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ABSTRACT

Computer simulation experiments are commonly used as an inexpensive alternative to real-world experiments
to form a metamodel that approximates the input-output relationship of the real-world experiment. While
a user may want to understand the entire response surface, they may also want to focus on interesting
regions of the design space, such as where the gradient is large. In this paper we present an algorithm that
adaptively runs a simulation experiment that focuses on finding areas of the response surface with a large
gradient while also gathering an understanding of the entire surface. We consider the scenario where small
batches of points can be run simultaneously, such as with multi-core processors.

1 INTRODUCTION

In the general setup for design and analysis of computer experiments (Sacks et al. 1989), there is a black
box function or simulation that can be evaluated at any point, but each evaluation is expensive. After the
experiment, a metamodel (also called an emulator or surrogate model) is created that approximates the
true response function and is much faster to evaluate. Traditional experiment designs, or one-shot designs,
select an entire list of inputs where the computer model will be evaluated before any data is collected.
When the data is collected iteratively, the experiment can be run adaptively. This allows the experimenter
to use the data collected up to the present time to make an informed decision for which point(s) should be
evaluated next. Existing methods for adaptive experiments generally either are trying to find an optimal
response, €.g., minimization, or are trying to fit the entire surface well, e.g., minimizing the mean squared
error over the surface.

In our setting, we posit that practitioners often try to find a general understanding of the entire response
surface with some focus on interesting areas. Instead of defining interesting to be an optimum, we consider
situations where steep areas are the primary focus. That is, a user would like to understand the function
in areas where the derivative of the computer model is large (in absolute value). Identifying where the
derivative is large allows the user to identify regions where small changes in the inputs can result in
relatively large changes in the output. Our goal is that at the end of our adaptive approach, we can build a
metamodel that behaves well throughout the surface, but does a bit better where the derivative is large. We
consider the experimental setting where design points can be evaluated in small batches. This is practical
in many settings, e.g., most experimenters can run computer simulations on multiple cores simultaneously.

2 METHODOLOGY

Informally, our objective is to have higher prediction accuracy in areas where the gradient is large.
Mathematically, our objective function that the experiment attempts to minimize is the weighted mean
squared error of the metamodel, where the weight is the gradient norm squared. However, when running
an experiment, the true function is unknown, so estimates of the gradient norm squared of the function and
the squared error must be used from the metamodel. Both of these are available when using a Gaussian
process model for the metamodel, as is common in design and analysis of computer experiments (Santner
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et al. 2003). The squared norm of the metamodel’s estimate of the gradient, which we call the plug-in
estimator, is suboptimal since it does not account for the uncertainty of the metamodel. A better, unbiased
estimator that we propose is to use the expected value of the gradient norm squared, which accounts for
the uncertainty in the metamodel. This quantity can be calculated using the Gaussian process metamodel.
Using these quantities from the metamodel, we create a criterion that, given a set of data already evaluated,
determines which point(s) should be evaluated next to best minimize our objective.

In the batch setting we are considering, this optimization is difficult. To reduce the computational cost,
we only consider selecting points from a set of candidate points. This set should be space filling, and needs
to grow faster than the set of evaluated points to ensure that there are sufficient options for selection. Even
when using candidate points, heuristics must be used to pick the batch of points to be evaluated, such as
with a greedy algorithm. We use an sFFLHD (Duan et al. 2017) to generate candidate points since it can
generate points as long as needed while maintaining good properties for the whole design.

3 RESULTS

In our numerical results, We compare our algorithm and proposed criterion to four other criteria. The first
is the same as ours, except using the plug-in estimate of the gradient. The second is the traditional method
of minimizing the mean squared error over the entire surface. The final two are nonadaptive methods
that just use points from an sFFLHD or a Sobol sequence (Sobol 1967). We compared these methods
on three known functions that each have two input dimensions. The metric we use for comparison is the
actual gradient norm squared weighted mean squared error, which can be calculated since we use known
equations. The results show that the our proposed method and the plug-in method give the best performance
by a large margin. The nonadaptive methods that simply use points from an sSFFLHD or Sobol sequence,
perform much worse, as expected.

4 CONCLUSION

We propose a new method that allows adaptive computer experiments to have a higher prediction accuracy
where the gradient is large. This is practical since many situations where practitioners are interested in
finding areas of the response surface where a small change in inputs can have a large effect on the output.
Our algorithm adaptively selects a batch of points from a set of space filling candidate points to be evaluated
in each iteration. The information from data already collected in the experiment is incorporated into a
Gaussian process metamodel that allows for efficient selection of points. In future work we will perform
more extensive numerical comparisons and expand the method so it can be applied in a more general
setting.
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