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ABSTRACT 

Modern enterprises are large complex systems operating in highly dynamic environments thus requiring 
quick response to a variety of change drivers. Moreover, they are systems of systems wherein understanding 
is available in localized contexts only and that too is typically partial and uncertain. With the overall system 
behaviour hard to know a-priori and conventional techniques for system-wide analysis either lacking in 
rigour or defeated by the scale of the problem, the current practice often exclusively relies on human 
expertise for monitoring and adaptation. We present an approach that combines ideas from modeling & 
simulation, reinforcement learning and control theory to make enterprises adaptive. The approach hinges 
on the concept of Digital Twin - a set of relevant models that are amenable to analysis and simulation. The 
paper describes illustration of approach in two real world use cases.  

1 INTRODUCTION 

Modern enterprises are complex systems of systems operating in highly dynamic environments that need 
to respond quickly to a variety of change drivers. Determining the right response often requires a deep 
understanding of aspects such as structural decomposition into subsystems, relationships between these 
subsystems, and emergent behaviour. The scale of organisations, their socio-technical characteristics, and 
fast business dynamics make this a challenging endeavour. Current industry practice relies principally on 
human expertise to arrive at suitable responses and has turned out to be inadequate. Several enterprise 
modelling languages have been proposed to aid human-in-the-loop decision making, however, none fully 
addresses the problem. Languages capable of specifying all relevant aspects are not amenable to rigorous 
analysis, and the languages that provide sophisticated analysis capabilities address only a subset of the 
relevant aspects. Moreover, lack of interoperability makes it a challenge to use a set of relevant languages 
together. Furthermore, implementing the desired response through suitable modifications to enterprise IT 
systems, business processes and strategies is no less complex. Little help exists to identify what needs to 
modified where and how.  

Having identified the desired set of modifications, technology exists to introduce these changes to an 
enterprise, albeit in a widely varying spectrum of efficacy. For instance, modern IT systems are relatively 
more amenable to such modifications than legacy systems. However, adapting enterprises suitably and 
effectively in increasingly dynamic environments remains a time- and effort -intensive endeavour.  

To address the problem of enterprise adaptation, in this tutorial, we present a novel approach that is 
based on domain knowledge, is driven by real-world data, and that uses simulation models to support 
evidence based adaptation. The approach hinges on the concept of Digital Twin – a set of relevant models 
amenable to rigorous analysis and simulation. We describe the core modeling and model processing 
infrastructure necessary to support the proposed approach. We describe early stage explorations of its 
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application to problems where the mechanistic world view holds. We argue similar benefits are possible 
for problem spaces involving human actors as well. 

2 STATE OF THE ART AND PRACTICE 

The analysis of complex enterprises is typically approached using two broad categories: qualitative 
approach (Mcmillan, 1980) and quantitative approach (Currall and Towler, 2003). The qualitative approach 
is concerned with the subjective assessment of the underlying enterprise through a range of management 
techniques such as interviews, discussions, and field studies. The quantitative approach, in contrast, 
involves precise interpretation of system data, structure and behaviours. 
 The quantitative approach is further classified into three categories: (a) inferential approach, (b) 
experimental approach and (c) modelling and simulation approach (Kothari, 2004). The inferential 
approach (Michalski, 1993) analyses the existing system data (i.e., trace or historical data) to infer the 
characteristics of a system or an enterprise. This approach is effective when the environment where an 
enterprise operates is static. The experimental approach comprehends an enterprise by manipulating the 
system variables and observing their effects in a controlled environment. This approach is often infeasible 
or not an economical option for large business critical enterprises.  
 The modelling and simulation approach imitates a real enterprise using a (purposive) model, explores 
a range of scenarios by simulating the possible (forward looking) changes incorporated into the model, and 
develops a precise understanding about an enterprise by interpreting the simulation results. The modelling 
and simulation approach visualises systems using two broad approaches: top-down approach and bottom-
up approach (Thomas and McGarry, 1994). A top-down approach models an enterprise as a whole and 
adopts reductionist view to decompose it into smaller parts to understand the parts in isolation. This 
approach uses a range of models to represent and analyse enterprises. These models are: (i) mathematic 
model and (ii) enterprise model (EM). The mathematical models, such as linear programming (Candes and 
Tao, 2005) and integer programming (Schrijver, 1998), represent a system using mathematical formulae 
and use rigorous mathematical and statistical problem solving techniques for system analysis. The 
enterprise models (EMs), such as ArchiMate (Iacob, et al. 2012), i* (Yu et al. 2006) and BPMN (White, 
2008), and System Dynamics (SD) (Meadows and Wright, 2008), are typically less rigorous than 
mathematical models, however they serve a wide range of modelling and analysis needs of the complex 
enterprises. The key concerns with top-down approaches are: they are not cognizant of emergent behaviour 
and expect information about whole enterprise, which is a difficult expectation for a large enterprise.   
A bottom-up approach starts from the parts or micro-behaviours and arrives at a holistic view of a system 
through composition. The bottom up approach uses the agent and actor based technologies, such as Erlang 
(Armstrong, 1996), Akka (Allen, 2013), and Scala Actor (Haller and Odersky, 2009), for modelling and 
analysing systems. They are capable of observing emergent behaviour but not capable of representing 
complex structure and not cognizant of uncertainties.  

3 PROPOSED SOLUTION 

We illustrate the knowledge-guided data-driven model-based simulation-aided evidence-backed approach 
for design, control and adaptation of large enterprises. Though validated in problem spaces where the 
mechanistic world view holds, we argue, it is equally applicable for socio-techno spaces as well. Though 
not described here for want of space, the tutorial will outline a line of attack for this aspect as well. 
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3.1 Line of Attack 

We envisage a line of attack wherein an enterprise is viewed at three related planes namely: Intent defining 
goals, capabilities, and measures; Design defining organisational structure, processes, and information 
systems; Implementation realizing the design plane in terms of organisation and its software systems; and 
interactions of the three planes with an environment as shown in Figure 1 (a).  The design plane needs to 
provide suitable machinery to arrive at the specifications of the right organisational structure, processes and 
information systems so as to meet the specified intent. To this end, we propose simulation-guided data-
driven machinery for design space exploration. The outcome of this human-in-loop process is an executable 
model of the enterprise and specifications of its software systems – i.e. an enterprise digital twin. We use 
model driven techniques to transform the design plane specifications into an efficient implementation of 
supporting software systems that are capable of dynamically adapting to the changes in environment. The 
design plane models serve as the reference for adaptation of implementation plane systems. 

Our adaptation architecture draws its inspiration from a well-studied and widely used concept from 
control theory – Model Reference Adaptive Control (Butler et al. 1992) shown in Figure 1 (b). The Model 
captures the desired reference behaviour of enterprise. The Enterprise is the complex system of systems to 
be controlled - viewed principally as input-output transfer function and possibly persistent side-effects. The 
Monitoring & Sense Making component constitutes the core technology infrastructure to observe and 
discern input and output of enterprise. The Controller component constitutes the core technology 
infrastructure that, together with the Monitoring & Sense Making component, nudges the Enterprise as 
close to the Model as possible thus achieving a model-guided data-driven justification-based human-in-the-
loop adaptive response.  

In manufacturing domain terminology, the fixed point of the design plane model is a digital twin of the 
enterprise. A digital twin mimics the behaviour of a system in order to support what-if analyses and to 
arrive at appropriate responses to various contingencies that may arise in a plant.  

Future enterprises are systems of systems with complex interactions operating in a dynamic 
environment. Given the structural and behavioral complexity, detailed understanding is possible only in 
localized contexts (Bar-Yam 1997). At the same time, events occurring in one context influence the 
outcomes in other contexts. Lack of complete information coupled with inherent uncertainty make holistic 
analysis of systems intractable. As a result, decisions pertaining to system design and implementation are 
unlikely to be globally optimal. Non-availability of complete information and inherent uncertainty make 
traditional optimization approaches impractical. Therefore, in many cases a simulation-based approach is 
the only recourse available for arriving at a “good enough” solution by navigating the solution space 
(Gosavi 2003). However, considering the open nature of the problem, an exhaustive navigation of the 
solution space is infeasible. It calls for intelligent navigation of the solution space guided by domain 
knowledge and learning from past experience. Figure 2(a) provides a pictorial representation of proposed 
line of attack that hinges on: (i) model-based machinery to help define enterprise digital twin, (ii) simulation 

(a) Layers of Adaptive Enterprise. (b)  Model Driven Adaptive Enterprise. 

Figure 1: Adaptive Enterprise. 
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machinery what-if and if-what analysis, (iii) mode l-based machinery to help implement the system right, 
(iv) a mechanism to map the two sets of models along with a means to derive one from the other, and (v) a 
learning loop to enable continuous improvement over time. 

3.2 Complex System of Systems 

Consider a large automobile manufacturing company. It is essentially a geographically distributed 
ecosystem comprising of component manufacturers, sub-system manufacturers, and an assembly plant. The 
assembly plant itself is an ecosystem comprising of chassis manufacturing unit, body fabrication unit, paint 
shop, and a set of assembly lines. This complex system of systems is serviced downstream by another 
system of systems comprising of warehouses, dealerships, service centers etc. Figure 2 (b) depicts the 
automobile manufacturing company as a hierarchically decomposable system of systems. Steady state 
operation of this system is typically governed by production schedule arrived at centrally based on the 
demand, supply and capacity considerations. Suppose there is a disturbance at a few of these component 
manufacturers. While it is possible to know with a good degree of precision the impact of this disturbance 
on production schedules of these manufacturers, the downstream ramifications of this disturbance such as 
impact on production schedules of sub-system manufacturers and assembly plant, inventory, order 
cancellations etc. and in turn the effect of these events on the upstream supply chain are difficult to assess 
and quantify. This is largely due to complex interactions among the various constituents of ecosystem and 
consequent inability to predict the global impact of local actions. Typically, even in a localized context, 
while one broadly knows what corrective actions to perform for what problems and potential outcomes of 
those actions, one does not always know what the precise problem is and what the precise outcomes of the 
various mitigating actions are. This local uncertainty gets further exacerbated as it is propagated through 
the ecosystem. The dynamic nature of ecosystem i.e., specific constituents and their behaviours changing 
over time, makes the problem even harder. The key problems can be summarized as: (i) How to understand 
emergent behavior of complex system of systems (i.e., analysis), (ii) How to continue delivering the stated 
objectives in presence of perturbations (i.e., control), (iii) How to survive threats and maximize 
opportunities (i.e., transformation), and (iv) How to provide a feel for the system with a priori assurances 
(i.e., design). 

3.3 Enterprise Digital Twin 

In engineering discipline, modeling is the means to address problems of the kind discussed above. Models 
are precise specifications of the essential aspects of system. These specifications are amenable to 
quantitative analysis through what-if and if-what scenario playing. Such models are called a Digital Twin 
of the real system. Similar digital twins are required for enterprises as well. An enterprise digital twin is a 

(a) Model-based Architecture for Adaptive Enterprise. (b) Automobile Manufacturing System of Systems. 

Figure 2:  Architecture for Adaptive Enterprise. 
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virtual, high fidelity representation of complex system of systems that is amenable to rigorous quantitative 
analysis through what-if and if-what scenario playing using real data to facilitate local optimality, global 
robustness and continuous learning. An enterprise digital twin models an enterprise as a set of intentional 
autonomous adaptive learning agents that interact with each other and respond to the events of interest 
taking place in the environment. Agents can exist at different levels of granularity i.e., an agent can be seen 
as a composition of a set of next-level agents as shown in Figure 3 (a). An agent observes the environment, 
makes sense of the observations, and performs actions so as to achieve its objectives. The action could be 
changing the local state of agent or sending a message to other agents. These actions can be stochastic to 
model uncertainty. An agent is capable of adapting its behavior in response to the changes in its 
environment. Essentially, an agent has a set of situation-specific behaviours and it is able to switch from 
one behavior to another depending on the situation it finds itself in. An agent adapts its behaviour not only 
to achieve its objectives but also to ensure robustness of the overall system. An agent is also capable of 
learning new behaviours. 

An enterprise digital twin is a set of purposive analyzable and simulatable models representing the 
enterprise in order to mimic real-world phenomenon. A variety of Enterprise Modeling (EM) languages 
exist that provide information-capture and analysis support across a wide spectrum of sophistication. The 
majority of these languages can be traced to Zachman framework (Zachman 1987) advocating that capture 
of the why, what, how, who, when and where aspects leads to the necessary and sufficient information for 
addressing a given problem. Thus it can be argued that a complete specification of an enterprise is possible 
using the Zachman framework, however, there exists no support for analysis as the information is captured 
typically in the form of texts and pictures. It can be observed of the existing Enterprise Modelling (EM) 
languages that: the languages capable of specifying all the relevant aspects of an enterprise for 
organisational decision-making lack support for automated analysis (Zachman 1987, Krogstie 2008, 
Jonkers et al. 2004), and the languages capable of automated analysis can only address a subset of the 
aspects required for decision-making (Yu et al. 2006, Meadows and Wright 2008, White 2004). Moreover, 
the system of systems nature and the large size of modern enterprises means that an understanding of an 
enterprise – structural and behavioural – is available only locally, from which the overall behaviour needs 
to be derived. Also, even the local understanding can have an element of uncertainty. 

The Actor model is based on the model of concurrent computation wherein an Actor, in response to a 
message that it receives, can: make local decisions, create more actors, send more messages, and determine 
how to respond to the next message received. Actors may modify their own private state, but can only affect 

(a) Enterprise digital twin – a hierarchical 
decomposition of interacting agents. (b) Accelerated creation of digital twin models. 

Figure 3: Digital Twin Models. 
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each other through messages avoiding the need for any locks (Hewitt et al. 1973). We have developed an 
Actor-based modelling language, ESL (Clark et al. 2017a), to specify an enterprise as a set of autonomous 
encapsulating units that interact with each other by exchanging messages (Clark et al. 2017a). We have 
developed a component abstraction to model the fractal nature of system of systems (Kulkarni et al. 2014). 
We have extended the actor-based paradigm to enable modelling of uncertainty (Kulkarni et al. 2017). 
Through a set of case studies, we have validated the adequacy of ESL to specify complex system of systems 
for decision-making (Barat et al. 2017a).  

3.4 Creating Digital Twin Models 

Creating the right models at the right level of abstraction is the key to efficacy. These models are typically 
large with the required information spread across the breadth of enterprise in various forms such as data 
bases, execution logs, standard operational procedure notes, policy documents and so on. As a result, an 
army of experts from wide-ranging fields of expertise is required to manually create the digital twin models 
using appropriate model editors – clearly a time-, cost-, and effort-intensive endeavour. Figure 3 (b) gives 
a pictorial overview of the framework we have developed for accelerated creation of digital twin models 
from information available in semi- / un-/ structured form. It comprises of automation aids based on: (i) 
Natural Language Processing (NLP)  and Machine Learning (ML) techniques for gathering the desired 
information from a given information source (ii) meta model driven techniques for integration and 
reconciliation of the model fragments, and (iii) model validation based techniques for identifying the 
missing model fragments. However, quality of the models created is largely dependent on the knowledge 
content of the domain expert using these aids. 

We provide two ways of validating the digital twin models: (i) certification of correctness by experts, 
and (ii) through simulation wherein the models (suitably initialized) are subjected to known past events 
leading to simulation trace which is then examined to ascertain the results are identical to the ones from the 
past. Our simulation engine generates rich execution traces containing detailed information necessary for 
analysis. We have developed a pattern language to specify the desired behaviour and a pattern matching 
engine to look for the specified patterns in the simulation trace (Clark et al. 2017b). This generic solution 
to ascertain correctness can be further augmented by manual validation of the input, output and control 
variables of the simulation. This, we believe, should cover a wide range of digital twin models. 

3.5 Using Digital Twin  

Enterprise digital twin can help with analysis, control, transformation and design of enterprise as a complex 
system of systems. 

3.5.1 Analysis 

Enterprise is a complex system of systems operating in a dynamic environment. As a result, it is subject to 
a variety of changes taking place in its environment. It is essential to understand how the system is 
responding to these changes and the emergent behavior. Traditionally, this has been the preserve of experts 
who rely on their knowledge to analyze the available data to come up with remedial changes. Large size, 
complex interactions and high dynamics make this a highly difficult task to be performed manually. At 
best, this can be done when limited only to localized contexts. However, there is no guarantee that remedial 
actions thus arrived at can ensure global correctness let alone optimality. 

On the other hand, being a virtual high fidelity simulatable representation of the real system, enterprise 
digital twin enables what-if scenario playing in virtual space. Thus it is possible to observe both local and 
emergent global behaviours virtually thus giving an accurate understanding of what is happening in real 
system. Enterprise digital twin also enables if-what analysis, for instance, whether a desired global behavior 
can be achieved and how.  
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3.5.2 Adaptive Control 

Enterprises need to deliver the intended goals in presence of internal and external perturbations. With 
increased dynamism the frequency of such perturbations will only increase. Traditionally, these 
perturbations are handled by experts looking at past data to come up with recommendations as shown in 
Figure 4 (a). However, this approach suffers from a disadvantage that recommendations are arrived at based 
only on situations that are experienced so far. These recommendations are effected on real systems and 
monitored for their effectiveness. This has a certain trial-and-error element to it leading to long cycle times 
and high costs with effectiveness of recommendations depending largely on the level of expertise. In 
contrast, enterprise digital twin improves effectiveness by enabling validation of recommendations in 
virtual space. Also, enterprise digital twin can be subjected to a variety of scenarios a priori thus obtaining 
a more comprehensive data pertaining to situations that are possible though not seen so far.  

Enterprise digital twin can also be used for self-adaptation thus reducing dependence on human experts. 
Figure 1(b) depicts an adaptation architecture that draws its inspiration from a well-studied and widely used 
concept from control theory – Model Reference Adaptive Control (MRAC) – adapted for enterprise context. 
The Model captures the desired reference behaviour of enterprise. The Enterprise is the complex system of 
systems to be controlled. The Monitoring & Sense Making constitutes the core technology infrastructure to 
observe and discern input and output of enterprise. The Controller constitutes the core technology 
infrastructure that, together with the Monitoring & Sense Making component, nudges the Enterprise as 
close to the Model as possible thus achieving a model-guided adaptive response. For the digital enterprise, 
Enterprise Digital Twin serves as the Model which is fed the same input as Enterprise thus producing a 
reference output. The Monitoring & Sense making component compares the Enterprise output with the 
reference output to identify the distance if any. The Controller is guided by the input, the Enterprise output 
and the distance signal to nudge the Enterprise behavior in the right direction. 

3.5.3 Design 

Design is the process to arrive at the right strategies, processes, organizational structure and supporting 
systems to achieve the intended goals and objectives. Traditionally, it is a knowledge-intensive endeavor 
wherein experts analyze and synthesize available data to come up with design decisions. These decisions 
are typically implemented using a set of tried-and-tested templates. The resultant implementation may then 
be validated using controlled experimentation where the experts assess whether the design is meeting the 
intended goals. This process has long cycle times especially since each controlled experiment may involve 

(a). Digital twin enabled control of enterprise. (b) Knowledge-guided simulation-aided design. 

Figure 4: Control and Design using Digital Twin. 
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setting up the necessary physical infrastructure, assigning resources, and conducting the experiments in 
realistic conditions. As a result, this approach is quite expensive too. 

In contrast, Enterprise Digital Twin can help explore the design space virtually as shown in Figure 4 
(b). Domain knowledge and past data help come up with first-cut definitions of goals, strategies, policies, 
processes, organization structure etc. which are then modelled into the Enterprise Digital Twin. The 
simulatable nature of Enterprise Digital Twin enables what-if and if-what analysis of various scenarios of 
interest to arrive at the right design decisions virtually. These decisions can then be validated using the 
digital twin itself. This iterative process goes on until the desired objectives are met. Implementation of the 
real system is a realization of the digital twin. As all the artefacts are models and solution space exploration 
is ‘in silico’, the design process is much faster and cheaper. Model-based analysis significantly reduces 
dependence on human expertise. Results of simulation can be mined to continuously augment the domain 
knowledge.  

3.5.4 Transformation 

Enterprises face disruptions due to emergence of new technologies, new business models, new regulatory 
frameworks, business events such as mergers and acquisitions etc. These disruptions necessitate large scale 
changes in enterprise strategies, organizational structure, processes, systems etc. Due to the interconnected 
nature of complex systems, these changes ripple across. As the interactions are complex, it is difficult to 
predict the extent and exact nature of these ripple effects. Current practice of relying largely on human 
experts for effecting such transformations has clearly  been found wanting. By some estimates, only 3% of 
enterprise transformation projects ever come to completion. 

Enterprise Digital Twin enables a transformation architecture that provides a tractable path to arrive at 
the desired target state as shown in Figure 5 (a). The transformation process begins by specifying the target 
state. The digital twin of current enterprise can be used provide an accurate assessment whether the target 
objectives can be achieved by the current enterprise. This can be supported through what-if and if-what 
analysis on the digital twin of current enterprise. In case current enterprise cannot be made to achieve the 
desired target objectives, it needs to be structurally and behaviourally transformed. Transformation process 
then identifies digital twin for the desired target enterprise – this is essentially the design process described 
earlier starting with the current digital twin. It is followed by identifying the gap between current and target 
digital twins in terms of the various models. These gaps drive the transformation of current digital enterprise 

(a) Digital twin guided enterprise transformation. (b) ESL Workbench Workbench. 

Figure 5: Digital Twin based transformation and enabling technology. 

67



Kulkarni, Clark, and Barat 
 

 

into the target digital enterprise. Final step of the transformation process checks whether the target digital 
enterprise correctly implements the target digital twin. 

3.6 The ESL Workbench 

The ESL workbench supports an Actor-based language for simulation-based decision-making (Clark et al. 
2017a). The workbench is shown in Figure 5 (b) and will be introduced as part of the tutorial.  

ESL is an actor language that has been designed to run applications and simulations that require 
information-rich processing by autonomous computational units. Each actor runs in its own thread of 
control and communicates with other actors using asynchronous messages. ESL supports pattern-matching, 
data locks and higher-order functions. Applications in ESL are highly concurrent and are driven by system 
generated time-events. ESL can support sense-making of applications and simulations by generating state 
histories that record computation steps; once generated, a history can be interrogated using a temporal-logic 
based query language. ESL has a static type system that includes parametric polymorphism. 

Each actor has a behaviour that can be modelled as a state machine. When implemented in ESL the 
model can be run to produce emergent behaviour that is subsequently analysed through the EDB component 
of the ESL Workbench. This includes visualisation of the simulation results and analysis of the simulation 
history (Clark et al. 2017b). The shop owner can speculate about the distribution of customers with 
particular types of behaviour and run the simulation multiple times in order to determine the outcome. The 
tutorial will use a number of examples similar to the shop simulation in order to introduce the participants 
to the ESL Workbench. 

ESL application development is supported by a tool called EDB that provides real-time support for 
syntax and type checking. EDB can be used to create and manage an ESL application including its 
execution, debugging and history management. EDB allows ESL to generate graphical representations of 
running applications and of their histories. 

3.7 Model Driven Techniques for Adaptive Software Systems  

Modelling helps address software development and integration from a higher level of abstraction. Most 
prominent benefit delivered so far has been through automated code generation (Kulkarni 2016, John et al. 
2011). The software system is specified in terms of the what and how aspects leaving out the details such 
as architectural decisions, design strategies, and implementation technology platform. A set of appropriate 
code generators transform these specifications into a platform specific implementation while adding details 
pertaining to the chosen architectural decisions and design strategies. The same specification can be used 
to deliver another solution with different choices for architectural decisions, design strategies, and 
implementation technology platform. Support for variability modelling & resolution at model level enables 
product lines (Kulkarni 2010, Kulkarni and Barat 2011). Model based code generators also benefit from 

(a) Supply chain schematic. (b) Supply chain stock replenishment. 
Figure 6: Overview of Supply Chain Case Study. 
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model based code generation thus further improving productivity and agility (Kulkarni and Reddy 2008). 
Several manifestations of this technology exist (TCS 2019), however, the focus so far has been on delivering 
a bespoke solution or at best a product line i.e., addressing largely static scenarios.  

Software systems should reflect the characteristics of the enterprises they support. As enterprises are 
evolving into complex system of systems that need to quickly adapt to a variety of changes taking place in 
their operating environment, so should their supporting software systems. This puts new requirement of 
adaptiveness on enterprise software systems to be achieved through sense-and-respond architectures.  

Though MAPE-K architecture pattern has been much in discussion, it has not seen commensurate 
adoption in industry (Paolo et al. 2015). We propose use of digital twin to drive the adaptation using MRAC 
pattern of Figure 1 (b). Digital twin serves as the Model i.e., reference behaviour of the system. The sensory 
framework and the pattern-matching infrastructure of ESL constitute the Monitoring and Sense Making 
machinery. The MAPE-K like infrastructure discussed above can provide the Controller. 

4 REAL WORLD USE CASES 

We have been applying the proposed approach to a variety of enterprise scenarios spread across business 
domains (Barat et al. 2017b, Allison et al. 2006, Barat et al. 2019). We discuss below two of these cases 
that have reached industry adoption stage. They illustrate the essence of the proposed approach while not 
covering it in its entirety.  

4.1 Stock Replenishment in a Retail Chain 

4.1.1 Problem 

Consider a retail supply chain selling 'P' product types through 'S' stores whose stock is replenished every 
'h' hours in a day. The goal is to compute inventory replenishment quantity, for each product in each store, 
for the retailer. This computation is to be done while optimizing the supply chain as a whole i.e. stores, 
logistics, transportation, warehouses etc and not solely focusing on the extremities i.e. the stores. The 
number of decisions to be computed is huge: with typically 'P' in tens of thousands and 'S' in thousands 
result in tens of million decisions every 'h' hours. Since there are many capacity sharing points such as 
warehouse labour, truck volume etc., all these decisions are interdependent. As a result, humans cannot take 
such decisions quantitatively, and have to rely on gut feel. The state of the art is to either (i) take the 

(a) Digital Twin enabled RL-based controller outperforms 
aggregated heuristics while balancing explore Vs exploit. 

(b) Digital Twin enabled RL-based controller 
outperforms heuristics as regards inventory. 

Figure 7: Experimental Results. 
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decisions manually, assuming all products are independent, or (ii) encode the business rules in the form of 
heuristics. In both cases, the stores are kept well stocked, but every other node in the supply chain takes a 
hit. Moreover, both approaches rely on past data (i.e., consider only what has happened and chose to ignore 
what could have happened) and aggregated heuristics that connote average case behaviour (i.e. not the 
outliers). As a result, both lead to sub-optimal performance. Also, stock replenishment problem has three 
dimensions namely shop, warehouse and logistics connecting the two thus requiring an integrated solution 
covering all three dimensions. Current practice relies on analysis in local contexts, for instance, shop, 
warehouse and logistics which can lead to optimal solutions for the three contexts, however, it provides 
little or no help in combining the three into a holistic solution and also identifying a-priori the ramifications 
of decisions taken to achieve local optimality on global robustness.  

4.1.2 Solution 

Use of digital twin helps overcome these lacunae. Actor-based nature of digital twin leads to a fine-grained 
model where every influencing entity is represented as an actor thus leading to an 'in silico' representation 
that is very close to the reality in terms of the micro-behaviours. The digital twin can be subjected to a 
variety of situations through what-if scenario playing thus generating more comprehensive data which 
facilitates better decisions - in local as well as global contexts. Moreover, the decisions can be validated 
using digital twin before implementing in the real system. Also with accurate capture of actor interactions 
leading to high-fidelity macro-behaviour, it can be analyzed for undesirable patterns thus ensuring global 
robustness with local optimality. Moreover, every decision (or decision recommendation) can be justified 
in quantitative terms. 

We have addressed this need for a subset of a retail supply network consisting of a set of distribution 
centers supplying goods to shops as shown in Figure 6 (a). The objectives of the system are: (i) to ensure 
stock availability, (ii) to optimize store space, (iii) to minimize wastage of  perishable goods, and (iv) to 
minimize transportation costs. The solution needs to take into account the dynamics of shop-specific 
consumption behaviour, perishable nature of goods, carrying capacity of trucks, truck routes etc.  

We used an actor model based simulation framework for sufficiently training a RL agent and validating 
new policy in a synthetic environment as shown in Figure 6 (b). The proposed framework contains two 
control loops: (i) a model centric loop for training of Reinforcement Learning (RL) agent and evaluation of 
new policies prior to their implementation in a real system, and (ii) real time control loop that include real 
system. We consider an extended form of actor model to closely mimic the complex systems; adopt 
simulation as an aid to compute micro-behaviours and observe emerging macro behaviours, overall system 
state and rewards; and use RL agent (or controller) as the primary computing machinery for deriving 
suitable actions over time. 

We used ESL to create a digital twin of the supply chain network where all subsystems and elements 
are represented using Actors, where each actor has its own state, trace, and autonomous, self-organizing, 
and probabilistic behaviours. They may change their states based on time (e.g., product expiry), external 
events (e.g., on receipt of Order(Products)), and other spatio-temporal conditions (e.g., product packaging 
and transportation delays). The overall state emerges from multiple micro-behaviours and their interactions 
that include product order, damages, product expiry and order arrivals. We trained an RL agent to compute 
actions to maximise long-term rewards in emerging scenarios using the digital twin. As an evaluation, we 
specify and initialise the characteristics of the simulation and reinforcement learning framework, using a 
data set spanning one year derived from a public source. A total of 220 products were chosen from the data 
set, and their meta-data (volume, weight, shelf-life which was not available in the original version) was 
input manually. A single store and a single truck was used for this case study, with the time between 
successive delivery moments set to 6 hours (leading to 4 DM per day) with lead time as 3 hours.  
Digital twin was subjected to a set of relevant what-if scenarios thus generating more comprehensive 
training input for RL-based controller. It resulted in reduced training time as well as improved controller 
performance.  

Fig 14. Digital Twin + RL balances explore Vs exploit too 
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Figure 7 (a) shows that the reward at the end of RL-agent training exercise exceeds the heuristic 
performance, and this advantage is retained on the test data set as well (plotted using separate markers at 
the ends of the curves). Figure 2 (b) also depicts the ‘exploration rate’ of RL, which is the probability with 
which the RL algorithms takes randomised actions (to explore the feature space). This rate is brought to 
zero towards the end of training, and is also zero for testing.  

Figure 7 (b) depicts the performance advantage of RL over the heuristic as regards inventory. Though 
both algorithms begin with an initial (normalised) inventory level of 0.5 for all products, RL is able to 
maintain a higher average inventory level than the heuristic, by taking advantage of features such as the 
unit volumes and weights of individual products.  

4.2 Demonetization in Indian Economy  

4.2.1 Problem 

The study is about the recent Demonetisation initiative in India. The cash in circulation in Indian economy 
had increased significantly over the years (Government of India 2016) and the cash in circulation was 15.4 
trillion rupee notes in November 2016. This led to an undesirable shadow economy and funds used for 
illegal activities. As a corrective action, the Indian government announced the demonetisation of large 
denomination notes on 8th  November 2016 wherein the 87% cash in circulation was removed from the 
economy with a plan to replenish the cash in  a  controlled manner (Wikipedia 2016). Limitations were 
imposed on the exchange of old notes, ATM withdrawal, and daily bank withdrawals to control the negative 
impacts of the demonetisation. 

The sudden nature of the demonetisation event, the incomplete knowledge about possible 
consequences, and unforeseen behaviour of citizens made an impact on the economy in the weeks that 
followed. Citizens were inconvenienced and often economically threatened due to the prolonged cash 
shortages. The government tried to minimise the impacts of the demonetisation by monitoring the situation 
in real-time and adopting new courses of action on the fly. 

This case study was about recreating the demonetization situation ‘in silico’, play out various 
interventions introduced by the government as what-if scenarios on the digital twin, and get a feel for the 
efficacy of these interventions in restoring normalcy.  

4.2.2 Solution 

We created a digital twin for this socio-techno-econo system. We considered a small but well-formed subset 
of society affected by demonetisation thus limiting the focus to common Indian citizens, who are largely 
confined to a bounded set of activities, as  shown in the Figure 8. Essentially, citizens consume essential 

Figure 8. Indian demonetization - subset of society modeled as a digital twin. 
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and/or luxury commodities (e.g., food, medicines, perfumes etc.), and avail various services (e.g., medical 
assistance, hospitality services, fitness related services etc.). They buy commodities from shops/suppliers, 
avail services from service provides, and pay for their purchases and services. Citizens withdraw cash when 
cash-in-hand dips below a threshold value. A class of citizens may hold credit and/or debit cards - a citizen 
who holds card may choose to pay by cash or by card for a purchase, and may withdraw cash from ATM 
machine and/or bank counter. In contrast, a citizen without a card always pays by cash and withdraws cash 
from bank counters. We assume all citizens are able to satisfy their daily needs i.e., we excluded poverty 
and other societal conditions from our experiments.  

Pre-demonetization stage is characterized by sufficient cash in ATMs and Banks to service their 
customers (i.e., citizens), sufficient stock in shops, and no  notable denial of service from banks and ATM 
machines (i.e., citizens are able to withdraw cash when in need). We consider this condition as normal 
situation. Demonetisation event disrupts this normalcy with abrupt elimination of 86% cash from the 
economy with a plan to slowly restore cash levels back to 70% of pre-demonetisation level. 

To manage the disruption, Banks enforced restrictions on cash withdrawals (amount as well as 
frequency of withdrawal) right after the demonetisation event principally to ensure fair distribution of new 
currency notes being introduced at a fixed rate – a mint-centric constraint. Shops adapted to the reduced 
cash in the economy by beginning to accept alternate payment options such as mobile wallet and card 
payment whenever they observed a drop in sales  record. Citizens adopted to the disruption by changing 
behavior along two dimensions: 

 
Payment Pattern: Citizens started using mobile wallet and/or card as a payment option to save the 
trouble of standing in long queues to withdraw cash. However, not everyone used alternate option, an 
individual's decision were based on several factors such as availability and familiarity with payment 
technology, and whether the citizen was an early or late adopter to the new technology. 
Cash Withdrawal Pattern: Some citizens restored to temporary hoarding of cash i.e., withdrawing cash 
way in excess of their needs. There could be several rational and irrational reasons behind this panic 
behaviour.  
 
We simulated a society with one government, one bank, 15 shops and 1710 citizen actors for 150 days, 

where the first 15 days are considered for setup phase, next 30 days are the pre-demonetisation phase, and 
105 days are the post-demonetisation phase. A snapshot of simulation dashboard with operational graphics 
at the day of 115 days (i.e., after 70 days of demonetisation) is depicted in Figure 9.   

Figure 9. Simulation Dashboard. 
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We observe that the graphs are unstable for first 15 days of simulation run as simulator is trying to set 
the values based on actor behaviours and their interactions. The simulation outcome for pre-demonetisation 
phase is stable and normal: no bank withdrawal request is denied, no citizen is facing any financial crisis, 
and citizens are not experiencing any deficiency for essential or luxury items. The demonetisation event is 
triggered at day 45 causing a sudden reduction of 86% cash from the bank and ATM machines. 
Subsequently, the withdrawals from bank and ATM decline whilst wallet payment and card payment 
increase significantly: the citizens have started facing a financial crisis and the citizens who are solely 
dependent on cash have started starving for essential and/or luxury items. The adverse effects continue for 
almost 50 days and then the situation returns to normal.  

In graph with title ‘Citizen with excess cash’ in Figure 9, we observe 115 citizens are hoarding cash 
when the situation is on the verge of returning back to normal. We also observe that cash dependent citizens 
are more prone to cash hoarding behaviour. The ‘Payment Transaction Volume’ chart describing the history 
of overall payment transactions shows an interesting trend – the card (green) and wallet (blue) usage have 
increased in first 30-40 days of post-demonetisation phase, and then it slowly started reducing.  

We correlated these simulation observations with the information found in authentic press-releases and 
newspapers. The trends on cash conditions of different citizens (shown in ‘Citizen with no Cash’ and 
‘Citizen with excess Cash’ charts in Figure 9), the inconvenience due to deficiency of essential items 
(shown in chart ‘Citizens without essential commodities’ in Figure 9)  and luxury items (shown in cart 
‘Citizen facing inconvenience’ in Figure 9) for cash dependent citizens, and service of denial at Bank and 
ATM withdrawal are in tune with the reality. In reality, the cash conditions in ATMs an d Banks at the end 
of January 2017 (after 3 and half months of demonetisation) were just sufficient to serve their customers - 
this observation related with the graph shown in ‘Cash Availability in Bank and ATM’ graph of Figure 9. 
The model construction, validation and detailed simulation results can be found in (Barat et al. 2017b). 

5 SUMMARY 

This paper argued that analysis, control and adaptation have emerged as the principal concerns faced by 
modern enterprises. It discussed how enterprise modeling state of the art is inadequate for addressing these 
concerns. It presented an approach that integrates Actor model, reinforcement learning, bottom up 
simulation and model reference adaptive control to support adaptive enterprises using hi-fidelity digital 
twin. Two real life case studies highlighting efficacy of the approach and supporting technology were 
described.  
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