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ABSTRACT

We propose a new provably-convergent continuous-fidelity Bayesian optimization method where fidelity is
controlled by one or more continuous settings, and we have trace observations. For example, we may wish
to adjust training data size and number of training iterations, for an optimal accuracy run-time tradeoff.
We make two innovations: (1) we fix the widely spread issue that common continuous-fidelity methods
always prefer a very low fidelity point no matter how much actual value it can provide, and our fix is
theoretically sound; (2) our method is designed in a decision-theoretic manner in light of the fact that we
have trace observations. Numerical experiments show that our method outperforms state-of-art algorithms
when optimizing synthetic functions, tuning feedforward neural networks on MNIST, tuning convolutional
neural networks (CNNs) on CIFAR-10 and SVHN, and in large-scale kernel learning.

1 INTRODUCTION

We consider the problem of finding an optimal solution x in some set A to minimize an objective function
f (x), i.e., to solve

min
x∈A

f (x) (1)

Evaluating f (x) can take substantial time and computational power (Bergstra and Bengio 2012), and may not
provide gradient evaluations. This problem is commonly found in optimization via simulation with steady
state simulations (Goldsman et al. 2002), and machine learning (Snoek et al. 2012). In hyperparameter
tuning of machine learning models, we seek to find a set of hyperparameters x in some set A to minimize
the validation error f (x). Thus, machine learning practitioners have turned to Bayesian optimization for
solving (1) (Snoek et al. 2012) because it tends to find good solutions with few function evaluations (Jones
et al. 1998).

As the computational expense of training and testing a modern deep neural network for a single set of
hyperparameters has grown, researchers have sought ways to solve (1) more quickly by supplanting some
evaluations of f (x) with computationally inexpensive low-fidelity approximations. These approximations
perform the same training and testing steps, but use fewer training iterations than required for convergence
or ignore some training data. Recently developed solution approaches of this type include the Bayesian
optimization methods FaBOLAS (Klein et al. 2016; Klein et al. 2015), Freeze-Thaw Bayesian Optimization
(Swersky et al. 2014), BOCA (Kandasamy et al. 2017), a predictive entropy search method for a single
continuous fidelity in McLeod et al. (2017), and early-stopping SMAC (Domhan et al. 2015). They also
include the bandit method Hyperband (Li et al. 2016). Previous literature demonstrates these approaches
can find good hyperparameter settings significantly faster than methods that always train until convergence
using the full training data.

While many of these approaches build on previous work on multi-fidelity Bayesian optimization,
training iterations have unique characteristics that differ from fidelity controls typically considered in that
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literature. First, training with n iterations naturally produces evaluations of the low-fidelity approximation
for all training iterations less than or equal to n. While computing the test error after each iteration does
require an extra step of evaluating in the test data, this expense is typically very small compared to training.
Second, if we cache the state of our training algorithm once an evaluation with n iterations is complete, we
can restart evaluation from this state if we wish to evaluate for n′ > n evaluations, significantly reducing
the expense of evaluation. Succinctly, we observe the full trace of performance with respect to training
iterations, not just a single point.

The fact that we observe traces over training iterations raises two key challenges: (1) Balancing between
increasing training iterations at previously evaluated hyperparameters vs. starting from scratch at a new set
of hyperparameters that seem promising based on other results; (2) Extracting the most useful information
from a set of training iterations without burdening a Gaussian process inference procedure (which scales
as the cube of the number of observations) with a large number of observations.

Contributions: We propose a novel acquisition function, the trace-aware knowledge gradient, and
a provably-convergent method for maximizing it, that can choose the training data size, training iterations,
and hyperparameters at which to evaluate. Our approach is applicable to problems with trace observations
along one or more fidelity controls, including hyperparameter optimization while varying both training
iterations and training data. It addresses the challenges presented by trace observations by considering the
reduced cost of adding iterations at a previously evaluated point, and using an intelligent selection scheme
to choose a subset of the observed training iterations to include in inference. It can be used in either a
batch or sequential setting, and can leverage gradient information if it is available.

Our numerical experiments demonstrate a significant improvement over FaBOLAS, Hyperband, and
BOCA.
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