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ABSTRACT 

Construction industry has one of the highest rates of bodily injuries including serious Work-related 
Musculoskeletal Disorders (WMSDs). The Occupational Safety and Health Administration (OSHA) 

identifies force level as a risk indicator associated with WMSDs. Without direct measurement, quantifying 
the force exerted during a given task performed by workers is difficult, if not impossible. Therefore, an 
indirect and non-intrusive way of identifying excessive force applied during physical tasks can effectively 
reduce the risk of WMSD injuries. In this research, a series of physical activities involving pushing and 
pulling are simulated by the research team in laboratory-scale experiments. The exerted force is measured 
using a work simulator tool and accelerometer data is collected from a smartphone sensor affixed on the 

working arm. Artificial Neural Network is trained with the accelerometer data and the force levels. Testing 
results indicate that the trained model can predict the force level with over 87.5% accuracy.  

1 INTRODUCTION 

Construction is the second most hazardous industry in the United States with approximately 12 fatal injuries 
a day (U.S Bureau of Labor Statistics 2018). According to U.S. Bureau of Labor Statistics, private 
construction had the highest number of fatal injuries in 2015 with 937 reported deaths (OSHA reports 2015). 

The ratio of workers’ fatal injuries per 100,000 full-time workers in construction placed 4th among all 
industry sectors (U.S Bureau of Labor Statistics 2018).  In 2002 estimates showed that fatal and nonfatal 
injuries in construction cost $11.5 billion (Waehrer et al. 2007). Also, other studies worked on costs of 
injuries in construction industry using previous studies from 1979 and found a dramatic raise in total cost 
of construction. 1979 statistics shows 6.5% of total cost and Everett et al. found this ratio between 7.9% to 
15% of the total cost of industry (Everett and Frank Jr 1996). Reports from Occupational Safety and Health 

Administration (OSHA) point out top causes of injuries are; falling from heights, trench collapse, collapsed 
scaffolding, electric shock, failure to use appropriate protective gear, and repetitive motion injuries 
respectively (Armstrong et al. 1993; Ahankoob and Charehzehi 2013). Although the first five cases include 
a higher amount of injuries compared to the last one, there is a gap in the study of repetitive motion damages 
that affect workers’ lifestyle in long-term and also can cause serious damages to their bodies. Repetitive 
Motion Damages can result in excessive physical stress that can cause Musculoskeletal Disorders (MSDs) 

which directly disturb muscles, tendons, and nerves (U.S Bureau of Labor Statistics 2018). Figure 1, 
adopted from U.S Bureau of Labor Statistics shows that the number of days away from work due to MSDs 
are always more than other nonfatal injuries. Therefore, it reaffirms the importance of keeping workers safe 
from these types of injuries. There are three main factors to the injuries due to the workers’ physical 
behaviors for which OSHA provided some limitations. These factors, also known as triggers of ergonomic 
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stress, are Force, Repetition, and Posture (Genaidy et al. 1993). Force, as the main component of any 
physical activity, plays a key role in performing a job-related activity in a safe or unsafe  manner.   

Figure 1: Days away from work, WMSDs vs. all nonfatal injuries 1992-2009. 

Any type of job site actions, as simple as using a screwdriver or more sophisticated actions such as 
vibrating the concrete requires some level of physical effort, which is materialized as the force exerted by 
the worker to either control the tool or get the task done (Ahankoob and Charehzehi 2013). Construction 
companies pay a substantial amount of money for expenses directly or indirectly related to their workers’ 
injuries. Records from National Academy of Social Insurance (NASI) show that in 2013 employer costs 

for workers’ compensation were $88.5 billion for 129.6 million covered workers. 
Considering the significant effect of MSDs and other related injuries as a result of applying excessive 

force on workers’ productivity and company expenses, this research seeks to develop a framework for 
quantification of human force using wearable sensors. Specifically, this study focuses on finding a 
correlation between force and acceleration produced by workers’ physical activities such as pushing and 
pulling. 

2 LITERATURE REVIEW  

2.1 Work-Related Musculoskeletal Disorders (WMSDs) and Ergonomics in Construction 

Previous research indicates that construction labors have the highest rate of WMSDs among all industries 
(Wang et al. 2016). Researchers suggested reducing of overexertion, as the primary cause of WMSDs, 
should take place in order to control the risk of injuries. A research team surveyed construction employees 
to evaluate relationships between worker characteristics, workplace factors, and WMSDs. The total 

commonness of WMSDs was 39.25% among 1200 male workers between the ages of 18 to 55 (Ekpenyong 
and Inyang 2014). Another survey in Malaysia showed a prevalence of WMSDs in 66.7% of the 
construction employees at their elbows, wrists or hands, and ankles or feet (Deros et al. 2015).  

Major WMSDs’ risk factors were evaluated by (Spielholz et al. 2006) including force requirements. 
There are many risk factors that can put a construction worker in danger of Work-related musculoskeletal 
disorders. The first and the most important one as Spielholz and Griffith stated is work postures and 

movements. The second one is Force of movements which is the focus of this study too. The other factors 
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can be repetition in motions, vibration, temperature, increase pressure and so on and so forth. Also, 
Canadian Centre for Occupational Health and Safety mentioned the same factors as the risk of injuries in 
construction (CCOH 2018). 

A research team conducted a risk assessment of WMSDs and a review of available techniques. They 
stated that construction industry needs to continuously work on turning the assessment process into an 
automated process (Wang et al. 2015). Another comparison study on direct measurement and observation 

method (vision-based) for upper workplace activities showed a significant correlation between exertion 
frequency from direct measurement and observation method (Chen et al. 2010). They also found a 
correlation between effort per minute estimated by Strain Index checklist with the mean power frequency 
of exertion. They believed findings from observation method could be used in assessing physical works in 
the workplace. 

2.2 Application of Accelerometer Sensors Data Analysis in Construction Safety 

To be able to proactively assess the safety of construction workers, monitoring their activities can play a 
key role. A study team have analyzed construction labor activities using a physiological status monitoring 
system which contained an accelerometer (Migliaccio et al. 2013). They focused on tracking the workers 
on site to evaluate their behaviors. This study analyzed ergonomic factors from workers’ activities who are 
handling materials on a repetitive basis with a data fusion approach. This study also tracked and monitored 
workers’ heartbeat during their performance and compared the heartbeat diagram in both situations; doing 

the work with a correct posture and wrong posture. The final result of this data fusion method which was 
used in this research shows that there are significant differences in data sets captured from correct 
performance and the wrong one. 

A research team worked on monitoring wrist motion components of the industry workers including 
position, velocity, and acceleration to evaluate the degree of incidence of hand/wrist cumulative trauma 
disorders (CTDs) (Schoenmarklin et al. 1994). They indicated that acceleration in the flexion/extension is 

the best kinematic parameter for evaluation of the low and high incident rates of CTDs. Another group of 
researchers used IMUs to collect data in order to create a new method of detecting unsafe physical postures 
using gyroscope data captured from wireless IMUs (Valero et al. 2016). They used motion data such as 
acceleration to evaluate the motions and characterize the nature of activities. A team of researchers used 
EMG-based model to evaluate muscle force that affects spinal and lumbar (Jia et al. 2011). The focus of 
this research is on residential construction and laborers that work with installation of prefabricated walls. 

The EMG-based neuromuscular modeling is a method that uses muscles neurons to evaluate muscle forces. 
They figured that the model’s ability of prediction is based on the performed tasks. Also, the complexity of 
the tasks would affect the results of the estimation.  

Other studies used both accelerometer and gyroscope data from worker’s motions and construction 
equipment to auto-recognize and categorize construction tasks through activity recognition (Akhavian and 
Behzadan 2018, 2016; Nath et al. 2017). Such used supervised machine learning algorithms to train 

computers for classifying unseen activities (i.e. those not presented in the training phase). In other words, 
the computer should understand the nature of the activity and its category through the collected and labeled 
data to be able to prepare them for an assessment of the safety level of the activity. In this research, 
simulated activities were chosen based on the OSHA limitations on pushing and pulling objects by workers.  
Maximum acceptable weights and forces for different construction operation tasks including lifting, 
lowering, pulling, pushing, and carrying are prescribed by OSHA and gathered by (Snook and Ciriello 

1991). Force limitations for Pushing and Pulling objects in either horizontal or vertical distance are 
tabulated in OSHA’s manuals so they can be used for evaluations of worker’s performances. A research 
team used acceleration measurements and applied same technique as human activity recognition (HAR) to 
classify construction activities (Yang et al. 2008). They plotted acceleration data captured from 15 seconds 
of eight different task performances including; walking, running, scrubbing, standing, working at a PC, 
vacuuming, brushing teeth, and sitting. Plots show the obvious differences between the acceleration patterns 

from each activity.  
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Recent studies in the area of safety in construction have focused on body postures (Xincong et al. 2017; 
Yan et al. 2017; Golabchi et al. 2016). Xincong and his team used biomechanical methods as a theory to 
analyze workers’ motions . Their evaluation was based on internal (elevated intramuscular strains, torques, 
and fatigue of muscle) and external (awkward postures and forceful exertions) causes of injuries with the 
use of the biomechanical structure of the human body and case analysis of typical construction activities. 
Inertial Measurement Unit (IMU) sensors as one of the most accurate activity recognition tools have helped 

researchers to collect and transfer data from any moving subjects (Akhavian and Behzadan 2015). The data 
from these type of sensors can translate into a host of information that can help more thorough analysis of 
the activity. A research group have worked on monitoring and evaluating the manual material handling 
(MMH) using whole body kinematics which was captured by IMU sensors (Bastani et al. 2016).  

3 RESEARCH TECHNICAL BACKGROUND 

Two main data collection means have been employed in this research. Baltimore Therapeutic Equipment 

(BTE) Simulator II was used to simulate work-related activities that entail pushing or pulling. BTE 
simulator II is a machine that is designed for occupational therapy and industrial work hardening clients, 
and also it replicates daily physical activities and functions using a wide range of attachments and tools. 
BTE Simulator II measures Force, Power, and also Torque in different types of activities such as extension, 
abduction, adduction, and so on and so forth. Depends on what tool and how that specific tool is being used, 
the machine gives the variety of choices to its users to evaluate. This machine can help to simulate any type 

of physical activities due to its high range of tools and variety of information that it gives the user.  
The reason for the particulat focus on pushing and pulling was the author's field observations as well 

as previous studies that showed most of the physical activities in a construction site entail some level of 
pushing or pulling (Hoozemans et al. 1998). Besides, according to OSHA, there are some health-related 
limitations on the weight of the objects which is being pulled or pushed, (Snook and Ciriello 1991) and thus 
a thorough investigation could help in determining the risk level.  

The other type of data that was collected in this research was acceleration data using smartphones 
affixed on a simulated workers’ arm as shown in Figure 2. The acceleration data was collected using Sensor 
Log Application which is available in iTunes App Store. The details of the methodology of this study will 
be explained further in the Methodology section. The accelerometer data is collected using ubiquitous 
smartphones. While this is a reliable way of collecting acceleration data for activity recognition according 
to several past research studies (Kose et al. 2012; Mourcou et al. 2015), investigating this reliability is not 

within the scope of this study. In fact, experimenting with readily-available ubiquitous means of data 
collection and model development as opposed to superlative Microelectromechanical systems (MEMS) 
sensors with demonstrated high-accuracy was intentional to add to the easy implantation of the framework. 
In a study, it was concluded that among 15 potential locations for wearing an accelerometer, the lower left 
arm and the upper right arm are the two best locations that yield the highest information gain (Joshua and 
Varghese 2013). The research team experimented both options and the upper right arm was picked as the 

most convenient location.    
Newton’s second law of motion states that the acceleration of an object produced by a net force is 

directly related to the size of the net force, in the same direction as the net force, and opposite direction 
related to the mass of the object. As Newton’s second law indicates, only two givens are needed to measure 
the net Force; Mass and Acceleration (Gundlach et al. 2007). There are a huge variety of tools involved in 
work-related activities that workers use during their daily works and measuring the Mass of these objects 

and tools are nearly impossible. However, acceleration can be measured in many different ways using 
different types of equipment. For instance, acceleration data of a worker’s motions during any activities 
can be captured using wearable IMU sensors. Previous works on this technology show the high potential 
of it in the construction industry as an instrument that can distinguish unsafe behaviors and help companies 
to reduce the risks of injuries.  
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4 METHODOLOGY 

Data collection phase of this study was conducted in an engineering research lab (i.e. a controlled 
environment). All the experiments were videotaped to assist in labeling and cross-referencing the collected 
data and performed activities. A 25 years old male Construction Management graduate student (i.e. the 
simulated worker) conducted the experiments who provided written informed consent to participate in the 
study. BTE Simulator II used to simulate construction physical activities includes a series of 21 attachments 

that can be mounted on its exercise head in multiple positions to facilitate simulation of several activities 
and movement combinations. The simulator can be connected to a computer that allows selection of the 
desired resistance and measures performance by quantifying the force exerted, work done, and power output 
while the task is being performed.  

A total number of 10 experiments were conducted each of which with a relatively fixed level of power 
consumed as reported by the BTE Simulator II. Each experiment lasted for around 20 seconds. An 

approximation of the net force (F) exerted was achieved using Equation (1) 
 

          
d

tP
F

 ×
= .               (1) 

   
In which F is the net force exerted in Newton (kg.m/s2), P is the power displayed by the BTE Simulator 

II in Watt (kg.m2/s3), “t” is the duration of the experiment in seconds, and “d” is the displacement of the 
simulated worker’s arm in meter. For example, using Equation 1, for a measured power level of 2.5 Watt 
in one experiment that lasted for 20 seconds with a measured distance of 1 Meter, the force is calculated as 
50 Newton.  

A smartphone was affixed to the simulated worker’s arm with a sports armband to capture acceleration 
data in three dimensions using its IMU sensors. Sensor Log smartphone application was employed which 

is a commercially available smartphone app for iOS and Android operating systems. This application 
reports a variety of signals including Acceleration, Gyroscope data, Core Location, Device Motion, 
Decibels, Pedometer Data, and Pressure from different sensors of the smartphone. The data collection 
frequency was set at 35 Hz using the Sensor Log application interface. This ensures collecting enough data 
for model training as well as capturing all the body movements. The recorded data from this application 
was extracted in Comma Separated values (CSV) format. Before analyzing the collected data, a data 

preparation step is required to assure data quality and cleanliness. Toward this goal, the raw data were 
plotted in Microsoft Excel and cross-referenced against the recorded video. Outliers and redundant data 
points captured during the transition periods between the experiments were removed. Finally, the prepared 
data was imported to Python software for the analysis stage.  

Artificial Neural Network (ANN) was employed in this study to develop a model trained by the 
acceleration data as the input and measured forces as the output. The ultimate goal is to prepare a model 

capable of predicting unseen force levels using acceleration data provided to it. ANN is a machine learning 
method which works similar to the way brain neurons process information and develops relationships for 
classification and prediction purposes. The hidden layers of an ANN network collect the input and process 
them to generate the output (Dongare et al. 2012; Devika and Gupta 2014). Figure 2 depicts a snapshot of 
the actual experiment as well as the experimental design of the developed methodology. 

A total of 10 experiments were conducted with different power (force) values. Approximately 66% of 

the data was used to train the ANN model. The ANN structure included two hidden layers to make the 
connection between the input layer (i.e. acceleration data) and the output layer (i.e. net forces). Gradient 
decent was used as the optimization algorithm within the ANN model training using a feedforward 
backpropagation method.  
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5 RESULTS 

ANN model training and testing was performed in Python and training and testing results were recorded. 
In ANN training, the weights of the parameters in the cost function need to be updated and this updating 
process has to happen more than once since gradient decent is an iterative process. When the dataset is 
passed through the neural network it is called one epoch.  

The result of the model training and testing is shown in Figure 3. After around 2 epochs, an accuracy 

of slightly higher than 87% was achieved. As the number of epochs increased, the accuracy converged to 
around 87.5%.   

 

 

Figure 2: Experimental design of the developed methodology. 

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 

Figure 3: Results extracted from python for ANN. 
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6 CONCLUSION AND FUTURE WORK 

The results of this research study indicate that there is a high correlation between the data collected from 
wearable accelerometer sensors and the amount of force exerted by human muscles. This study lays the 
foundation for further evaluation of the ergonomic risk of different attributes of physical activities such as 
force, repetition, and posture.  

One of the limitations of this study is the fact that the experiments were conducted in a controlled 

environment. Future studies can incorporate real-world data collection to evaluate actual conditions. 
Moreover, a variety of activities other than pushing and pulling can be subject of future studies and a 
combination of such motions could lead into a more realistic scenario. Another limitation of the presented 
study is the administration of experiments with only one human subject performing the activities. This 
certainly creates bias and takes away from the generalizability of the results. Future work shall focus on 
user-independent model training and testing. Another limitation of the presented work is the potential 

generalizability. Limited number of experiments and human subjects takes away from the generalizability 
of the developed framework to different activities, body postures, and movement habits. As such, future 
research can explore more variations to increase the generalizability of this framework. 
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