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ABSTRACT 

MCMC techniques are popular solutions to approximate quantities that are difficult to compute exactly. 

Unfortunately, despite its wide use across various fields, most Markov chain samplers lack theoretically 

justified methods to analyze their output. That is to say, most MCMC samplers lack of: a) a consistent 

variance estimator for a given ergodic average; and b) an estimator for the total variation distance be-

tween the distribution of a draw from the Markov chain sampler and its target distribution. In this study 

we demonstrate how one can systematically address a) and b) by exploiting the underlying regenerative 

structure of the simulation output. Roughly speaking, regenerative structure are the times when a stochas-

tic process (in this case a Markov chain) scholastically `restarts' itself. Intuitively, if a Markov chain fre-

quently `restarts' itself, it should have a fast convergence hence, one may examine the convergence of a 

Markov chain sampler by identifying these events. 

1 INTRODUCTION 

Let {𝑿𝑘, 𝑘 = 0,1,2,… } be a discrete time stochastic process such as a Markov chain. Recall that the pro-

cess is said to be a zero-delayed discrete-time regenerative process if there exists time 0 = 𝑇0 ≤ 𝑇1 ≤
𝑇2 ≤ . .., such that for any 𝑟, {𝑿𝑇𝑟+𝑘 , 𝑘 ≥ 0} has the same distribution as {𝑿𝑘, 𝑘 ≥ 0} and is independent 

of {𝑿𝑘, 0 ≤ 𝑘 ≤ 𝑇𝑟 − 1}. Consequently, the tour lengths, 𝑀𝑟 ≔ 𝑇𝑟+1 − 𝑇𝑟, are iid. Intuitively, this means 

for each 𝑟, 𝑿𝑘 , 𝑇𝑟 ≤ 𝑘 ≤ 𝑇𝑟+1 − 1 is an iid segments of the original process, and each segment has a 

length of 𝑀𝑟. For example, with (𝑀1,𝑀2, 𝑀3,𝑀4) = (2, 3, 1, 4): 
 

𝑋1, 𝑋2⏟  
𝑀1=2

, 𝑋3, 𝑋4, 𝑋5⏟      
𝑀2=3

,  𝑋6⏟
𝑀3=1

, 𝑋7, 𝑋8, 𝑋9, 𝑋10⏟        
𝑀4=4

, . .. 

 

In the context of a Markov chain sampler, one can potentially identify the regeneration times, 0 = 𝑇0 ≤
𝑇1 ≤ 𝑇2  ≤ . .. , from the simulation output (Mykland et al. 1995). Moreover we have the following theo-

rems which provide powerful diagnostics to the MCMC sampler. 

 

Theorem (TV bound estimator). Let 𝜅𝑡(∙ |𝑿0) with 𝑿0~𝜋0 be the 𝑡-step transition kernel of a geometri-

cally ergodic Markov chain  with  invariant density 𝜋. Suppose we can identify  regenerative times of the 

Markov chain and assume that 𝑿0~𝜋0 initialized a new regenerative cycle. Then, we have (for some con-

stant 𝜖 > 0) 

 

∥ 𝔼[𝜅𝑡(∙ |𝑿0)] − 𝜋 ∥𝑇𝑉  ≤
𝜂

𝑡+1
+  Ο(exp (−𝜖𝑡)), 
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where 𝜂 =  
𝔼𝑀1

2−𝔼𝑀1

2𝔼𝑀1
 with 𝑀1,𝑀2, … denoting the iid regenerative cycles.  

 

Theorem(Elapsed time convergence). Suppose that 𝑀1,𝑀2, … are the iid regenerative cycles of the 

Markov chain. Define the elapsed time process 𝐸(𝑡) =  𝑡 − 𝑇𝑁(𝑡), 𝑡 ≥ 0, where 𝑇𝑛 = 𝑀1 +⋯+𝑀𝑛 and 

𝑁(𝑡) = max{𝑛: 𝑇𝑛 ≤ 𝑡}. Then, the elapsed time is a discrete state-space Markov chain and such that: 

 

∥ 𝔼[𝜅𝑡(∙ |𝑿0)] − 𝜋 ∥𝑇𝑉≤ 2 sup
𝐴
|ℙ(𝐸(𝑡) ∈ 𝐴) − ℙ(𝐸(∞) ∈ 𝐴)|, 

 

where 𝐸(∞) is a stationary version of 𝐸(𝑡). In the other words, twice the total variation error of 𝐸(𝑡) 
bounds the total variation error of 𝑿𝑡. 

2 WHY SHOULD WE IDENTIFY REGENERATION TIMES IN MARKOV CHAIN 

OUTPUT? 

Identifying the underlying regeneration times of a given Markov chain do require some algebraic manipu-

lations and computations. However there are important benefits for output analysis, as follows: 

• A strongly consistent variance estimator. Mykland et al. (1995) and Jones and Hobert (2001) 

provide a formula for a strongly consistent variance estimator for ergodic averages of a stochastic 

process. The formula requires one to identify regeneration times 

• TV distance bound and burn-in estimator. The constant 𝜂 in the first theorem can be estimated 

from the observed 𝑀1,𝑀2, …, consequently, we have a TV bound between the distribution of  𝑿𝑘, 

the 𝑘-th draw of a Markov chain, and the target distribution.  

 A corollary to this is that a burn-in size of at least ⌈
∑ 𝑀𝑘

2𝑁(𝑡)
𝑘=1 −∑ 𝑀𝑘

𝑁(𝑡)
𝑘=1

2𝜖 ∑ 𝑀_𝑘
𝑁(𝑡)
𝑘=1

⌉ guarantees the initial distri-

bution of the Markov chain is within 𝜖 TV distance to the target distribution for any 𝜖 > 0. 

• A diagnostic plot. A popular practice for the convergence diagnostics of a Markov chain sampler 

is to examine autocorrelation plots of the processes {𝑝𝑗 ∘  𝑿𝑘 , 𝑘 ≥ 0}, where 𝑝𝑗 is the 𝑗 −the co-

ordinate projection. The second theorem suggests the convergence of the process {𝑿𝑘, 𝑘 ≥ 0} can 

be summarized by a single one-dimensional process {𝐸(𝑡), 𝑡 ≥ 0}. Consequently a single auto-

correlation plot of the elapsed time process {𝐸(𝑡), 𝑡 ≥ 0} is a sufficient visual aid. 

 

Several figures can be obtained by applying regeneration to the Gibbs sampler (Park and Casella 2008), 

which simulates from the posterior density of the Bayesian Lasso linear regression model. The dataset we 

use consists of 442 observations of a medical measurement for the level of diabetes, each with 10 predic-

tor variables. 
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