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ABSTRACT 

A comprehensive framework, combining the cumulative distribution function and modified Kolmogorov–

Smirnov test, is proposed to solve multi-output simulation model’s parameter calibration problem with 
the presence of uncertain parameters. The framework is based on comparing the difference between joint 
cumulative distribution functions of some observed values and that of simulation sample values. An 
auxiliary variable method is used to decompose hybrid parameters into sub-parameters. Then the optimal 
matching values can be found with genetic algorithm according to the index of difference of joint 
cumulative distribution functions. 

1 INTRODUCTION 

In the engineering process of aeronautics and astronautics, computer simulation has become an important 
approach to save cost and improve work efficiency in the engineering model design. Since the foundation 
of simulation is the mathematical model describing, so it plays an important role to find a method that 
describing the model accurately. However, in the process of actual engineering development, the model is 
undetermined with the presence of various uncertainties sourced from lack of knowledge, design and 

manufacturing defects, environment of the product. It not only leads to an uncertain model, but also may 
lead to worse output under the influence of above uncertainties. The method of this paper is to solve the 
challenge of the inverse assessment of model uncertainty, where the model parameters are calibrated 
simultaneously to reduce parameter epistemic uncertainty. Currently, the widely used methods include 
interval theory, evidence theory, fuzzy set, possibility theory, and convex method, etc. But most theories 
only address the situation of singular output. The uncertain model studied in this paper is the multi-output 

model with the three kind of uncertain variables, and the calibrated object is the epistemic uncertainty 
parameter in the model. The calibration method of hybrid uncertainty parameter with multi-outputs is 
studied emphatically. The empirical cumulative distribution function (ECDF) obtained by using the 
modified two-sample Kolmogorov–Smirnov (K-S) test, is compared with the ECDF of the real data. 
Then, the optimized matching value can be found, using genetic algorithm. The optimized matching value 
is seen as approximation of epistemic uncertainty parameters, to eliminate epistemic uncertainty in system 

caused by lack of knowledge. 

2 MULTI-OUTPUT MODEL CALIBRATION METHOD 

The ECDF matching approach uses the concept of the two-sample K-S test to compare the ECDF of the 
observations, with the ECDF for the generated output values using aleatory uncertainties for some 
realization of the epistemic uncertainty variable. Note that the following formulas is all vector forms, 

shorted from multi-output.  
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Step 1: Decompose all uncertain parameters of model, especially the hybrid uncertain parameter. 
After determining the sub-parameters   of the model, we should make clear that which sub-parameters 
are aleatory uncertainty that cannot be calibrated and which sub-parameters are epistemic uncertainty that 
can be calibrated. So, the uncertainty model can be formulate as: 

 ( , )Y f X θ   (1) 

Step 2: Retrieve a given number of realistic target observations from the database. In this paper, the 

real observation value is replaced by the simulated observation value which is obtained by random 
uncertainty in the real value condition of the epistemic uncertainty parameter. The corresponding ECDF 
is calculated after simply eliminating outliers. According to the ECDF function of N  independent 
identically distributed samples, Equation (2) is obtained: 
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where I  is the index function; If iX x , then =1I , or =0I .  
Step 3: Based on the double-samples K-S test method, Latin hypercube sampling was used for 

uncertainty parameters of model. First, getting N   random outputs samples of observations for one 
particular   realization. Then an ECDF can be generated by Equation (3). The random stream for 
generating N   samples of output samples for a particular   realization is fixed to reduce the noise in 
objective function calculation: 
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Step 4: A modified K-S test, used here for comparing two ECDFs with N  (given observations) and
N   (randomly generated using aleatory uncertainty) samples ( '

i

NND ), is given by:  
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which represents the variance error of the difference between two ECDF curves. In Equation (4), it can be 
seen that the smaller the index '

i

NND , the smaller the difference between the two groups of distribution 
function curves. The selected value of the corresponding sub-parameters is closer to the real value of the 
epistemic uncertainty parameter. Therefore, the minimum value of the index is used as the optimal 

matching value 
*  for the parameter of epistemic uncertainty. 

Step 5: For seeking for the minimum value of the index, a genetic algorithm (GA) is used to find 
optimization. The minimum distance is used as the fitness function and sample points violating the Latin 
hypercube design restriction will contribute a large penalty value to the fitness function. Then, we can get 
a set of optimization of sub-parameters. In order to increase the pervasiveness, the random flow needs to 
be dynamic. That means to repeat step 3 and step 4, for m  times. Then the matching sets of optimization 

values of m  – time cycle is composed of the new calibration interval of uncertainty parameters, which 
shows dynamic calibrated value fluctuating around true value of epistemic parameters. Finally, take the 
median of the new interval as the best approximation value of the real value of the parameter: 

 [ , ]i lower upper     (5) 
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