
Proceedings of the 2018 Winter Simulation Conference 
M. Rabe, A.A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds. 
 

IMPROVING TUNNELING SIMULATION USING BAYESIAN UPDATING AND HIDDEN 

MARKOV CHAINS 

 

 

Michael Werner 

Wenying Ji 

Simaan AbouRizk 

 

Department of Civil and Environmental Engineering 

University of Alberta 

Edmonton, Alberta, CANADA 

 

 

ABSTRACT 

Ground conditions remain an uncertain factor in tunneling projects, complicating the ability of practitioners 

to reliably estimate project productivity and, in turn, duration. This study proposes a Bayesian-based approach 

to incorporate real-time project data into simulation-based ground prediction models to improve prediction 

accuracy. Changes in ground conditions are modeled using a Hidden Markov Model, which is updated with 

actual project data using the Baum-Welch algorithm. The prediction model is then incorporated in 

Simphony.NET to enhance simulation of tunneling construction operations. A case study conducted in 

Edmonton, Canada, demonstrates that the proposed approach is capable of incorporating real-time data in a 

manner that resulted in enhanced duration prediction accuracy. 

1 INTRODUCTION 

Productivity of tunneling operations depends, in part, on the geological conditions encountered during 

project delivery. While geotechnical investigations (i.e., intermittent borehole samples taken across the 

tunnel alignment) are routinely conducted during the planning stages of tunnel construction, these 

investigations are primarily concerned with the identification of major geotechnical risks, such as voids, 

water pockets, or other unexpected ground conditions. Sampling at a frequency that would provide the data 

required to reliably estimate productivity is extremely costly and, in some cases, unachievable (e.g., 

underground conditions where only certain portions of the project site are accessible for investigation). In 

practice, ground conditions used to estimate productivity are often assumed from past projects or by domain 

experts. This can result in inaccurate predictions and, consequently, in unexpected project delays and 

expenditures.  

While Markov process models have been developed to predict the uncertainty of geological conditions in 

the past (Chan 1981; Ioannou 1987; Liu et at. 2009; Sutanto 1997), these models failed to consider dependency 

between observation variables. In recent years, academic models for predicting ground conditions have been 

developed using Hidden Markov Model (HMM)-based approaches to achieve more accurate predictions (Leu 

and Adi 2011; Zhang et al. 2015). HMMs are suitable for predicting ground conditions because they can 

consider uncertain ground parameters together with their location information. Despite improvements for 

predicting conditions in the planning phase, these models are unable to appropriately incorporate relevant, 

real-time data that are acquired during the execution phase of construction. A prediction model capable of 

improving the accuracy of HMM parameters, by incorporating dynamically updated information, is expected 

to enhance tunneling project planning and delivery. 

Updating parameters of a model using new information has been systematically investigated by 

researchers. Bayesian-based approaches have been successfully applied to derive analytical posterior 

distributions in construction simulation for normal (Chung et al. 2006) and beta distributions (Ji and 
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AbouRizk 2017). However, the set of observations in a HMM is a sequence of various observable outcomes 

and, therefore, traditional Bayesian updating techniques are not as directly applicable. With HMMs, both 

the unique instances in the data sequence and the transition from one outcome to the next must be accounted 

for when updating model parameters. The observations, as well as the transition information, become 

required inputs in the updating process. Although analytical methods cannot be applied for updating 

HMMs, numerical techniques can, potentially, be used for reasonable HMM updating (Rabiner 1989).  

Here, a Baum-Welch algorithm (Baum and Petrie 1966) is implemented to allow HMMs in tunneling 

simulation models to be updated with real-time data. The HMM, the Baum-Welch algorithm-based 

parameter updating technique, and the creation of the simulation environment are detailed, and a case study 

is performed to demonstrate the feasibility and applicability of the proposed approach.  

2 METHODOLOGY 

The proposed methodology is comprised of three primary components: (1) the HMM, which is used in this 

study for stochastic modeling purposes, (2) the Baum-Welch algorithm, which is used to achieve parameter 

updating of the HMM, and (3) the specialized simulation environment, which is created using the 

construction simulation platform, Simphony.NET (AbouRizk et al. 2016). The methodology is detailed as 

follows. 

2.1 Hidden Markov Model 

A Hidden Markov Model (HMM) is a statistical Markov model in which the system being modeled is 

assumed to be a Markov process with unobserved (i.e., hidden) states. A graphical representation of a HMM 

is illustrated in Figure 1.   

  

Figure 1: Graphical example of a HMM, where (x) represents a hidden state, (y) represents an observable 

state, (a) represents a transition probability from a hidden state to another, and (b) represents the emission 
probability from a hidden state to an observable state. 

 The first step for estimating a Markov model using a Bayesian approach involves determining the 

inputs. A HMM includes initialized parameters, namely prior state density matrix-π, transition matrix-A, 

and observation matrix-B. Rabiner and Juang (1993) suggested using uniformly distributed probabilities 

for initializing prior state density matrices and transition matrices, as these values are unknown and every 

possibility is equally likely to occur. Alternatively, Rabiner and Juang (1993) have also recommended 

making reasonable assumptions in the initialization of the observation matrix. The notation used for HMM 

parameters, their corresponding matrices and vectors, and their elements, based on Rabiner and Juang 

(1986) and Rabiner (1989), are detailed as follows: 
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𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑇}: A set of all possible hidden states 

𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑇}: A set of all possible observable states 

𝐴 = {𝑎𝑖𝑗}, 𝑎𝑖𝑗 = 𝑃(𝑠𝑡+1 = 𝑗 | 𝑠𝑡 = 𝑖): State transition probability matrix 

𝐵 = {𝑏𝑖𝑚}, 𝑏𝑖𝑚 = 𝑃(𝑥𝑡 = 𝑚 | 𝑠𝑡 = 𝑖): Emission probability matrix 

𝜋 = {𝜋𝑖}, 𝜋𝑖 = 𝑃(𝑠1 = 𝑖): Initial state distribution or prior distribution 

𝜃 = {𝐴, 𝐵, 𝜋}: HMM parameters 

𝑈 = {𝑢(𝐴), 𝑢(𝐵), 𝑢(𝐶)  }: Hyperparameters used to define the prior over 𝜃 

2.2 Baum-Welch Algorithm 

Bayesian statistics allow for the modeling of changes in probabilistic values within a random system. In the 

case of Markov modeling, Bayesian statistics allow users to easily update predictions as new information 

becomes available. In essence, the posterior prediction is an integration of prior predictions and newly 

collected information. However, determining a method to adjust HMM parameters (i.e., A, B, π) to 

maximize the probability of the observation sequence from a given model is extremely difficult; indeed, 

there is no way to analytically solve such a problem (Rabiner 1989). Rather, parameter derivation can be 

achieved using iterative numeric methods, such as the expectation modification method (Dempster et al. 

1977) or gradient techniques (Levinson et al. 1983). 

The Baum-Welch algorithm uses the well-known Expectation Maximization algorithm to determine 

the maximum likelihood estimate of HMM parameters from a set of observed feature vectors. The Baum-

Welch algorithm, first proposed by Leonard E. Baum and Lloyd R. Welch in a series of articles in the late 

1960s (Baum and Petrie 1966; Baum and Sell 1968; Baum et al. 1970), is numeric in nature and is based 

on the forward-backward procedure described by Rusian Stratonovich (1960). The Baum-Welch method 

was selected for implementation in this study due to its ease of application and to its ability to be 

implemented into the Simphony.NET modeling environment. 

The algorithm involves using a set of observed outcomes to update the parameters of a HMM. These 

observed outcomes may be a simple set containing one observation array or may be comprised of a complex 

series of observation arrays. The algorithm uses these sets of observations to generate parameters, which 

are referred to as updating parameters. These updating parameters represent probability values and are used 

to update the parameters of the HMM. The updating parameters output by the algorithm include: α, β, ξ and 

ϒ. The ϒ and ξ updating parameters are computed based on the α and β parameters. ϒ and ξ are the only 

parameters used in the final updating step. The formulae for calculating these parameters are summarized 

in Equations 1 to 6. 
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After the above parameters are calculated, updated probabilities for the A and B matrix are calculated 
using Equations 7 and 8. 
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2.3 Simphony Modeling Environment 

The majority of simulation environments available today provide graphical modeling constructs to visually 

represent the logic flow of systems, operations, and processes that have been abstracted for the purposes of 

simulation-based analysis. Here, Simphony.NET was used as the simulation environment for achieving the 

proposed approach. Specific Markov chain elements were developed for use in the Simphony.NET 

simulation environment general template, enabling the definition and emulation of Markov chains in 

Simphony.NET, and enhancing flexibility of the types of models that can be constructed.   

 Markov elements were designed to have one-to-one mapping between constructs that appear in the 

graphical layout of a Markov chain model on paper and one developed using the envisioned Simphony.NET 

environment. Markov chain states are represented by a state modeling visualization and, for the case of 

hidden Markov chains, are represented by observations. Transitions between hidden states and emission 

from hidden states to observable states are represented using directional arrows, with a probability value 

assigned to each. The higher-level “MarkovModel” modeling element is responsible for controlling and 

managing Markov chain model parameters from the model layout, simulating the Markov chain, and 

tracking Markov chain behavior. The “MarkovTransition” modeling element was created to trigger the 

Markov chain to be stepped during the simulation. Elements implemented in the modeling environment and 

the Markov model created within the Simphony.NET user interface are illustrated in Figure 2. 

3 CASE STUDY AND RESULTS 

To demonstrate the feasibility and applicability of the proposed approach, a real project from Edmonton, 

Canada, is utilized to perform the simulation analysis. The case project was a three-phase drainage 

improvement project; this case study focuses on two of these phases including a 1km tunnel (Project A) 

and a 500m tunnel (Project B). Both tunnels were 2340mm diameter storm tunnels completed using Tunnel 

3933



Werner, Ji, and AbouRizk 
 

Boring Machine (TBM) excavation. Based on borehole data collected prior to construction, the majority of 

tunneling was expected to involve clay till (with inter-till sand zones), a mix of sandy clay, and the 

possibility of sand pockets. 

 

 

Figure 2: Markov model elements embedded within Simphony.NET. 

3.1 Data Preparation and Model Inputs 

Beginning in September 2015, TBM excavation proceeded along Project A; 978m were completed at the 

end of August 2016. Throughout this phase, geotechnical conditions, daily excavation progress, and shift 

length were monitored on a daily basis. Project A data are summarized in Table 1. 

 

Table 1: Actual project data from Project A. 

Ground Conditions Count (m) 
Length of Persistence (m) 

Effective Duration 

(hr./m)* 

Average Minimum Maximum Average Std. Dev. 

Clay 207 13.8 3 44 2.16 0.16 

Clay Sand 712 37.5 3 174 2.10 1.45 

Sand 59 6.6 2 10 2.34 2.07 

*Effective Duration calculated as shift time divided by meters excavated each day.  

Actual project duration data for Project B, at 100m intervals, are detailed in Table 2. These data will be 
compared to simulation results. 

 

Table 2: Actual project data from Project B. 

  0-100m 100-200m 200-300m 300-400m 400-500m Total 

Clay 2.10 ± 0.43 2.18 ± 0.59 2.73 ± 1.61 2.33 ± 0.69 2.70 ± 1.51 2.41 ± 1.07 

Clay Sand n/a 2.03 ± 0.06 2.44 ± 0.65 n/a n/a 2.35 ± 0.58 

Actual 

Duration (hrs.) 
211 208.50 232.50 229.50 270 1152 

Total Actual 

Duration (hrs.) 
211 419.5 652 881.5 1152 

*Values are average ± standard deviation.  
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3.2 Model and Assumptions 

A tunneling construction simulation model, developed based on a previously proposed model (AbouRizk 

et al. 2016), was developed. Due to the similarity of the present case study, the proposed model was used 

as a baseline. This model was then embellished with the Markov chain elements as well as updated project 

parameters for the case study. The model schematic is illustrated in Figure 3. 

  

 

Figure 3: Case study tunneling model schematic. 

 Excavation duration is dependent on the ground condition (i.e., output) of the HMM chain. The pseudo 

code below provides details of how excavation duration was determined: 

If Ground Condition HMM has an output of “clay” 

 Duration = Sample of Normal Distribution for clay (Average duration for clay, 

standard deviation for clay) 

If Ground Condition HMM has an output of “clay sand” 

 Duration = Sample of Normal Distribution for clay sand (Average duration for clay 

sand, standard deviation for clay sand) 

If Ground Condition HMM has an output of “sand” 

 Duration = Sample of Normal Distribution for sand (Average duration for sand, 

standard deviation for sand) 

 

Task elements (shown on the right side of Figure 3) are used to store the duration distributions of each 

ground condition. Bayesian updating occurs, here, through the distribution fitting interface provided within 

Simphony.NET. Notably, certain assumptions were made to facilitate the clear implementation of the 

proposed updating and prediction techniques: duration data were assumed to be normally distributed, since 

the Simphony.NET modelling environment has existing capabilities to handle normal distributions. 
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3.3 Simulation Modeling and Run Details 

A total of 6 simulation runs were completed to assess the effectiveness of the proposed HMM and Bayesian 

updating components in the tunneling model. As illustrated, the initial values of transition and emission 

probabilities were uniformly set. The tunneling model in Figure 3 was then trained using Project A data 

(Table 1) to develop the baseline HMM using the implemented Baum-Welch algorithm as illustrated in 

Figure 4. 

 

 

           
 

Figure 4: Baum-Welch training step of HMM. 

 A simulation run, which simulated project updates at 100m intervals for the 500m project, was 

completed to demonstrate how actual construction project planning and control would occur. Prior to 

project execution, a model would be created using basic assumptions and best guesses to estimate 

production rates and durations. Notably, the preliminary model could be improved using historical data of 

similar projects or expert knowledge. An initial run would simulate tunneling of the entire project. In 

practice, the execution phase of construction would begin, and real data would be collected and used to 

update the model and duration prediction. This process would be repeated at specified intervals until the 

project is complete. Here Project A data were used to “train” the Project B model. The first run (Run 1) 

simulated tunneling of the entire 500m. Predicted duration of Project B was recorded. At this point, actual 

Project B data were used to update the model and to predict the duration for the remaining 400m (as Run 

2). This process was repeated at 100m intervals. Duration of each run was analyzed by adding the actual 

duration to date to the average simulated duration for the remaining length of tunnel. Each run was 

performed 1000 times to ensure a meaningful sample of results was obtained. Results are summarized in 

Table 3.   

Table 3: Details of simulation model runs. 

Run Number Simulated Length (m) Actual Data Length (m) 

1 500 0 

2 400 100 

3 300 200 

4 200 300 

5 100 400 

6 0 500 

 

Train the HMM with Project A Data 

(Baum Welch Algorithm) 
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 Since it uses actual project data to simulate the entire project, Run 6 (i.e., the final run) can be compared 

to the actual project duration to determine accuracy of the model as well as the updating process. 

3.4 Results 

For illustrative purposes, the results of three runs are summarized. The HMM chain, predicted ground 

conditions, and duration distributions of each run are presented. Evolution of the HMM from Run 1 to 5, 

and 5 to 6, are illustrated in Figure 5.  

 

      
 

Figure 5: HMM chain for runs 1, 5, and 6 (from left to right, respectively). 

In Run 1, hidden state A1 dominates the chain with a very low likelihood of transitioning to either A2 

or A3. As is often observed in HMM chains, each hidden state is generally more associated with an 

observation—in this case, a specific ground condition. For example, A1 is primarily associated with clay 

sand and has a self-transition probability of 97.6%, dominating the HMM chain and approaching what is 

known as an absorbing state. As the HMM is updated, the likelihood of observing clay increases for all 

hidden states. This behavior is expected: while previous Project A data were predominantly clay sand, 

actual data from Project B were mostly clay (particularly through the first 200m). Sand was not observed 

during Project B excavation, as is reflected by the decreasing likelihood of transition to sand. Visual 

representations of the simulated ground conditions encountered in Runs 1, 5, and 6 are illustrated in Figure 

6.  

 

Figure 6: Simulated ground conditions encountered for runs 1, 5, and 6 (from left to right, respectively). 

 Run 1 is dominated by Project A data and, consequently, clay sand is the most commonly encountered 

ground condition in this run. In Runs 5 and 6, the influence of Project B data emerge, as evidenced by the 

greater and lower frequency of clay and sand encountered, respectively. Project durations for each run are 

summarized in Table 4. 
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Table 4: Summary of run durations. 

Run Number 
Simulation Average 

Duration (hrs.) 
Actual Duration (hrs.) Total Duration (hrs.) 

1 (500m) 1491 0 1491 

2 (400m) 1185 211 1396 

3 (300m) 790 420 1210 

4 (200m) 527 652 1179 

5 (100m) 264 882 1146 

6 (500m) 1331 0 1331 

 Actual duration for Project B was 1152 hours (or 144 days) of construction, which is used as a baseline 

for evaluating the effectiveness of the proposed methodology. Results indicate that duration prediction 

accuracy was improved after each addition of actual data, beginning with a prediction of 1491 hours (or 

186 days) in Run 1 and ending with a prediction of 1146 hours (or 143 days) in Run 5. Compared to Run 

1, which was based on historical information alone, Run 6 simulated project duration using a combination 

of both historical data and information from Project B. This resulted in a simulated duration of 1331 hours 

(or 166 days), which is more accurate than Run 1. Notably, the model is not calibrated to mirror specific 

projects; rather, it was developed as a means of incorporating real-time information into tunneling 

simulation. Indeed, Runs 4 and 5, with information from 300 and 400m of actual data, were able to most 

reliably predict actual project duration, at 1179 and 1146 hours, respectively. Altogether, the results 

demonstrate that the updating process was able to incorporate real-time data in a manner that resulted in 

marked improvements in duration prediction accuracy.  

4 CONCLUSIONS 

The present study was focused on improving simulation-based prediction of tunneling project durations by 

incorporating new, periodically-generated project data acquired during project execution. This research 

focused on predicting the physical attribute of the environment that is interacting with the work face—

specifically, ground conditions. The approach included the use of HMMs to model the stochasticity of 

ground conditions. Parameters for the HMM were updated in a real-time manner using Baum-Welch 

algorithm-based updating techniques. Simulation and parameter updating were achieved in an automated 

fashion using an improved Simphony.NET environment.  

 The feasibility and applicability of the proposed approach was demonstrated through a case study of a 

real tunneling project conducted in Edmonton, Canada. Application of the proposed approached improved 

accuracy of project duration predictions and was found capable of producing results that were similar to the 

actual project. While additional, real cases must be simulated to ensure the validity of the proposed method, 

and methods for determining prior information should be systematically developed, preliminary results 

indicate that the proposed approach has the potential to improve planning and delivery of tunneling projects 

by enhancing the reliability of ground condition predictions. 
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