects. Letting si to be the count of the i-th object
drawn (∑n

i=1 si = s), we set the i-th component of perturbation to be Gi = si/s, and h to be 1 so that
ψ((1− h)F̂ + hG) = ψ(G). It is straightforward to see that Var(G1) =

1
sn(1−

1
n), hence the appropriate

multiplier Si(G) = sn(Gi− 1
n) for i = 1, . . . ,n. This leads to the following estimator for VarF(IF(X))

(assuming infinite simulation replications for now)

σ
2
s =

1
n

n

∑
i=1

[
Cov∗(ψ(G),sn(Gi−

1
n
))
]2 (3)

where Cov∗ denotes the covariance with respect to the perturbation G given the input data X1, . . . ,Xn (the data
serve as the support of the distribution G), and the subscript s indicates the dependence on s. Adaptations
of the estimator (3) to the case of multiple input models shall be discussed briefly at the end of this section.

3.1 Connection to Bagging and Infinitesimal Jackknife

Note that such a random perturbation G coincides with the empirical distribution induced by the resample
{X∗1 , . . . ,X∗s } of size s drawn uniformly from the data with replacement. In particular, when s = n it
coincides with the standard bootstrap resample. This connects the multinomial perturbation to bagging or
bootstrap aggregating, a popular ensemble technique (i.e., technique that combines multiple base learners)
in machine learning, and interprets the estimator (3) as a so-called Infinitesimal Jackknife (IJ) variance
estimator (Efron 2014; Wager et al. 2014).

Bagging has been used to reduce prediction error of base learners especially tree-based methods, such
as random forests (Breiman 2001). It possesses variance reduction properties (Bühlmann and Yu 2002) and
is capable of smoothing statistical estimators that involve model selection (Efron 2014). Given a training
set for a prediction problem, bagging repeatedly draws bootstrap resamples from the data, trains a base
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learner from each resample, and at the end averages all individual base learners as the bagged learner.
For example, a random forest consists of bagged decision trees. The IJ variance estimator estimates the
variance of the bagged learner, and can be readily computed from the bagging procedure as a by-product
with negligible computation overhead.

The estimator (3) is connected to the IJ estimator as follows. Consider the “plug-in” estimator ψ(F̂) of
the performance measure as a base learner. With F̂∗ representing a bootstrap resample, i.e., the perturbation
G when s = n, a bagged estimator of the performance measure is

ψbag(F̂) = E∗[ψ(F̂∗)].

Supposing that ψ(·) is sufficiently smooth, then, by linearizing ψ(F̂∗) around F̂ , one can argue that the
bias of ψbag(F̂) relative to ψ(F̂) is of order 1/n, i.e., ψbag(F̂) = ψ(F̂)+Op(1/n). This observation also
reveals that the variance of the bagged estimator is close to that of the plug-in estimator in the sense

Var(ψbag(F̂)) = Var(ψ(F̂)+Op(1/n))

= Var(ψ(F̂))+2Cov(ψ(F̂),Op(1/n))+Var(Op(1/n))

≈ Var(ψ(F̂))+O
(
1/n3/2)

where O(1/n3/2) is the correct order because Cov(ψ(F̂),Op(1/n)) = O(1/n3/2) by Cauchy Schwartz
inequality and Var(Op(1/n)) = O(1/n2). Note that the bagged estimator ψbag(F̂) is in the form of an
expectation over the resamples, therefore is smooth in F̂ . This IJ estimator for its variance is derived from
applying the delta method on ψbag(F̂). The following shows the form of the IJ variance estimator (Efron
2014):
Lemma 1 The IJ estimator of Var(ψbag(F̂)) is

σ
2
IJ =

n

∑
i=1

Cov∗(ψ(F̂∗),N∗i )
2

where N∗i counts the number of replications of data point Xi in a bootstrap resample. Moreover, letting δx
be the delta measure at x, we have

nCov∗(ψ(F̂∗),N∗i ) = lim
ε→0+

1
ε
(ψbag((1− ε)F̂ + εδXi)−ψbag(F̂).

To link our random-perturbation variance estimator (3) to the IJ estimator, consider the case s = n. Note
that G= F̂∗ and that (nGi−1) can be identified with N∗i , therefore nCov∗(ψ(F̂∗),N∗i ) =Cov∗(ψ(G),n2(Gi−
1
n)) for each i and our estimator σ2

n = nσ2
IJ which reconfirms the relation Var(ψbag(F̂)) ≈ Var(ψ(F̂)) ≈

VarF(IF(X))/n.

3.2 Estimation Procedure

The estimator (3) assumes a hypothetical infinite number of bootstrap samples. In reality, one needs to use
a finite number of perturbations and simulation size per perturbation. Algorithm 1 shows an estimator that
incorporates these simulation runs for σ2

s . By associating the multinomial perturbation with resampling,
one can see that each F̂b = G, each Nb

i /s corresponds to the i-th component Gi, and nNb
i −s is the multiplier

sn(Gi− 1
n) in (3).

Next, we explain briefly why σ̂2
s should possess a central limit theorem, and in particular implies

a consistent estimator for σ2
s . Our explanation is based on the observation that σ̂2

s is approximately a
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U-statistic (Lee 1990; Serfling 2009; Van der Vaart 2000), a type of symmetric statistic that is constructed
from aggregating all combinations (without replacement) of the data. To this end, we ignore the error of
the gross average ¯̄ψ in estimating the true mean E∗[ψ(G)], so that the output of Algorithm 1 can be written
in the form

σ̂
2
s ≈

1
B(B−1) ∑

b6=b′

[
(ψ̄b−E∗[ψ(G)])(ψ̄b′−E∗[ψ(G)])

1
n

n

∑
i=1

(nNb
i − s)(nNb′

i − s)
]
=

1
B(B−1) ∑

b6=b′
h(ξb,ξb′)

where each ξb represents the random variates generated in the resampling and the simulation for the b-th
perturbation, and h is an appropriate symmetric kernel that maps the pair ξb,ξb′ to (ψ̄b−E∗[ψ(G)])(ψ̄b′−
E∗[ψ(G)])1

n ∑
n
i=1(nNb

i − s)(nNb′
i − s). This is precisely a U-statistic estimator for σ2

s by noting that
E∗[h(ξb,ξb′)] = σ2

s for all b 6= b′. Since U-statistics admit central limit theorems (CLTs), a CLT of
the form

√
B(σ̂2

s −σ2
s )→N (0,ρ2) is expected to hold for σ̂2

s when B is chosen large enough.

Algorithm 1 Multinomial Perturbation
Parameters: B≥ 2,R,s≤ n
for b = 1 to B do

Draw a resample {Xb
1 , . . . ,X

b
s } of size s from {X1, . . . ,Xn}, inducing an empirical distribution F̂b

Compute Nb
i = number of Xi in {Xb

1 , . . . ,X
b
s } for all i

for r = 1 to R do
Draw a ψ̂r(F̂b)

end for
Compute ψ̄b = 1

R ∑
R
r=1 ψ̂r(F̂b)

end for
Compute ¯̄ψ = 1

B ∑
B
b=1 ψ̄b

Output

σ̂
2
s =

1
B(B−1) ∑

b6=b′

[
(ψ̄b− ¯̄ψ)(ψ̄b′− ¯̄ψ)

1
n

n

∑
i=1

(nNb
i − s)(nNb′

i − s)
]

We note that the subsampling scheme in Algorithm 1 resembles the subbagging proposal in Mentch
and Hooker (2016). In the latter, subsampling is introduced to ensure central limit convergence, viewing
a random forest as an infinite-order U-statistic. This is contrary to our use of subsampling here as a tool
to alleviate the total simulation requirement as the next section shows.

3.3 Optimal Simulation Budget Allocation and Overall Effort

In this section we present theories on the budget allocation and the overall required simulation effort in
using Algorithm 1. We start by showing validity of the variance estimator (3) assuming absence of Monte
Carlo errors, and then examine the simulation effort required to achieve consistency in the presence of
Monte Carlo errors, as well as optimal allocation of a given simulation budget.

We shall frequently use the notations ω(·) and Θ(·). a = ω(b) means a/b→ ∞ as n,s→ ∞, and
a = Θ(b) means that there exist constants c,c > 0 such that cb≤ a≤ cb for all n,s.

We assume the following smoothness conditions for ψ:
Assumption 1 (Smoothness at true input model)

ψ(F̂) = ψ(F)+
m

∑
i=1

∫
IF(x;F)d(F̂i−Fi)(x)+ ε

where the remainder satisfies E[ε2] = o(n−1), and the influence functions IF satisfies VarF(IF(X ;F))> 0
and EF [IF4(X ;F)]< ∞.
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Assumption 2 (Smoothness at empirical input model) Assume the empirical influence function converges
to the truth in the sense that E[(IF(X1; F̂)− IF(X1;F))4]→ 0. Let F̂∗s be the resample of size s. Assume
the remainder in the Taylor expansion

ψ(F̂∗s ) = ψ(F̂)+
m

∑
i=1

∫
IF(x; F̂)d(F̂∗s − F̂i)(x)+ ε

∗

satisfies E∗[(ε∗−E∗[ε∗])4] = op
(
s−3
)
.

We have the following consistency result of the estimator σ2
s :

Theorem 1 Under Assumptions 1 and 2, it holds

σ
2
s → σ

2 in probability as n→ ∞,s→ ∞

where σ2 :=VarF(IF(X)) and s is allowed to grow independently of n.
The important message from Theorem 1 is that the resample size s is allowed to grow at an arbitrary

rate relative to the data size n.
Now we examine the simulation effort needed for Algorithm 1. We first need to figure out the

mean square error (MSE) of the variance estimate σ̂2
s output from Algorithm 1. To proceed, denote by

τ2 =Var(ψ̂(F)) the variance of a single simulation replication under the true input model. Correspondingly
let τ̂2 = Var(ψ̂(F̂)) and τ̂∗2 = Var∗(ψ̂(F̂∗s )) be the variances when driven by the empirical input model
and the resampled model.
Assumption 3 (Convergence of simulation variance) τ̂2→ τ2 in probability as n→∞, and E∗[(τ̂∗2− τ̂2)2] =
op(1) as both n,s→ ∞.

Assumptions 1-3 may seem complicated at first glance. However, they can be readily checked to hold
for performance measures with finite time horizons under mild conditions.
Theorem 2 (Finite horizon measure) If ψ(F) = EF [h(X)], where X = (X(1), . . . ,X(T )) consists of T
i.i.d. variables distributed under F , h is some performance function, and

1. 0 <VarF(∑
T
t=1 EF [h(X)|X(t) = X)< ∞

2. Let I = (I(1), . . . , I(T )) be a sequence of indices such that each 1 ≤ I(t) ≤ T , and denote by
XI = (X(I(1)), . . . ,X(I(T ))). It holds maxI EF [|h(XI)|4]< ∞

then Assumptions 1-3 hold.
The MSE of σ̂2

s can be characterized as:
Lemma 2 Under Assumptions 1-3, if the outer size B and resample size s are chosen to be ω(1), then the
variance estimate σ̂2

s output by Algorithm 1 has the following decomposition

σ̂
2
s = σ

2
s +E +op(

√
E[E 2])

where the leading error E satisfies E[E ] = 0 and

E[E 2] =
2s2n
B2

(σ2

s
+

τ2

R

)2
+

4sσ2

B

(2σ2

s
+

τ2

R

)
. (4)

Note that, given a total simulation budget N = BR, the error (4) takes the form

c1

B2 +
c2

BN
+

c3

N2 +
c4

B
+

c5

N

where ci, i = 1, . . . ,5 do not depend on B or R. Therefore, in order to minimize the error by adjusting B,R,
it is optimal to set B as large as possible, i.e., B = N. This is summarized below:
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Theorem 3 (Optimal allocation) Under Assumptions 1-3, as the input data size n→∞, the total simulation
budget N→ ∞ and resample size s→ ∞, the optimal B,R that minimize the leading term in the MSE of
σ̂2

s in estimating σ2
s are

B∗ = N,R∗ = 1

which gives an error σ̂2
s −σ2

s = E +op(
√

E[E 2]) where

E[E 2] =
2s2n
N2

(σ2

s
+ τ

2)2
+

4sσ2

N

(2σ2

s
+ τ

2
)
. (5)

Theorem 3 is appealing in terms of the transparency of allocation rule. The allocation essentially
removes the nestedness of the simulation procedure by requiring only one simulation run per resample.
This property comes intuitively from the observation that the ψ in the covariance term in the estimator (3)
is unchanged by replacing with merely one simulation run ψ̂r.

By forcing the MSE (4) to o(1), we identify the range of B,R,s that produces a statistically valid
variance estimate, giving rise to the overall required simulation effort:
Theorem 4 (Overall simulation effort requirement) Under Assumptions 1-3, if the parameters B,R and s
of Algorithm 1 are chosen such that

B = ω
(
n1/2), BR = ω

(
sn1/2), s = ω(1) (6)

then σ̂2
s is consistent, i.e., σ̂2

s → σ2 in probability. In particular, the minimum required total simulation
budget is N := BR = ω

(
n1/2

)
when the resample size is set to s = ω(1).

The second condition in (6) forces the total simulation effort to be N = ω(sn1/2). On the other hand,
s can grow at an arbitrary rate according to Theorem 1, thus leading to the minimum required effort
N = ω

(
n1/2

)
. This shows the advantage, in terms of the required simulation effort, of random perturbation

over individualized estimation, i.e., estimating each IF(Xi; F̂) by (ψ̂((1− h)F̂ + hδXi)− ψ̂(F̂))/h. With
individualized estimation, obtaining an estimate for each IF(Xi; F̂) costs at least one simulation run, hence
the required simulation effort has to scale at least linearly in n, whereas with random perturbation an effort
of order

√
n would suffice.

Finally, we present the optimal resample size s given data size n and budget N to minimize the gross
error of σ̂2

s in estimating σ2. Note that σ̂2
s −σ2 = (σ̂2

s −σ2
s )+ (σ2

s −σ2). The first error is the Monte
Carlo error with a MSE leading term (5) if single-run allocation is used, and is increasing in s. The second
error however is decreasing in s because a larger s corresponds to a smaller perturbation hence better
approximation to the influence function. The optimal s is then found by balancing the two errors. We
have the following result concerning the optimal resample size (note that the optimal allocation is always
non-nested in this case thanks to Theorem 3):
Theorem 5 (Optimal resample size) Let ψ be the finite horizon performance measure from Theorem 2. For
a given simulation budget N = ω(n1/2) and data sizes n, if optimal resample size s and B,R of Algorithm
1 are {

s∗ = Θ(N1/2n−1/4) if N ≤ n3/2

Θ(n1/2)≤ s∗ ≤Θ((Nn−1)∧n) if N > n3/2

B∗ = N,R∗ = 1

then we have a gross error σ̂2
s −σ2 = E +op(N−1/2n1/4 +n−1/2), where the leading term has an MSE

E[E 2] = Θ
(√n

N
+

1
n

)
.
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We comment that in the case of multiple input models m > 1, one can estimate the individual variance
VarFi(IFi(X (i))) by perturbing the i-th model only and using Algorithm 1, as mentioned before, arriving at
the following estimator that is similar to (3)

̂VarFi(IFi(X (i))) =
1
ni

ni

∑
j=1

[
Cov∗(ψ(F̂1, . . . , F̂i−1,G, F̂i+1, . . . , F̂m),sni(Gi−

1
ni
))
]2 for all i = 1, . . . ,m.

An alternative is to perturb all the models simultaneously, i.e., using ψ(G(1), . . . ,G(m)) where each G(i) is
a random perturbation for the i-th model, and estimate all the m influence functions simultaneously. This
leads to the estimator

̂VarFi(IFi(X (i))) =
1
ni

ni

∑
j=1

[
Cov∗(ψ(G(1), . . . ,G(m)),sini(G

(i)
j −

1
ni
))
]2 for all i = 1, . . . ,m

where si is the resample size used for the i-th model. This simultaneous perturbation is achieved by drawing
resamples from each of the m input models with possibly different resample sizes.

4 NUMERICAL RESULTS

We consider an M/M/1 queuing system with arrival rate 0.5 and service rate 1. Suppose the system is
empty at time zero. The performance measure of interest is the probability that the waiting time of the 20-th
arrival exceeds 2 units of time, whose true value is approximately 0.182. Specifically, the system has two
input distributions, i.e. the inter-arrival time distribution F1 = Exp(0.5) and the service time distribution
F2 = Exp(1), for which we have n1 and n2 i.i.d. data available respectively. If At is the inter-arrival time
between the t-th and (t +1)-th arrivals, and St is the service time for the t-th arrival, then the system output

ψ(F1,F2) = EF1,F2 [1{W20 > 2}]

where 1{W20 > 2}= 1 if W20 > 2 and 0 otherwise, and the waiting time W20 is calculated by the Lindley
recursion W1 = 0,Wt+1 = max{Wt +St −At ,0} for t = 1,2, . . . ,19.

We test Algorithm 1 under different input data sizes. For each input data size, 1,000 95%-level
CIs are constructed for the true performance measure ψ(F), each from an independently generated input
data set. We allocate 1,000 simulation runs to compute σ̂2

1 , σ̂
2
2 using Algorithm 1, and another 200

simulation runs driven by the empirical input distributions to compute the point estimator ψ̄(F̂1, F̂2). Let
τ̂2 be the sample variance of the 200 simulation replications. Then the 95%-level CI is computed as

ψ̄(F̂1, F̂2)±1.96
√

σ̂2
1 /n1 + σ̂2

2 /n2 + τ̂2/200. Tables 1, 2 and 3 report the coverage probability, mean and
standard deviation of the CI lengths, the estimated ratio between input and simulation standard deviations,
and the number of times that the algorithm outputs a negative variance estimate (the estimate is not
guaranteed to be always positive, and reset to 0 if it turns out negative).

Table 1: Algorithm 1 with B = 1,000,R = 1,s1 = n1,s2 = n2.

input data sizes
coverage
estimate

mean CI
length

std. CI
length

input se.
sim. se. # neg var

n1 = 60,n2 = 30 85.1% 0.427 0.179 4.25 6
n1 = 200,n2 = 100 83.7% 0.252 0.114 2.42 176
n1 = 600,n2 = 300 89.4% 0.212 0.118 2.04 419
n1 = 2,000,n2 = 1,000 95.1% 0.242 0.168 2.56 479

The results show that, compared to standard bootstrap for which s = n (Table 1), using a relatively
small resample size s (Tables 2 and 3) can help reduce the variability of the variance estimate and generate
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Table 2: Algorithm 1 with B = 1,000,R = 1,s1 = s2 = 30.

input data sizes
coverage
estimate

mean CI
length

std. CI
length

input se.
sim. se. # neg var

n1 = 60,n2 = 30 84.4% 0.420 0.169 4.20 2
n1 = 200,n2 = 100 92.8% 0.264 0.064 2.30 2
n1 = 600,n2 = 300 94.9% 0.179 0.031 1.34 9
n1 = 2,000,n2 = 1,000 95.2% 0.134 0.016 0.72 82

Table 3: Algorithm 1 with B = 1,000,R = 1 and si = min(
√

1,000n−1/4
i ,n1/2

i ), the optimal resample size
suggested by Theorem 5.

input data sizes
coverage
estimate

mean CI
length

std. CI
length

input se.
sim. se. # neg var

n1 = 60,n2 = 30 87.2% 0.392 0.103 3.59 0
n1 = 200,n2 = 100 93.1% 0.255 0.043 2.11 0
n1 = 600,n2 = 300 93.5% 0.174 0.016 1.18 0
n1 = 2,000,n2 = 1,000 94.7% 0.133 0.007 0.61 0

statistically more accurate CIs. More negative variance estimates suggests more variability. Table 1 has
much more negative variance estimates than the other two tables, therefore using s = n leads to much larger
variability in the estimate. Another sign of estimation variability is the much larger standard deviations
of the CI lengths in Table 1, especially for large data sizes. This is also reflected through the coverage
probability. CIs in Table 1 tend to undercover the truth, except for the case n1 = 2,000,n2 = 1,000 which
however have much wider CIs. This misleading phenomenon is probably because that manually resetting
negative variance estimates to zero makes the estimator upward biased which in turn gives rise to wider
confidence intervals. Actually the mean CI length for the case n1 = 2,000,n2 = 1,000 in Table 1 is 0.242,
almost twice of those in Tables 2 and 3.

Based on the trend of the coverage probability as the data sizes grow, our variance estimate for input
uncertainty appears statistically consistent. In both Tables 2 and 3, as the data size increases from 30 to
2,000, the coverage probability approaches the nominal value 95%. Note that this happens under a fixed
the simulation budget 1,000 for estimating the input variance, which demonstrates that our algorithm is
generating statistically valid variance estimate even when the data size is of the same order as the simulation
budget, verifying Theorem 4.

Lastly, compared to the optimal resample size (Table 3) suggested by Theorem 5, the simple strategy
of using s1 = s2 = 30 (Table 2) seems to work equally well in the considered cases. Since the optimal
size from Theorem 5 contains hidden constants, in practice it could be useful to have simple and workable
strategies like this one.

5 CONCLUSION

We have studied a direct use of the delta method in estimating nonparametric input variance in simulation
estimation under input uncertainty. Our approach is based on a random perturbation to obtain a finite-
difference estimator that approximates the gradient information needed in the delta method, exhibited
by the influence function in the nonparametric setting. By multiplying with a proper score function as
in simultaneous perturbation and other smoothing methods, the projection of our random perturbation
automatically cancels out higher-order approximation terms and leads to a small bias in estimating the
gradient. We have specialized our perturbation distribution choice to a multinomial distribution over the
input data set, which connects our approach to the infinitesimal jackknife estimator used in approximating
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the variance of bagging. We have presented the consistency, sample size requirement and optimal sampling
allocation strategy for our estimator, and provided numerical examples to support our theoretical findings.
Future work includes the full development and expansion of our analyses to more general classes of random
perturbation estimators and more elaborate numerical comparisons with other approaches in both parametric
and nonparametric settings.
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