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ABSTRACT

Approaches to modelling nonhomogeneous Poisson processes (NHPPs) commonly use piecewise repre-
sentations of the rate function. In reality, real-world rate functions are unlikely to take a piecewise form
and therefore bias is introduced. We propose a spline function representation using a large number of
knots. The resulting function, being both smooth and highly flexible, is able to take on a wide variety
of functional shapes reducing the bias between it and the true process. Due to the added flexibility we
control overfitting, and thus variability, by adding a penalty to the NHPP log-likelihood. Our approach
optimizes the spline coefficient and penalty parameter combination by minimizing a modified AIC score.
Our approach also leads to a simple method for arrival generation from the resulting spline function.

1 SPLINE FUNCTIONS

Suppose we observe a NHPP, N(t), with true rate function λ c(t) on the interval [0,T ] over m days. We
represent the rate function using a spline function; a linear combination of n d-degree B-spline basis
functions,

λ (t) =
n

∑
k=1

ckBk,d(t), (1)

see (De Boor 1978). Here Bk,d(t) is the kth d-degree B-spline and ck is its coefficient. B-splines have local
support over d +2 knots and at any time t, only d +1 B-splines are non-zero. We allow the number of
knots, and thus the number of B-splines, to be large allowing the resulting spline function to be highly
flexible. Once the knots have been placed the B-spline functions are fixed and it is the spline coefficient
vector, ccc = {c1,c2, . . . ,cn}, that completely determines the shape of the resulting spline function. It is
therefore ccc that we aim to optimize using the penalized log-likelihood.

2 FITTING THE SPLINE FUNCTION

When fitting the spline function we consider the penalized log-likelihood, lp(·). The penalty is a measure of
the curvature of the rate function; it controls overfitting of the NHPP and thus the variability. Conditional
on m days of observations, ttt = {t11, t12, . . . , tmam} where ai denotes the number of arrivals on day i, the
penalized log-likelihood is

lp(λ (ttt;ccc)) = l(λ (ttt;ccc))−θ

∫ T

0
{λ ′′(u;ccc)}2du

=
m

∑
i=1

ai

∑
j=1

log(λ (ti j;ccc))−m
∫ T

0
λ (y;ccc)dy−θ

∫ T

0
{λ ′′(u;ccc)}2du
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where θ is the penalty parameter that controls the amount of penalization and l(·) is the unpenalized
log-likelihood.

To find the optimal rate function, λ (t), we search for the optimal combination {θ ,ccc} by minimizing
a modified AIC score

AICmod =−2 l(λ (ttt;ccc))+2 e,

where e is the effective degrees of freedom, see (Gray 1992).

3 OPTIMISING THE SPLINE COEFFICIENTS

For a fixed penalty value, θ , we find the optimal spline coefficients ccc by maximizing the penalized log-
likelihood using a trust region approach, see (Conn, Gould, and Toint 2000). By convention the trust
region approach is a minimization algorithm, we therefore solve the equivalent problem of minimizing the
negative penalized log-likelihood. The trust region approach takes a local approximation of the penalized
log-likelihood in the form of a second-order Taylor series expansion,

m(ppph) = lp(ccch)+g(ccch)
T ppph +

1
2

pppT
h H(ccch)ppph,

where ppph is the vector of proposed steps for each spline coefficient in iteration h, ccch is the current value
of the spline coefficients and g(ccch) and H(ccch) are the gradient and Hessian of the penalized log-likelihood
respectively. The key is in choosing each step ppph within some region in which we expect the Taylor series
approximation to hold well. Known as the trust region sub-problem, the objective of the optimization in
step h is

min m(ppph), subject to: ||ppph|| ≤ ∆

where ∆ is the radius of the trust region and || · || denotes Euclidean distance. This is a convex quadratic
optimization problem. The algorithm stops when the proposed step falls below some threshold ε . Once
we have the optimal spline coefficients, ccc, we can assess the modified AIC score of the spline fitted with
penalty θ . The spline function with the minimum score is chosen.

4 ARRIVAL GENERATION

Once the optimal combination {θ ,ccc} has been found we generate arrivals by taking advantage of the
composition of the spline function. Note that the maximum of (1), the spline function, is not clear but, as
soon as the knots have been placed, the maximum of each individual B-spline is known. Further, when
uniformly spaced B-splines, otherwise known as cardinal B-splines, are used this maximum is the same.
Using the fact that the sum of n Poisson processes is again a Poisson process, we treat each of the n B-splines
as an independent Poisson process, scaled by the spline coefficients, and generate arrivals from them using
an efficient thinning algorithm, see (Klein and Roberts 1984). We can then treat the superposition of
arrivals from all n scaled B-splines as arrivals from the spline function, λ (t). When cardinal B-splines
are used, this procedure simplifies as all n B-splines are transformations of the first B-spline and thus all
arrival times can be generated using the first B-spline scaled by the n spline coefficients in turn.
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