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ABSTRACT 

Realizing continuous operations of autonomous plants subject to finite specialist crew resources for 

maintenance and repair is vital to achieving productivity and cost-effectiveness in construction operations. 
This paper presents a practical Monte Carlo simulation-based method to develop autonomous plants 
operations and maintenance programs. To balance the cost of plant production loss against the cost of hiring 
maintenance crews, we define a cost function which factors in production output value, resource utilization 
efficiency and direct cost in connection with both autonomous plants and maintenance crews. An 
illustration case of planning maintenance crew resources in operating autonomous crushing plants at a 

quarry site is used to shed light on required input data, simulation processing, and output analysis. The case 
also has increasing relevance to the construction industry in the near future in terms of planning the 
operation of a fleet of autonomous equipment in site operations. 

1 INTRODUCTION 

In construction, productivity is “a measure of the overall effectiveness of an operating system in utilizing 
labor, equipment and capital to convert labor efforts into useful output” (Hendrickson 2008). Compared 

with other industries (e.g., manufacturing, power, heavy chemical, and mining), the construction industry 
has made the highest amount of investment in machinery with an aim to deliver higher productivity and to 
save cost (Yoon et al. 2014). The high ownership cost of these massive construction machinery pressures 
construction companies to make the most use of them by operating at the highest efficiency practically 
possible in order to meet the tight project deadline; while at the same time maximizing the productivity and 
profit margin. Occasionally, the use of major construction equipment is planned to operate even for a whole 

construction season without stopping for a single moment (Vision 2017). The technological revolution has 
materialized the dream of turning heavy equipment into autonomous robots, at the same time presenting 
new challenges in planning the equipment maintenance program. Autonomous control systems on plants 
or equipment feature complex engineering system design and operate on a host of sensor technologies and 
intelligent algorithms for positioning (Hasan and Lu 2018), communication, and control of the mechanical 
systems (Radziwon et al. 2014). 

Malfunctioning or breakdown on the autonomous control systems would cause interruption to 
equipment operations and give rise to prohibitively expensive costs in terms of production loss and 
equipment idling. Thus, such events present significant risks to disrupt the entire production or construction 
system despite the relatively small probability of occurrence considering each individual piece of equipment 
(Finch et al. 1986). This is also evidenced by recent news in the construction and mining industry: in 
implementing a fleet of autonomous trucks, major mining companies decide to keep a certain number of 
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driver jobs as backup to operate non-autonomous trucks in order to maximize the full potential of new 
technology (Healing 2018). 

How to provide system maintenance resources and plan backup production resources in a cost-effective 

manner such that the production interruption is mitigated presents an interesting problem to investigate. 
While the autonomous control system is being rebooted, repaired by a specialist maintenance crew, the 
equipment switches to a manual mode and continues operation by the maintenance crew without incurring 
any stoppage. Alternatively, a manually operated spare plant temporarily substitutes for the autonomous 
plant to keep the production system operating at its full capacity until the autonomous plant is up running 
again. 

This paper presents a practical Monte Carlo simulation-based approach to address the above identified 
problem. The example of planning maintenance crew resources in operating autonomous crushing plants at 
a quarry site is adapted from Tang et al. (2004) as an illustration case. The case has increasing relevance to 
the construction industry in the near future in the particular context of planning maintenance crew resources 
in running a fleet of autonomous equipment in site operations. It is noteworthy that the original case has 
small-sized samples of input data and subjectively estimated information on breakdown probabilities and 

duration categories for maintaining the plant autonomous control system. With limited input data, simple 
discrete probability functions are fitted to inform random sampling in the simulation. Nonetheless, this case 
provides clear guidance on what data to collect and how to perform the complete analysis. As a matter of 
fact, for similar applications down the path, the required data will be automatically collected by using proper 
sensors. As such, more sophisticated statistical distributions can be fitted onto larger more realistic datasets 
in practical applications down the path. 

2 LITERATURE REVIEW 

Globalization, along with technological advances, has made reliability and productivity of a production 
system the key determinant factor for manufacturing companies to thrive in the competitive market 
(Muchiri and Pintelon 2008). Implementation of smart planning and supply chain management schemes 
with installation of computer integrated autonomous production lines improved the performance indicator 
of this industry (Tang 2006). As noted by Ashayeri et al. (1996), utilization of expensive, specialized 

computer controlled equipment potentially decreases the production cost but demands proper maintenance 
scheduling and special contingency planning for backup manual operation. Often, these maintenance crews 
or backup manual operation crews may require a high skill set to perform the job and can be very expensive 
(Finch and Gilbert 1886). Therefore, it is critical to optimize the crew size and plan the deployment schedule 
for such backup crews in order to maximize cost-effectiveness of the whole production system while 
delivering higher profit margins.  

Construction operation is dynamic in nature which involves outdoor operating conditions and can be 
influenced by many variables (e.g., time, place, equipment, weather, construction method, etc.). As pointed 
out by  Louis and Dunston (2017), the dynamic nature of the construction operations substantially increases 
the inherent uncertainty in adaptation of computer controlled autonomous solutions for construction 
operation in comparison with the manufacturing operation setting. With advances of the smart technology, 
the construction industry is also catching up with manufacturing. According to Aziz et al. (2013) adaptation 

of autonomous or semi-autonomous construction machinery and coping with the construction environment 
with smart planning solutions provide key foci for construction researchers at present and in the near future. 
Similar to manufacturing, the vision of continuous production has been realized in practice by many major 
earthworks and mining contractors (Vision 2017). Hasan and Lu (2017) presented the concept of a 
continuous operation plan for an autonomous backhoe excavator which operates on a large grading site. 
Momin et al. (2015) addressed different autonomous solutions for road construction. Neelamkavil (2009) 

gave a broad view of the essence of construction automation for prefabrication industry (particularly in 
housing) and made a fair comparison with other manufacturing industries.  
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Relevant literature corroborates the fact that the deployment of autonomous computer-controlled 
technologies in general gives rise to inevitable construction productivity improvement. Autonomous 
machinery generally feature complex system design and demands expert’s hand to fix if any breakdown 

occurs (Buchanan and Bessant 1985). In the manufacturing setting, this type of situation can be handled by 
transferring the job order to another plant at a different location (Chopra and Sodhi 2004) but it is practically 
infeasible for construction.  To keep the operation continuous while avoiding production interruption and 
productivity loss, the common practice in construction is to keep the option of manual operation as a 
backup. Therefore, crew resources for plant maintenance and manual operation backup needs meticulous 
planning in terms of utilization efficiency and crew size (Siu et al. 2014).  

As noted by Siu et al. (2016) four categories of methodologies are generally applied in resource use 
optimization and scheduling research. These are (1) heuristic rules; (2) evolutionary algorithms; (3) 
simulation models; and (4) mathematical programming. The simulation-based resource use optimization 
approach is commonly recognized the best match for the problem being addressed. In particular, the Monte 
Carlo (MC) simulation approach is applied to model plant breakdown on a random basis in the case study, 
which follows the straightforward random event scheduling and random duration sampling strategy, 

resulting in the bar chart schedule representing specific breakdown periods on particular plants during a 
specified operation time frame (say 24 hours). To our best knowledge, no quantitative techniques other than 
Monte Carlos simulation provide the analytical solution to the key decision variable ̶ which  is the duration 
for a certain number of plants experiencing simultaneous breakdowns is determined by random sampling. 
To facilitate the decision process and structure the analysis of simulation output, the present research further 
defines cost functions on top of the simulation model by factoring production output value, resource 

utilization efficiency and direct cost in connection with both autonomous plants and maintenance crews. 
This allows for a better analytical approach to balance the cost of plant production loss against the cost of 
hiring maintenance crews and identify the optimum solution, thereby lending straightforward decision 
support.  

3 CASE OVERVIEW 

In this case, a large construction company owns and operates fifteen identical autonomous crushing plants 

in a quarry site to produce aggregates. In any working hour, the probability for a plant running under “auto 
mode” to breakdown along with the certain duration of breakdown is known from historical data. For 
demonstration purpose, the probabilities to experience the auto breakdown of different categories in any 
working hour are defined as a discrete distribution function for any crushing plant.  

In this case, it is assumed that the autonomous control system breakdown will be repaired by itself after 
a certain period of running self-diagnosis software and system reboot software; at the meantime, if a standby 

crew is available, the plant switches to “manual mode” of operation; as such, production loss is avoided 
during the auto system down period. Otherwise, if the crew is not available, the plant stops production, 
incurring production loss. The plant will resume autonomous operation at the end of the breakdown period.  

In contrast with the solution originally given in (Tang et al. 2004), the proposed methodology extends 
the simulation output analysis by defining a consolidated cost function called Net Production Output, NPO 
as in Eq. (1), which considers the value of plant production output and the cost of hiring maintenance crews, 

while simultaneously factoring in utilization efficiencies for those autonomous plants and crews employed. 

𝑁𝑃𝑂 =  𝑃𝑃𝑈 –  𝑀𝐶𝐶                                                                        (1) 

Here,  PPU =  Plant Production Output;  
  MCC = Maintenance crew cost, can be calculated by using following Equations (2) and (3) 

respectively, 
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𝑃𝑃𝑈 = ∑ 𝑃𝐻𝑅 × 𝐻𝑟𝐸𝑂𝑃

𝑁𝑝

1

                                                                  (2) 

𝑀𝐶𝐶 = 𝑁𝑐 × 𝐶𝐻𝑅 × 𝐻𝑟𝑂𝑃                                                                 (3) 

Here,  Np = Number of plant; 
  Nc = Number of crew hired; 

  PHR = Plant’s hourly production output value without stoppage ($/h); 
  HrEOP = Effective operation hours on each plant, as per equation (4); 
  CHR = Crew hourly rate ($/h); 
  HrOP = Total operation hour. 
 

𝐻𝑟𝐸𝑂𝑃 = 𝐻𝑟𝑂𝑃  − [𝐼𝑛𝑡𝑢𝑟𝑢𝑝𝑡𝑒𝑑, 𝐻𝑟𝑂𝑃]                                             (4) 

𝑃𝐻𝑅 = 𝑓 (∑ 𝑐𝑖) ;      𝑖 = 1, 2, 3, … . . , 𝑛                                            (5) 

 
Where,  ci is the itemized cost due to breakdown per unit product, which accounts all direct and indirect 

production costs.   
Here, the NPO essentially factors in the plant utilization efficiency for each of all the plants (e.g., 

autonomous plant efficiency factor generally fall in the range above 90%); which is factored in the effective 

operation hours on each plant in (2), the higher this ratio (closer to 100%), the higher plant production 
output, hence, the higher NPO. On the other hand, the manual crew utilization efficiency (e.g., manual crew 
utilization efficiency factor generally is around 50%: half of the time crew engaged in operating plants; half 
of the time standby) is loosely reflected in the maintenance crew cost: if too many crews are hired, the crew 
utilization efficiency will be much lower, as a result, driving up the maintenance crew cost and reducing 
the NPO as per Eq. (1). 

In short, NPO provides an effective performance indicator for both system productivity and resource 
use efficiency in the current case. In order to improve productivity and resource use efficiency the objective 
is to maximize NPO. 

4 PROCESS SIMULATION 

For the aforementioned case in Tang et al. (2004), the probabilities for the four categories of auto system 
breakdown add up to 20% (Table 1); the rest 80% of the time the plant runs on its autonomous mode without 

any problems. Anticipated crew hourly rate, CHR is $312.5/hr (overtime or night shift factors are 
considered in this average rate), and the hourly production output, PHR of a crushing plant is $10,000/hr. 

Table 1: Crushing plant breakdown statistics. 

Breakdown Category Probability Down Time  

CAT I 0.08 0.5 hour 

CAT II 0.06 1.0 hour 

CAT III 0.04 1.5 hour 

CAT IV 0.02 2.0 hour 
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4.1 Single Simulation Run 

Considering the above input setting, a single simulation run to simulate plant breakdown events for 5 hour 
duration is illustrated in Figure 1. Table 2 summarizes the plant breakdown hours corresponding to the 

number of plants which would break down at the same time during the five hours time period, alongside 
the scaled up time duration in terms of the twenty four hours operation period.  
 

 

 

Figure 1: Plant breakdown simulation bar chart from one run over five hours. 

Table 2: Solution demo based on one run Monte Carlo scaled up to twenty four hours of operations. 

No. of plants broken 

down at the same time 
No. of minutes 

Equivalent 

hours per day 

0 25 2.00 

1 72 5.76 

2 167 13.36 

3 24 1.92 

4 12 0.96 

5 0 0.00 

Total 300 24 

3889



Lu and Hasan 
 

 
 

Based on simulated down times, various scenarios for crew allocation are analyzed independently, 
namely, 5 crews, 4 crews, 3 crews, 2 crews, and 1 crew.  For instance, if 4 crews are allocated, using 
Equations (1) to (4), following values can be determined,  

From equation (2),  𝑃𝑃𝑈 = ∑ 𝑃𝐻𝑅 × 𝐻𝑟𝐸𝑂𝑃
𝑁𝑝

1 =  15 × 10,000 × 24 = $3,600,000 

From equation (3), 𝑀𝐶𝐶 = 𝑁𝑐 × 𝐶𝐻𝑅 × 𝐻𝑟𝑂𝑃 = 4 × 312.5 × 24 = $30,000 

Thus, the net production output value, NPO is fixed as per Equation (1), which is (𝑃𝑃𝑈 –  𝑀𝐶𝐶) =

3,570,000$. For this scenario, the crew use scheduling results in 44% crew utilization rate (working time 

percent) in keeping the 15 crushing plants running over 24 hours without any production loss time. If three 

crews are employed, using the same set of equations, the daily production, PPU can be found to be 

$3,590,400 due to some plant production loss ($9,600 for 0.96 hr). The crew utilization is updated at 57% 

and the total net output, NPO is at $3,567,900. Compared against the “deploying 4 crews” scenario, the net 

output in “3 Crews” Scenario reduces marginally by $2,100 (from $3,570,000 with 4 crews to $ 3,567,990 

with 3 crews), while the crew utilization rate increases from 44% to 57%.  Figure 2 shows the change of 

NPO with the different crew number, Nc which is conducive to identifying the maximum productivity of 

the plant operation. For this simulation run, it is evident in Figure 2 that the maximum value of NPO = 

$3.570 million is obtained when four maintenance crews are assigned as backup.  

 

Figure 2: Change for NPO with different crew number for the first MC run. 

4.2 Multiple Simulation Runs 

The entire procedure for a single simulation run discussed above is repeated for thirty independent Monte 

Carlo duplications. The values of  NPO with corresponding Nc for each simulation run are plotted together 

in the same Figure 3(a). The resulting NPO verses Nc plot show, instead of having a single point value of 

NPO for each number of allocated crews, the NPO is now a cluster of points, each point denoting the 

independent solution obtained from multiple simulation runs. The series of clusters is separately depicted 

in Figure 3(b) with a box plot for better illustration of the distribution of the data clusters.  

1 2 3 4 5 6

N
P

O
 (

$
1

,0
0

0
)

No. of Crew Allocated, Nc
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(a) 

 
(b) 

Figure 3: Change for NPO with different crew number for 30 independent MC run, (a) the cluster of NPO 
values for corresponding Nc value, (b) the box plot for each NPO data group. 

In Figure 3, all the points cluster so closely given the number of crew is 7 or 8, as most of the simulated 

output NPO fall on the same spot. Note, the majority of simulation runs yields maximum NPO at 4 or 5 

crews. Adding more crews beyond 5 results in no interruption in the plants' operation, while the 

maintenance crew cost increases linearly. Thus, the NPO remains the same. Besides,  Table 3 summarizes 

the average (Avg.) and standard deviation (Std. dev.) for each data cluster resulting from multiple 

simulation runs.  

Table 3: Simulation statistics for each group of NPO values for corresponding Nc value. 

0 1 2 3 4 5 6 7 8 9

N
P

O
 (

$
1

,0
0

0
)

No. of Allocated Crew, Nc

1 2 3 4 5 6 7 8

N
P

O
 (

$
1

,0
0

0
)

No. of Allocated Crew, Nc

Nc 1 2 3 4 5 6 7 8 

Avg. NPO 

(Million $) 

$3.363 $3.482 $3.536 $3.548 $3.548 $3.541 $3.532 $3.540 

Std. dev. of NPO 

(Million $) 

$0.122 $0.101 $0.077 $0.064 $0.065 $0.075 $0.088 $0.000 

95% confidence 

interval of NPO 

[Low, High] 

(Million $) 

[3.124, 
3.602] 

[3.285, 
3.679] 

[3.385, 
3.685] 

[3.423, 
3.673] 

[3.420, 
3.675] 

[3.393, 
3.689] 

[3.359, 
3.703] 

- 
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4.3 Output Analysis 

To make the critical resource planning decision about how many crews should be deployed to operate the 

15 autonomous crushing plants, the lower bound of the 95% confidence interval of Net Production Output 

( NPO) is plotted against different crew number (Nc) in Figure 4, which is based on statistical analysis of 

simulation output. From Figure 4 it is evident that the deployment of four backup manual crews (Nc = 4) 

yields the maximum NPO value. So, the optimum number of manual crews is identified as four,  which has 

the highest likelihood to maximize NPO in the range of  [3.423, 3.673] Million $. 

 

Figure 4: Lower bound of the 95% confidence interval of Net Production Output, (NPO) values for different 
crew number (Nc). 

4.3.1 Sensitivity Analysis 

To check the sensitivity of the effect of the crew hourly rate (CHR) on the crew size (Nc), the simulation 
output is analyzed for different crew hourly rates (adjusted up or down by 20% and 50% respectively, 
implying the likely fluctuation of crew hourly rate in reality) and presented in the following Figure 5. It is 

observable that there is no significant change in crew number which outputs maximum NPO value due to 
the change of CHR in the range of [-50%, +50%]. For this example case, the crew number which yields 
maximum NPO remains four (Nc = 4).  

 

Figure 5: Change of NPO value for the different crew hourly rate. 
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4.3.2 Crew Utilization 

Crew utilization rate is defined as the ratio between the crew working hours and total crew deployed hours. 
For the first MC run for this case study (discussed in Section 4.1), the crew utilization status given four and 

three manual operation crews are deployed is illustrated in Figure 6(a) and 6(b), respectively. Hence, when 
four crews are allocated, simulation results in 44% crew utilization rate (working time percent) in keeping 
the 15 plants running over 24 hours without any production loss time. Thus, plants production efficiency 
(net output /net capacity) is 100 %. If three crews are employed, using the same set of equations, crew 
utilization increases to 57%; while at the same time, the plants’ efficiency slightly decreases to 99.4%.  

 

 
(a) 

 
(b)  

Figure 6: Crew utilization scenario analyses for (a) four backup manual crews are allocated, (b) three crews 
are allocated. 

For multiple simulation runs, crew utilization rate for different numbers of crew combinations are 
calculated based on simulation outputs, and statistics of the results are summarized in Table 4. Here, if 4 
crews are deployed, the mean crew utilization rate is 45.02% which falls in the work percentage range of 
40% to 65% benchmarking field labor activity in construction (Dozzi and AbouRizk 1993; Jergeas 2009; 

RSMOnline 2014). Note 45% work percentage is deemed practical in reality, as workers are not robots or 
machines; they are human beings working in a harsh environment. In contrast, the plant utilization rate is 
around 100%. 
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Table 4: Simulation statistics for crew utilization rate with corresponding Nc value. 

Nc 1 2 3 4 5 6 

Crew Utilization 

Rate, CUR 

85.65% 72.79% 57.10% 45.02% 36.33% 30.18% 

Std. dev. of CUR 7.30% 9.66% 9.88% 9.29% 8.80% 7.27% 

5 RELEVANT APPLICATION PROBLEMS 

Two separate case problems from the construction engineering domain are presented in this section to 
demonstrate the relevance of the proposed methodology to determine the manual backup crew deployment 
in support of utilizing autonomous technology in the construction field. The first case is termed as 
“autonomous truck breakdown problem” and the second one is about “automatic tunnel boring machine 
(TBM) guidance mechanism breakdown problem”,  explained as follows.  

Autonomous Truck breakdown problem: In recent years autonomous dump trucks for mining or large-
scale rough grading in construction can be found in the field as game-changing technology in the 
construction industry (Healing 2018). Autonomous trucks are capable of running without the driver. 
However, the automation control system on board may occasionally break down (random event), which 
needs to be diagnosed and repaired via wireless communication networks for a certain time of period. At 
the end of repair, the control software needs to be rebooted. In the meantime, a human driver can take 

control of the truck so to keep the operation running uninterruptedly.   
Autonomous TBM guidance system breakdown problem: Another example is deployment of the 

automatic TBM guidance system in tunnel construction. Automatic survey robot substitutes for the manual 
alignment survey system which depends on the field service of the expert survey crew and demands 
temporary shutdown of TBM operation due to quality assurance requirements and confined work space in 
the tunnel (Shen et al. 2011). However, occasionally, this automatic survey control system can fail and 

needs significant time for repair and recalibration due to system malfunctioning or unanticipated 
disturbance to the system position. In order to keep the TBM operation running,  a manual survey crew is 
called in as backup to guide TBM in the underground space along the as-designed tunnel alignment. 

In both cases, backup crews are necessary to avoid productivity loss during the autonomous system 
downtime. The attributes given in Table 5 align  these two construction engineering problems with the 
presented case of autonomous crushing plants. 

Table 5: Relevant attributes for the construction engineering examples. 

Features Crushing Plant  Autonomous hauling 

Truck 

Autonomous TBM 

guidance system 

Autonomous 

Control System  

Autonomous aggregate 

crushing plant 

Autonomous (driverless) 

Truck 

Autonomous survey 

robot for TBM guidance 
in tunneling 

Breakdown 
Entity (Random) 

Crushing plant 
(operation running 
mechanism) breakdown 

Truck control system 
breakdown 

Guidance system 
mechanism malfunction 
or calibration 

requirement  

Breakdown 
Category  

Discrete probabilities 
based on limited 
historical data of 
downtime.   

Can be defined by 
analyzing automatically 
collected sensor data of 
downtime. 

Can be defined by 
analyzing automatically 
collected sensor data of 
downtime. 

Backup Crew Plant operator  Truck driver Tunnel surveyor 
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6 CONCLUSION 

On top of a Monte Carlo simulation model for planning maintenance crew resources in operating 
autonomous crushing plants at a quarry, the present research defines cost functions by factoring the 

production output value, resource utilization efficiencies and direct costs in connection with both 
autonomous plants and maintenance crews. This enables more effective analyses on the simulation output 
and allows for a better, structured way to balance the cost of plant production loss against the cost of hiring 
maintenance crews, thereby facilitating the identification of the optimum solution and lending 
straightforward decision support. In particular, the cost function called Net Production Output value is 
found to be an effective performance indicator to facilitate the decision process based on interpreting 

simulation outputs. The application of the proposed simulation analysis methodology can be generalized 
from autonomous crushing plants in the present case study to a wide range of autonomous equipment, so 
as to nicely integrate productivity analysis, resource use efficiency, cost estimating, reliability analysis, and 
risk analysis in addressing such complex systems involving the interaction of autonomous systems and 
humans. Beyond the presented aggregate crushing plant case, relevant applications such as “autonomous 
truck breakdown problem” and “automatic tunnel boring machine (TBM) guidance mechanism breakdown 

problem” can be addressed by following the presented simulation methodology. In the near future, 
autonomous plants and equipment will not replace human beings entirely; instead, they will complement 
human beings to maximize the productivity gain as a result of technology advances. This is evidenced by 
recent news in the construction and mining industry: major mining companies implement a fleet of 
autonomous trucks, while still keeping a certain number of driver jobs as backup to operate non-
autonomous trucks in order to maximize the full potential of new technology. 
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