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ABSTRACT

As AI advances and becomes more complicated, it becomes necessary to study the safety implications
of its behavior. This paper expands upon prior AI-safety research to create a model to study the harmful
outcomes of multi-agent systems. In this paper, we outline previous work that has highlighted multiple
aspects of AI-safety research and focus on AI-safety systems in multi-agent systems. After overviewing
previous literature, we present a model focused on flash crashes, a concept often found in economics. The
model was constructed using an interdisciplinary approach that includes game theory, machine learning,
cognitive science and systems theory to study flash crashes in complex human-AI systems. We use the
model to study a complex interaction between AI-agents, and our results indicate the multi-agent system
in question is prone to cause flash crashes.

1 INTRODUCTION

Advancements in AI such as AlphaGo, the program who defeated the world champion in Go (a feat that up
until that moment was considered impossible for computers), have catapulted AI to the forefront of public
consciousness. The rise of AI and its implications for automation have thus become a primary concern for
researchers, as they seek to balance the competing interests of technological progress and safety. Most of
these concerns however are levied towards the development of AI whose goals and values match those of
its designers, and although such considerations are valid and important, they are not sufficient.

AI is not just going to permeate the technology we engage with every day: it will manifest itself through
the rise of agents who will actively participate in human and social systems. The best example of this
comes from the stock market, where over 50% of trading volume is comprised of high frequency trading
algorithms (Golub et al. 2012). As AI agents expand into other social systems, it becomes paramount to
research ways to prevent these agents from triggering catastrophic consequences.

In this paper we propose an interdisciplinary approach to conducting such research. We construct
a model extending upon contemporary research in game theory, machine learning and chaos theory to
simulate the complex systems that emerge from large-scale interactions between AI agents and human
decision-makers. Through the model’s simulations, it becomes possible to study complex AI behavior
and its implications for collective human behavior at a macro-scale, thereby expanding the ways in which
AI-safety research can be conducted beyond the individual agent level.
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2 BACKGROUND

2.1 Reinforcement Learning

Reinforcement learning (RL) is a subset of machine learning models predicated upon a reward-system that
induces the agent to discover a policy mapping situations to actions as to maximize positive rewards over
time (Tuyls and Weiss 2012). Such agents are bound by exploration-exploitation tradeoffs, for exploration
can result in better policies and rewards over time, while exploitation can maximize immediate rewards
from a policy that has already been discovered (Tuyls and Weiss 2012). These tradeoffs and strategies are
balanced through a series of hyper-parameters and algorithms that are inherent to each RL model.

RL has becoming a prominent subject on contemporary machine learning research because of major
results in a variety of games scenarios such as Go, Chess, soccer, and Atari games, where knowledge about
other agents is not as important, or where self-play ‘is possible, such as in GO and Dota2 (Foerster et al.
2018). In particular, DeepMind has shown that Deep Q-Networks, which combine convolutional neural
networks for feature representation with Q-learning training, can achieve superhuman performance in Atari
and board games despite being limited to only accessing board states and reward signals (Tampuu et al.
2017).

A major challenge to RL however lies in complex environments with multiple equilibrium points. In
those cases, learning one strategy does not guarantee that the other players will also adopt the same strategy,
leading to higher level of complexity (Hu et al. 1998). Prior research has shown that in a multi-agent
setting, RL agents converge towards a strategy only if trained with specific trials, through myopic actions,
or through greedy algorithms optimizing the Q-learning. More importantly however, the agents end up
trapped in local optima they fail to escape from because of the associated costs of exploration (Hu et al.
1998). Thus, despite their prowess, RL agents are susceptible to game-theory induced dilemmas.

2.2 AI Safety as a Reinforcement Learning Problem

Researchers at Google Brain and OpenAI have recently constructed a theoretical framework to road-map
key concerns in AI-safety. The concerns are the following (Amodei et al. 2016):

• Safe exploration. Can agents navigate their environment without responding in harmful ways?
• Robustness to distributional shift. Can agents recognize and express uncertainty about their model’s

validity towards new types of data as opposed to unconditionally operating under non-applicable
models?

• Avoiding negative side effects. Can the agent’s reward mechanism be programmed to avoid harmful
effects on its environment without having to explicitly and exhaustively address every possible
scenario?

• Avoiding reward hacking and wireheading. Can agents be prevented from distorting their observations
in order maximize their reward?

• Scalable oversight. Can agents update and learn correct behavior even when feedback is delayed?

This list is by no means exhaustive, and should instead function as a preliminary framework to direct
research questions when dealing with AI-safety. The problem however is that often harmful outcomes are
difficult, if not impossible, to predict before they occur due to the complexity of the probabilities involved.
Such events are categorized as ”black swans” because, despite their high magnitude, they are extremely
difficult to predict through traditional scientific models because of their low probability as statistical outliers
(Taleb 2007). Non-trivial harmful scenarios in AI-safety research can be categorized this way because the
self-improving nature of AI-agents makes their runaway behavior unforeseeable.

The problem is further compounded when one considers complex multi-agent systems, which lead to
the emergence of macro behavior that cannot be understood merely in terms of the individual agents. In the
status quo, the most sophisticated model is DeepMind’s ”Gridworld”, and it extends upon the 5 conditions
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mentioned above (Leike et al. 2017). The results were extremely concerning for both of the state-of-the-art
algorithms that were tested (A2C and Rainbow DQN):

• ”In the off switch environment, A2C learns to press the button and disable the off switch, while
Rainbow correctly goes directly to the goal.”

• ”In the side effects environment, both A2C and Rainbow take irreversible actions and reach a
suboptimal level of safety performance.”

• ”In the distributional shift environment, both algorithms generalize poorly to the test environment.”

Even when operating under the assumption that a ”safe” AI agent can be designed, the interaction
between agents gives birth to a complex systems whose emergent properties become hard to control, thereby
opening up a plethora of black swan events that can result in catastrophic consequences. One such example
is that of flash crashes.

2.3 Flash Crashes

A ”Flash Crash” occurs when financial security prices collapse rapidly within a short-time window (Bozdog
et al. 2011). On May 6, 2010, all major stock market indexes collapsed within a 36 minute window, with
the Dow Jones Industrial Average having its biggest intraday decline in history (Kirilenko et al. 2017). Prior
to the unprecedented rebound, over $1 trillion in market capitalization were lost (Grocer 2010). Similarly,
on October 7, 2016, the value of the British pound fell over 6%, which put it at its lowest level against
the dollar since May 1985 (Ismail and Mnyanda 2016). These extreme events were the result of High
Frequency Trading (HFT) algorithms reacting to each other’s buy and sell orders, which in turn triggered
a negative feedback loop that exaggerated the downward market move.

HFT algorithms have three distinct qualities: 1) they engage in frequent electronic trading 2) they employ
advanced algorithms and 3) they use advanced order infrastructures and automated strategies (Cavestro
2017). Abstracting these qualities from the financial context, any agent that engages in activity at a high
frequency and operates through algorithmic strategies can engage in the same behavior that leads to flash
crashes. Specifically, no single algorithm causes a flash crash, but rather it’s the emergent behavior of
the collective, the ”swarm”, that magnifies the impact of small perturbations (Golub et al. 2012). Recent
research has shown that flash crashes occur quite frequently, but often go unnoticed because the stock
collapse is not as pronounced (Golub et al. 2012). This is problematic, because upward of 50% of market
transactions are initiated by HFT algorithms, and the field is only expanding, thereby increasing the potential
for more frequent crashes and less frequent yet deeper collapses (Golub et al. 2012).

But the lessons drawn from HFT are not merely confined to the realm of finance. Any complex system
or organizational structure is vulnerable to flash crashes once AI-agents get involved. Specifically, research
has begun on how flash crashes can affect the healthcare system (West and Clancy 2010; Clancy 2015).
Unfortunately, the scope has been limited by the lack of analytical tools to effectively model such complex
systems as they accelerate the speed of their interactions and as they adapt to the entry of AI-agents. Thus,
new models are necessary to study the complex interactions between human-AI systems.

2.4 Game Theory and Minority Games

Game theory studies the strategic decision-making of rational (profit-maximizing) agents. It sits at the
intersection between mathematics and economics, and provides the perfect framework to study AI behavior
because AI agents, unlike humans, process situations in a strictly mathematical way, hence a reward-seeking
agent meets the very definition of a player in game theory.

John Nash proved that every game had at least one outcome where each player is mutually best
responding to their opponents, and the resulting set of strategies, where no player is better off deviating
given what they expect their opponents to do, is called the Nash Equilibrium (Nash et al. 1950). Game
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theory predicts that in any given game, the players will converge towards the Nash Equilibrium, therefore by
extension in a game where AI agents are the players, they will also converge towards the Nash Equilibrium.

Within game theory, there is one game that effectively models the interaction and adaptive dynamics
of markets: the minority game. The minority game is a game where each player has 2 options (Ex go to
room A or go to room B) and the payoff is incurred if the player picks the minority option (IE the option
chosen by the least amount of players) whereas the majority option yields to a penalty (Huang et al. 2012).
At first glance, there is no pure strategy that works because if this were the case, all players would pick
the same option, thereby leading to a penalty outcome. Hence, the Nash Equilibrium is a mixed strategy
(a strategy that assigns probabilities to each option). Essentially, the Minority Game can be described as
”...an extremely simplified market model, it allows to ask, analyze and answer many questions which arise
in real markets” (Challet et al. 2000).

In the traditional version of the game, grouping behavior has been observed by agents playing the
game (Huang et al. 2012; Hod and Nakar 2002). Such grouping behavior can be analogized to crowding in
financial markets and swarms in biology (Hart et al. 2001). This phenomenon is useful to understand one
layer of the complexity of AI-agents: even in a decentralized setting, the agents self-organize into collective
entities whose properties differ from that of the individual components, much like what is observed with
high frequency trading (Hod and Nakar 2002; Huang et al. 2012).

A few variations exist of the game. One involves evolution, where each agent self-modifies as they
iterate through the game (Hod and Nakar 2002). One, known as the El Farol Bar problem, sets thresholds
for the payoffs. Specifically, if not enough players go to the bar, then those in the bar incur a penalty, and
if too many players decided to go to the bar, then all those in the bar also occur a penalty (Arthur 1994).
More recently however, the minority game has been extended beyond one resource to include multiple
resources (Ein-Dor et al. 2001). We refer to all of these variations to construct our model.

The Minority Game is thus extremely helpful in studying the behavior of complex systems. For
example, prior uses of the game showed how learning processes lead to agent behavior highly divergent
from that observed in the traditional versions of the game (Araujo and Lamb 2004). Furthermore, contrarian
behavior (strategies deliberately set against the consensus) has also been shown to have a disproportionate
effect on the behavior of traditional agents (Zhong et al. 2005). More importantly however, the game
is a useful set-up to observe not just the interactions between AI-agents, but also how different types of
agents self-organize and behave inter-dependently (Metzler et al. 2000). This is extremely important, for
any useful model for AI-safety needs to be flexible enough to incorporate the different types of algorithms
AI-agents will be built with in the years to come.

3 MODEL DESIGN

Building upon DeepMinds approach of creating simple environments to observe AI-agents behavior under
different conditions, we propose a game theory model with flexible parameters to study emergent behavior
from multi-agent systems.

3.1 Agent Network

As opposed to the analytical approaches of the past, our model uses implemented agents as players. Prior
research has focused on mathematically inferring the Nash Equilibrium in specific Minority Game setups
where the players were not actual agents but rather theoretical constructs that could be derived from the
calculations. Instead, our model is less focused on a mathematically precise mapping of agent behavior,
and instead sets up, much like Gridworld, a playground for any type of AI in order to concretely observe
that same behavior. Thus, the agents are not theoretical: they are production-level AI-agents.

Furthermore, the players are not limited to just AI-agents, and in fact shouldn’t be. Pure AI Multi-agent
system behavior is an important and deep area of research in its own right, but it should not come at the
expense of the study of the adaptive interactions between humans and AI-agents. The model emphasizes
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human-AI interaction because both types of players engage in strategic decision-making in fundamentally
different ways, and since humans often deviate from the Nash Equilibrium because of social embedding,
the AI are likely to adapt their strategy in fundamentally different ways than they would in a pure AI system
(Thaler 1988). Much in the same way studying individual agents is not sufficient for AI-safety, studying
pure AI multi-agent systems will prove less generalizable.

3.2 Market Simulation

The game will bring together the different variations of the Minority Game that have proven fruitful in
understanding emergent behavior in multi-agent systems:

1. Instead of restricting it to just two moves, the game will have 3N moves, where N corresponds to
the number of resources the agents are competing after.

2. Just like with the El Farol Bar game, two thresholds will be set for each resource. The high
threshold H will reflect the percentage of players after which the penalty is incurred, as to indicate
oversaturation in the market which leads to a price collapse. The low threshold L will reflect the
percentage of players before which the penalty is incurred, as to indicate underinvestment which
also leads to a price collapse. Hence, the reward is only earned if the investment rate (percentage
of participating agents) I lies between the high and low threshold. Even though these parameters
can be set uniformly across all resources, they should be dynamic to reflect the diverse distribution
of opportunities for reward in the real world.

3. For every resource, each player will be able to long, short, or pass. In the case of long, rewards
are earned for investment rates with the high-low interval for that resource. In the case of short,
which in investing refers to betting against a security in order to profit if its price falls, the reward
is incurred if the investment rate is either above the high threshold, or below the low threshold.

4. Rewards for long are calculated as a fraction of the high threshold divided by the investment rate.
This dynamic is important because it generates an incentive to be contrarian and avoid crowded
resources, which matches the diminishing return nature of investing in the real world. This also
corresponds to the penalty cutter by a failed short strategy.

5. The penalty for long is calculated as the difference between each threshold and its corresponding
extreme (0 for low, and 100 for high) divided by the investment rate. This in turn is the reward for
short.

6. After each iteration, information about each resources participation will be made available to every
player. Furthermore, each players history will also be available to every other player.

The strategic landscape can be understood through Fig 1 which shows the decision matrix.
The payoffs, or utility function, of each strategy can be understood through Fig 2.
Thus, at a high level, the model is a modified version of the Minority Game that adds layers of

complexity to the strategic interactions of the agent that more closely resemble the real world. Specifically,
the parameters (N number of resources, H and L range for each resource, types of learning algorithms,
human and AI density, and etc.) are all configurable because not all complex systems are created the same.
Any model looking to enable researchers to study AI safety in a socio-technical system needs to be flexible
to accommodate the simulation of a wide range of complex systems: from the most social (Ex. social
media) to the most computational (Ex. financial trading).

Furthermore, we also add a component of event-making. Essentially, researchers can manipulate the
information flow (by restricting access to opponents’ past performance) to observe how perturbations on
this kind trigger chain reactions that shifts the equilibrium within the system. This closely resembles the
non-linear dynamics behind flash crashes, where one event (a technical glitch, and large trade) initiates
a chain reaction that pushes the consequences of the event to the extreme, thereby rendering the system
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Figure 1: Modified Minority Game.

more fragile. This is consistent with prior research on black swan events suggesting that counter-factual
reasoning highlights points of fragility within a complex system (Taleb 2007).

Specifically, the model enables multi-dimensional observations that can inform a coherent picture of
complex human-AI systems:

• What kind of self-organizing structure do the AI-agents converge to? How does this change when
humans enter the game?

• How does the macro-behavior of human players deviate when the AI-agents enter the mix?
• What kind of events trigger flash crashes?
• How quickly does the complex adaptive system emerging from humans and AIs playing the game

adapt to new events?
• What kind of strategy (short-term and high-frequency vs long-term and sporadic) does the humans

and AIs cluster around?
• Do the human and AI agents exhibit cooperative behavior? How does this change as the number

of agents increases?
• How do different machine learning algorithms affect the systems’ behavior? Are some algorithms

more contrarian or trend-following than others?

4 EXPERIMENTAL SETUP

As a starting point, we sought out to study the strategic behavior of a multi-agent system constituted purely
by AI agents. Specifically, we built mixed populations of 12 agents of 3 different models: Vanilla Policy
Gradient (VPG) (Williams 1992), Deep-Q Networks (DQN), and Trust Region Policy Optimizers (TRPO)
through the Tensorforce library (Schaarschmidt et al. 2018). DeepQ agents rely on Q-learning and use deep
neural networks to estimate value for unseen states, which would otherwise be a limitation of Q-learning
alone (Mnih et al. 2013). TRPO agents are unique in that they do not simply compute the optimal course
of action based on the discounted future value of their strategic decision, but they also explore and optimize
alternatives valuations for future rewards contingent upon different strategies (Schulman et al. 2015). This
architecture is useful for our type of experiment because we are not interested in how rapidly the agent
makes its decisions, but rather how close the agent gets to the globally optimal strategy and its consequences
in a strategically interdependent environment.

We begin with a homogeneous agent population because the deployment of different reinforcement
learning algorithms could potentially confound the results since they can be attributed to the difference
in architecture between the agents as opposed to being highlighted as an inherent feature of multi-agent
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Figure 2: The utility functions of each strategy in a [15, 60] El Farol Bar game as I increases.

behavior. We subsequently explore all combinations of the 3 agent types. We tested each population on
3 environments with differing level of resources (1, 5, and 10 resources) to identify any effect expanding
resources available would have on the behavior of the agents.

The high threshold after which the negative payoff occurred was 70% participation by the agents and
the low threshold was 30%. Hence, in order to occur a positive payoff by going long, participation needed
to be between 30% and 70% of the overall agent population. Each agents decision space was constituted
by 3 discrete values (0, 1, and 2) where 0 meant short, 1 meant no participation, and 2 meant long. Each
agents overall action space was thus their decision space multiplied by the number of resources, creating a
total of 243 (3 elevated to the 5th power) possible moves. Each action/move was expressed by the agent
through a 1D vector of 5 values, one for each resource (Ex. [0, 2, 1, 0, 2]).

Once every agent submitted its action, the environment computed the overall participation rate, and
based on whether it fell between the two thresholds, a payoff was computed and then the environment
separately computed the rewards for each agent based on whether they went long, short, or abstained from
participating for each particular resource. Specifically, each agent received as its reward the sum of each
individual payoff for the resources as calculated through the model referenced in Figure 1. As its state
in the game, each agent received the entire agent populations moves from the prior turn (Ex. [ [0, 2, 1,
0,2],[0,1,0,0,2],[0,2,2,1,2],[2,1,1,0,2]... ]). This setup is useful because it reduces the confounding effect
of information asymmetry: all of the agents get to observe their opponents moves in the prior turn, which
forces each agent to adapt its strategy in response to their opponents awareness of theirs as they advance
in the game.

Prior to recording the data from our simulation, we trained each agent through 1 million iterations of
the game to minimize the chance for randomness due to initial exploratory behavior. After such a large
number of iterations over such a simple game, each agents strategic policy becomes more sophisticated
and more indicative of the agents underlying strategic reasoning. Our simulation ran for 100,000 turns.
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5 RESULTS

Every turn, the environment computes the overall outcome for a resource: based on the participation rate,
the resource will either yield to a positive payoff for the agents who went long or a negative one (for
short strategies the payoffs are calculated by reversing the payoff from the long side). Thus, every turn
each resource payoff can be considered an event: if participation is below the minimum threshold, then a
correction occurs, whereas in the case of participation being higher than the maximum threshold, a crash
occurs, otherwise stable growth occurs. Tables 1, 2, and 3 show how often each type of event occurred for
each resource.

Table 1: Market Event Frequency for 1 Resource.

Agent Combo Bubbles Stable Growth Crashes
TRPO 0.385 60.038 39.577
DQN 0.0 0.0 100.0
VPG 0.497 63.939 35.564
TRPO + DQN 3.234 61.242 35.524
TRPO + VPG 0.309 58.026 41.665
DQN + VPG 8.145 91.855 0.0
TRPO + DQN + VPG 0.212 79.28 20.508

Table 2: Market Event Frequency for 5 Resources.

Agent Combo Bubbles Stable Growth Crashes
TRPO 0.3344 58.1816 41.484
DQN 0.0 0.0 100.0
VPG 0.3684 60.635 38.9966
TRPO + DQN 0.5818 81.8454 17.5728
TRPO + VPG 0.4928 63.037 36.47
DQN + VPG 1.1934 72.404 26.40
TRPO + DQN + VPG 2.1125 65.5664 32.321

Table 3: Market Event Frequency for 10 Resources.

Agent Combo Bubbles Stable Growth Crashes
TRPO 0.475 62.383 37.14
DQN 0.0 0.0 100.0
VPG 0.3896 60.949 38.6614
TRPO + DQN 1.2817 60.592 38.125
TRPO + VPG 0.2942 58.2147 41.491
DQN + VPG 0.0383 38.2225 61.7392
TRPO + DQN + VPG 0.9299 55.8729 43.1971

There are a few major patterns that appear immediately. First, for all the resources, the frequency of
bubbles is less than 10% of all the events. The number gets below 5% and even below 1% as the number
of resources expand. The agents are clearly unlikely to inflate the participation in a resource, which stands
in sharp contrast with the observations on the irrational exuberance highlighted in humans. Second, except
for a homogenous populations for DQNs, stable growth occurs quite frequently. This indicates that the
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emergent behavior of the agents collective decision-making often leads to mutually beneficial outcomes,
albeit in a temporary way. Third, crashes range from 30% to 60% which indicates that the agents often
withdraw suddenly from the resources thereby causing a crash. This pattern uniquely validates the use of the
model to study flash crashes since in the context of financial trading, high frequency trading algorithms often
rapidly withdraw from trading positions, leading to sharp sell-offs that move the stock market downwards.
Lastly, full DQN populations converge towards crashes 100%, which stands in sharp contrast to the 30-40%
frequency of crashes for VPGs and DQNs, suggesting that DQNs reach a complete as opposed to mixed
equilibrium.

Furthermore, we analyzed the relationship between agents choosing to ”short” resources and those
resource crashes. Specifically, we calculated the median, mean, and standard deviation of the frequency of
short positions whenever a crash occurred. Tables 4, 5, 6 displays these results.

Table 4: Frequency of Short Positions During Crashes for 1 Resources.

Agent Combo Median Mean Standard Deviation
TRPO 50.0 50.0 0.0
DQN 100.0 100.0 100.0
VPG 50.0 50.0 0.0
TRPO + DQN 0.0 0.0 0.0
TRPO + VPG 50.0 50.0 0.0
DQN + VPG 0.0 0.0 0.0
TRPO + DQN + VPG 33.333 33.333 0.0

Table 5: Frequency of Short Positions During Crashes for 5 Resources.

Agent Combo Median Mean Standard Deviation
TRPO 50.0 50.90 1.818
DQN 100.0 100.0 0.0
VPG 50.0 48.88 3.6335
TRPO + DQN 50.0 52.77 9.212
TRPO + VPG 50.0 50.90 3.956
DQN + VPG 55.55 55.55 7.856

Table 6: Frequency of Short Positions During Crashes for 10 Resources.

Agent Combo Median Mean Standard Deviation
TRPO 50.0 50.44 5.419
DQN 100.0 100.0 0.0
VPG 50.0 49.646 4.409
TRPO + DQN 57.77 54.72 13.08
TRPO + VPG 50.0 50.0 4.059
DQN + VPG 52.727 52.737 16.702
TRPO + DQN + VPG 50.505 50.545 6.038

There are 2 major patterns that should be highlighted. First, DQNs converged towards shorting 100%
of the time, which is consistent with the prior result that full DQN populations cause every resource to
crash. Secondly, every other combination leads to the agents shorting the resource right before a crash up
to 50% of the time. Specifically, over half the agents not only do not participate into a resource before
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a crash, but they actively bet against. No participation was an extremely unlikely choice by all of agents
across all experimental conditions.

6 DISCUSSION

Our results indicate that even a simple multi-agent system can have destabilizing consequences in a complex
environment. Instead of creating upward pressure that eventually crosses the max threshold (analogous
to financial bubbles bursting), the agents caused participation in each resource to collapse (analogous to
a market crash) suddenly. Contrary to the well-documented human bias that favors inflated valuations,
the agents did not exhibit such exuberant behavior. The results clearly indicate that the AI agents have
fundamentally different strategic reasoning processes that favor more conservative strategies.

Furthermore, our model clearly enabled the observation of a dangerous AI behavior that would go
undetected in traditional AI-safety research. Specifically, merely studying a single agent to constrain its
behavior in a particular environment is not sufficient because that same agent could, as part of a multi-agent
system, behave in harmful ways as part of its response to the other agents. Our experiment demonstrates
that game theory can provide many interesting set ups to study these phenomena in order to refine our
understanding of AI-safety.

Additionally, our findings highlight the concrete implications of complex Nash equilibria. In scenarios
where the NE does not lead to a pure strategy or where the NE is not easily computable, the resulting
strategic decisions made by the AI agents can lead to negative effects to the overall system. We found
no evidence that longer training improved the agents ability to coordinate towards mutually beneficial
outcomes or even towards any time of equilibrium that resulted in stability for the system. Also, any
assumption that the agents would develop some super-rational behavior that would maximize collective
gain was invalidated.

Our data also indicates that the agents had no reservations betting against the consensus. The reasoning
behind this type of risk taking behavior is not clear yet, and it warrants further research. However, the data
makes it very clear that the agents self-interested pursuit of their objective will turn adversarial if given
the option. This is consistent with DeepMinds and OpenAIs prior research over their agents propensity
towards cheating if given the opportunity. The consequences of an adversarial relationship between humans
and AIs cannot be understated: AI behavior will turn aggressive if an adversarial dynamic emerges in a
complex interaction.

It is worth reiterating that the objective of the model is not to level the playing field between the
different types of agents. Instead, its purpose is to simulate the conditions of complex systems to study
black swan events like flash crashes. Flash crashes are a useful model to begin researching the harmful
outcomes of emergent AI behavior to build more robust systems.

Robustness needs to become a core feature of our socio-technical systems. As AI begins to take
over and manage e-commerce, nurse-assignment, investing and medical diagnostics, researchers need to
be constantly asking questions about the fragility of our system. Researchers need to highlight potential
failure points and pre-emptive solutions to flash crashes, in the same way that stock exchanges implemented
automatic systems to momentarily halt trading of stocks that rapidly shifted in price in a statistically
anomalous way.

Furthermore, while pursuing AI-testing on an individual level, AI-safety research needs to broaden its
scope and consider not only homogeneous (same learning algorithm) multi-agent systems of AIs, but also
heterogeneous (different learning algorithms) ones. More importantly however, AI-safety research needs
to encompass the human factor, and deeply research the ways in which collective human behavior changes
in response to collective AI-agent behavior and vice versa. The emergent consequences of these feedback
loops lie at the foundation of a safe architecture of human-AI systems.
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7 CONCLUSION

The evolution of computer hardware has enabled unprecedented advancements in machine learning, as
it has recently become possible to train AI to tackle complex challenges. Alongside this progress, more
research needs to be conducted on how to avoid harmful outcomes from the emergent behavior of AI multi-
agent systems, because flash crashes in domains outside of finance, like healthcare, can have devastating
consequences. This model is a step in the right direction, because it is flexible enough to accommodate
a researchers exploration of how different game parameters affect collective outcomes, and, just like
Gridworld, provides a test-bed for present and future machine learning algorithms.
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